
Relax then Compensate:

On Max-Product Belief Propagation and More

Arthur Choi
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095
aychoi@cs.ucla.edu

Adnan Darwiche
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

darwiche@cs.ucla.edu

Abstract

We introduce a new perspective on approximations to the maximum a posteriori
(MAP) task in probabilistic graphical models, that is based on simplifying a given
instance, and then tightening the approximation. First, we start with a structural
relaxation of the original model. We then infer from the relaxation its deficien-
cies, and compensate for them. This perspective allows us to identify two distinct
classes of approximations. First, we find that max-product belief propagation can
be viewed as a way to compensate for a relaxation, based on a particular idealized
case for exactness. We identify a second approach to compensation that is based
on a more refined idealized case, resulting in a new approximation with distinct
properties. We go on to propose a new class of algorithms that, starting with a
relaxation, iteratively seeks tighter approximations.

1 Introduction

Relaxations are a popular approach for tackling intractable optimization problems. Indeed, for find-
ing the maximum a posteriori (MAP) assignment in probabilistic graphical models, relaxations play
a key role in a variety of algorithms. For example, tree-reweighted belief propagation (TRW-BP) can
be thought of as a linear programming relaxation of an integer program for a given MAP problem
[1, 2]. Branch-and-bound search algorithms for finding optimal MAP solutions, such as [3, 4], rely
on structural relaxations, such as mini-bucket approximations, to provide upper bounds [4, 5].

Whether a relaxation is used as an approximation on its own, or as a guide for finding optimal
solutions, a trade-off is typically made between the quality of an approximation and the complexity
of computing it. We illustrate here instead how it is possible to tighten a given relaxation itself,
without impacting its structural complexity.

More specifically, we propose here an approach to approximating a given MAP problem by perform-
ing two steps. First, we relax the structure of a given probabilistic graphical model, which results in
a simpler model whose MAP solution provides an upper bound on that of the original. Second, we
compensate for the relaxation by introducing auxiliary parameters, which we use to restore certain
properties, leading to a tighter approximation. We shall in fact propose two distinct properties on
which a compensation can be based. The first is based on a simplified case where a compensation
can be guaranteed to yield exact results. The second is based on a notion of an ideal compensation,
that seeks to correct for a relaxation more directly. As we shall see, the first approach leads to a
new semantics for the max-product belief propagation algorithm. The second approach leads to
another approximation that further yields upper bounds on the MAP solution. We further propose
an algorithm for finding such a compensation, that starts with a relaxation and iteratively provides
monotonically decreasing upper bounds on the MAP solution (at least empirically).

Proofs of results are given in the auxiliary Appendix.
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2 MAP Assignments

Let M be a factor graph over a set of variables X, inducing a distribution Pr(x) ∝
∏

a ψa(xa)
where x = {X1 =x1, . . . ,Xn =xn} is an assignment of factor graph variables Xi to states xi, and
where a is an index to the factor ψa(Xa) over the domain Xa ⊆ X. We seek the maximum a
posteriori (MAP) assignment x⋆ = argmax

x

∏
a ψa(xa). We denote the log of the value of a MAP

assignment x⋆ by:

map
⋆ = log max

x

∏

a

ψa(xa) = max
x

∑

a

logψa(xa)

which we refer to more simply as the MAP value. Note that there may be multiple MAP assignments
x

⋆, so we may refer to just the value map
⋆ when the particular assignment is not relevant. Next,

if z is an assignment over variables Z ⊆ X, then let x ∼ z denote that x and z are compatible
assignments, i.e., they set their common variables to the same states. Consider then the MAP value
under a partial assignment z:

map(z) = max
x∼z

∑

a

logψa(xa).

We will, in particular, be interested in the MAP value map(X=x) where we assume a single vari-
able X is set to a particular state x. We shall also refer to these MAP values more generally as
map(.), without reference to any particular assignment.

3 Relaxation

The structural relaxations that we consider here are based on the relaxation of equivalence con-
straints from a model M, where an equivalence constraint Xi≡Xj is a factor ψeq(Xi,Xj) over
two variables Xi and Xj that have the same states. Further, ψeq(xi, xj) is 1 if xi = xj and 0 oth-
erwise. We call an assignment x valid, with respect to an equivalence constraint Xi≡Xj , if it sets
variables Xi and Xj to the same state, and invalid otherwise. Note that when we remove an equiva-
lence constraint from a modelM, the values map(x) for valid configurations x do not change, since
log 1 = 0. However, the values map(x) for invalid configurations can increase, since they are −∞
prior to the removal. In fact, they could overtake the optimal value map

⋆. Thus, the MAP value
after relaxing an equivalence constraint inM is an upper bound on the original MAP value.

It is straightforward to augment a modelM to another where equivalence constraints can be relaxed.
Consider, for example, a factor ψ1(A,B,C). We can replace the variable C in this factor with a
clone variable C ′, resulting in a factor ψ′

1(A,B,C
′). When we now add the factor ψ2(C,C

′) for the
equivalence constraint C ≡ C ′, we have a new modelM′ which is equivalent to the original model
M, in that an assignment x inM corresponds to an assignment x′ inM′, where assignment x′ sets
a variable and its clone to the same state. Moreover, the value map(x) in modelM is the same as
the value map

′(x′) in modelM′.

We note that a number of structural relaxations can be reduced to the removal of equivalence con-
straints, including relaxations found by deleting edges [6, 7], as well as mini-bucket approximations
[5, 4]. In fact, the example above can be considered a relaxation where we delete a factor graph
edge C → ψ1, substituting clone C ′ in place of variable C. Note that mini-bucket approximations
in particular have enabled algorithms for solving MAP problems via branch-and-bound search [3, 4].

4 Compensation

Suppose that we have a modelM with MAP values map(.). Say that we remove the equivalence
constraints inM, resulting in a relaxed model with MAP values r-map(.). Our goal is to identify
a compensated modelM′ with MAP values c-map(.) that is as tractable to compute as the values
r-map(.), but yielding tighter approximations of the original values map(.).

To this end, we introduce into the relaxation additional factors ψij;i(Xi) and ψij;j(Xj) for each
equivalence constraint Xi≡Xj that we remove. Equivalently, we can introduce the log factors
θ(Xi) = logψij;i(Xi) and θ(Xj) = logψij;j(Xj) (we omit the additional factor indices, as they
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will be unambiguous from the context). These new factors add new parameters into the approxima-
tion, which we shall use to recover a weaker notion of equivalence into the model. More specifically,
given a set of equivalence constraints Xi≡Xj to relax, we have the original MAP values map(.),
the relaxation r-map(.) and the compensation c-map(.), where:

• map(z) = maxx∼z

∑
a logψa(xa) +

∑
Xi≡Xj

logψeq(Xi =xi,Xj =xj)

• r-map(z) = maxx∼z

∑
a logψa(xa)

• c-map(z) = maxx∼z

∑
a logψa(xa) +

∑
Xi≡Xj

θ(Xi =xi) + θ(Xj =xj)

Note that the auxiliary factors θ of the compensation do not introduce additional complexity to the
relaxation, in the sense that the treewidth of the resulting model is the same as that of the relaxation.

Consider then the case where an optimal assignment x
⋆ for the relaxation happens to set variables

Xi and Xj to the same state x, for each equivalence constraint Xi≡Xj that we relaxed. In this
case, the optimal solution for the relaxation is also an optimal solution for the original model, i.e.,
r-map

⋆ = map
⋆. On the other hand, if a relaxation’s optimal assignment sets Xi and Xj to different

states, then it is not a valid assignment for the original model M, as it violates the equivalence
constraint and thus has log probability −∞.

Consider, for a given equivalence constraint Xi≡Xj , the relaxation’s MAP values r-map(Xi =x)
and r-map(Xj =x) when we set, respectively, a single variable Xi or Xj to a state x. If for all states
x we find that r-map(Xi =x) 6= r-map(Xj =x), then we can infer that the MAP assignment sets
variables Xi and Xj to different states: the MAP value when we set Xi to a state x is different than
the MAP value when we set Xj to the same state. We can then ask of a compensation, for all states
x, that c-map(Xi =x) = c-map(Xj =x), enforcing a weaker notion of equivalence. In this case, if
there is a MAP assignment that sets variable Xi to a state x, then there is at least a MAP assignment
that sets variable Xj to the same state, even if there is no MAP assignment that sets both Xi and Xj

to the same state at the same time.

We now want to identify parameters θ(Xi) and θ(Xj) to compensate for a relaxation in this manner.
We propose two approaches: (1) based on a condition for exactness in a special case, and (2) based
on a notion of ideal compensations. To get the intuitions behind these approaches, we consider first
the simplified case where a single equivalence constraint is relaxed.

4.1 Intuitions: Splitting a Model into Two

Consider the case where relaxing a single equivalence constraintXi≡Xj splits a modelM into two
independent sub-models,Mi andMj , where sub-modelMi contains variable Xi and sub-model
Mj contains variable Xj . Intuitively, we would like the parameters added in one sub-model to
summarize the relevant information about the other sub-model. In this way, each sub-model could
independently identify their optimal sub-assignments. For example, we can use the parameters:

θ(Xi =x) = mapj(Xj =x) and θ(Xj =x) = mapi(Xi =x).

Since sub-modelsMi andMj become independent after relaxing the single equivalence constraint
Xi≡Xj , computing these parameters is sufficient to reconstruct the MAP solution for the original
modelM. In particular, we have that θ(Xi =x) + θ(Xj =x) = map(Xi =x,Xj =x), and further
that map

⋆ = maxx[θ(Xi =x) + θ(Xj =x)].

We propose then that the parameters of a compensation, with MAP values c-map(.), should satisfy
the following condition:

c-map(Xi =x) = c-map(Xj =x) = θ(Xi =x) + θ(Xj =x) + γ (1)

for all states x. Here γ is an arbitrary normalization constant, but the choice γ = 1
2
c-map

⋆ results in
simpler semantics. The following proposition confirms that this choice of parameters does indeed
reflect our earlier intuitions, showing that this choice allows us to recover exact solutions in the
idealized case when a model is split into two.

Proposition 1 Let map(.) denote the MAP values of a modelM, and let c-map(.) denote the MAP
values of a compensation that results from relaxing an equivalence constraint Xi≡Xj that splitM
into two independent sub-models. Then the compensation has parameters satisfying Equation 1 iff
c-map(Xi =x) = c-map(Xj =x) = map(Xi =x,Xj =x) + γ.
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Note that the choice γ = 1
2
c-map

⋆ implies that θ(Xi =x) + θ(Xj =x) = map(Xi =x,Xj =x) in
the case where relaxing an equivalent constraint splits a model into two.

In the case where relaxing an equivalence constraint does not split a model into two, a compensation
satisfying Equation 1 at least satisfies a weaker notion of equivalence. We might expect that such a
compensation may lead to more meaningful, and hopefully more accurate, approximations than a re-
laxation. Indeed, this compensation will eventually lead to a generalized class of belief propagation
approximations. Thus, we call a compensation satisfying Equation 1 a REC-BP approximation.

4.2 Intuitions: An Ideal Compensation

In the case where a single equivalence constraintXi≡Xj is relaxed, we may imagine the possibility
of an “ideal” compensation where, as far as computing the MAP solution is concerned, a compen-
sated model is as good as a model where the equivalence constraint was not relaxed. Consider then
the following proposal of an ideal compensation, which has the following two properties. First, it
has valid configurations:

c-map(Xi =x) = c-map(Xj =x) = c-map(Xi =x,Xj =x)

for all states x. Second it has scaled values for valid configurations:

c-map(Xi =x,Xj =x) = κ ·map(Xi =x,Xj =x).

for all states x, and for some κ > 1. If a compensation has valid configurations, then its optimal
solution sets variables Xi and Xj to the same state, and is thus a valid assignment for the orig-
inal instance (it satisfies the equivalence constraint). Moreover, if it has scaled values, then the
compensation further allows us to recover the MAP value as well. A compensation having valid
configurations and scaled values is thus ideal as it is sufficient for us to recover the exact solution.

It may not always be possible to find parameters that lead to an ideal compensation. However, we
propose that a compensation’s parameters should satisfy:

c-map(Xi =x) = c-map(Xj =x) = 2 · [θ(Xi =x) + θ(Xj =x)] (2)

for all states x, where we choose κ = 2. As the following proposition tells us, if a compensation is
an ideal one, then it must at least satisfy Equation 2.

Proposition 2 Let map(.) denote the MAP values of a modelM, and let c-map(.) denote the MAP
values of a compensation that results from relaxing an equivalence constraint Xi≡Xj in M. If
c-map(.) has valid configurations and scaled values, then c-map(.) satisfies Equation 2.

We thus call a compensation satisfying Equation 2 a REC-I compensation.

We note that other values of κ > 1 can be used, but the choice κ = 2 given above re-
sults in simpler semantics. In particular, if a compensation happens to satisfy c-map(Xi =x) =
c-map(Xj =x) = c-map(Xi =x,Xj =x) for some state x, we have that θ(Xi =x) + θ(Xj =x) =
map(Xi =x,Xj =x) (i.e., the parameters alone can recover an original MAP value).

Before we discuss the general case where we relax multiple equivalence constraints, we highlight
first a few properties shared by both REC-BP and REC-I compensations, that shall follow from more
general results that we shall present. First, if the optimal assignment x⋆ for a compensation sets the
variables Xi and Xj to the same state, then: (1) the assignment x

⋆ is also optimal for the original

modelM; and (2) 1
2
c-map

⋆ = map
⋆. In the case where x

⋆ does not set variables Xi and Xj to the
same state, the value c-map

⋆ gives at least an upper bound that is no worse than the bound given by
the relaxation alone. In particular:

map
⋆ ≤

1

2
c-map

⋆ ≤ r-map
⋆.

Thus, at least in the case where a single equivalence constraint is relaxed, the compensations implied
by Equations 1 and 2 do indeed tighten a relaxation (see the auxiliary Appendix for further details).

4.3 General Properties

In this section, we identify the conditions that compensations should satisfy in the more general case
where multiple equivalence constraints are relaxed, and further highlight some of their properties.
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Suppose that k equivalence constraints Xi≡Xj are relaxed from a given modelM. Then compen-
sations REC-BP and REC-I seek to recover into the relaxation two weaker notions of equivalence.

First, a REC-BP compensation has auxiliary parameters satisfying:

c-map(Xi =x) = c-map(Xj =x) = θ(Xi =x) + θ(Xj =x) + γ (3)

where γ = k
1+k

c-map
⋆. We then approximate the exact MAP value map

⋆ by the value 1
1+k

c-map
⋆.

The following theorem relates REC-BP to max-product belief propagation.

Theorem 1 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP
values of a compensation that results from relaxing enough equivalence constraints Xi≡Xj inM
to render it fully disconnected. Then a compensation whose parameters satisfy Equation 3 has
values exp{c-map(Xi =x)} that correspond to the max-marginals of a fixed-point of max-product
belief propagation run onM, and vice-versa.

Loopy max-product belief propagation is thus the degenerate case of a REC-BP compensation, when
the approximation is fully disconnected (by deleting every factor graph edge, as defined in Sec-
tion 3). Approximations need not be this extreme, and more structured approximations correspond
to instances in the more general class of iterative joingraph propagation approximations [8, 6].

Next, a REC-I compensation has parameters satisfying:

c-map(Xi =x) = c-map(Xj =x) = (1 + k)[θ(Xi =x) + θ(Xj =x)] (4)

We again approximate the exact MAP value map
⋆ with the value 1

1+k
c-map

⋆.

In both compensations, it is possible to determine if the optimal assignment x⋆ of a compensation is
an optimal assignment for the original modelM: we need only check that it is a valid assignment.

Theorem 2 Let map(.) denote the MAP values of a modelM, and let c-map(.) denote the MAP val-
ues of a compensation that results from relaxing k equivalence constraints Xi≡Xj . If the compen-
sation has parameters satisfying either Eqs. 3 or 4, and if x⋆ is an optimal assignment for the com-
pensation that is also valid, then: (1) x

⋆ is optimal for the modelM, and (2) 1
1+k

c-map
⋆ = map

⋆.

This result is analogous to results for max-product BP, TRW-BP, and related algorithms [9, 2, 10].

A REC-I compensation has additional properties over a REC-BP compensation. First, a REC-I com-
pensation yields upper bounds on the MAP value, whereas REC-BP does not yield a bound in general.

Theorem 3 Let map(.) denote the MAP values of a model M, and let c-map(.) denote the MAP
values of a compensation that results from relaxing k equivalence constraints Xi≡Xj . If the com-

pensation has parameters satisfying Equation 4, then map
⋆ ≤ 1

1+k
c-map

⋆.

We remark now that a relaxation alone has analogous properties. If an assignment x
⋆ is optimal

for a relaxation with MAP values r-map(.), and it is also a valid assignment for a modelM (i.e.,
it does not violate the equivalence constraints Xi≡Xj), then x

⋆ is also optimal for M, where
r-map(x⋆) = map(x⋆) (since they are composed of the same factor values). If an assignment x⋆ of
a relaxation is not valid for modelM, then the MAP value of the relaxation is an upper bound on
the original MAP value. On the other hand, REC-I compensations are tighter approximations than
the corresponding relaxation, at least in the case when a single equivalence constraint is relaxed:
map

⋆ ≤ 1
2
c-map

⋆ ≤ r-map
⋆. When we relax multiple equivalence constraints we find, at least

empirically, that REC-I bounds are never worse than relaxations, although we leave this point open.

The following theorem has implications for MAP solvers that rely on relaxations for upper bounds.

Theorem 4 Let map(.) denote the MAP values of a modelM, and let c-map(.) denote the MAP val-
ues of a compensation that results from relaxing k equivalence constraints Xi≡Xj . If the compen-
sation has parameters satisfying Eq. 4, and if z is a partial assignment that sets the same sign to vari-
ables Xi and Xj , for any equivalence constraint Xi≡Xj relaxed, then: map(z) ≤ 1

1+k
c-map(z).

Algorithms, such as those in [3, 4], perform a depth-first branch-and-bound search to find an optimal
MAP solution. They rely on upper bounds of a MAP solution, under partial assignments, in order to
prune the search space. Thus, any method capable of providing upper bounds tighter than those of a
relaxation, can potentially have an impact in the performance of a branch-and-bound MAP solver.
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Algorithm 1 RelaxEq-and-Compensate (REC)

input: a modelM with k equivalence constraints Xi≡Xj

output: a compensationM′

main:

1: M′

0 ← result of relaxing all Xi≡Xj inM
2: add toM′

0 the factors θ(Xi), θ(Xj), for each Xi≡Xj

3: initialize all parameters θ0(Xi =x), θ0(Xj =x), e.g., to 1
2
r-map

⋆

4: t← 0
5: while parameters have not converged do
6: t← t+ 1
7: for each equivalence constraint Xi≡Xj do
8: update parameters θ(Xi =x)

t, θ(Xj =x)t, computed using compensationM′

t−1, by:
9: for REC-BP: Equations 5 & 6

10: for REC-I: Equations 7 & 8
11: θt(Xi)← q · θt(Xi) + (1− q) · θt−1(Xi) and θt(Xj)← q · θt(Xj) + (1− q) · θt−1(Xj)
12: return M′

t

5 An Algorithm to Find Compensations

Up to this point, we have not discussed how to actually find the auxiliary parameters θ(Xi =x) and
θ(Xj =x) of a compensation. However, Equations 3 and 4 naturally suggest iterative algorithms for
finding REC-BP and REC-I compensations. Consider, for the case of REC-BP, the fact that parameters
satisfy Equation 3 iff they satisfy:

θ(Xi =x) = c-map(Xj =x)− θ(Xj =x)− γ

θ(Xj =x) = c-map(Xi =x)− θ(Xi =x)− γ

This suggests an iterative fixed-point procedure for finding the parameters of a compensation that
satisfy Equation 3. First, we start with an initial compensation with MAP values c-map0(.), where
parameters have been initialized to some value. For an iteration t > 0, we can update our parameters
using the compensation from the previous iteration:

θt(Xi =x) = c-mapt−1(Xj =x)− θt−1(Xj =x)− γt−1 (5)

θt(Xj =x) = c-mapt−1(Xi =x)− θt−1(Xi =x)− γt−1 (6)

where γt−1 = k
1+k

c-map
⋆
t−1. If at some point, the parameters of one iteration do not change in

the next, then we can say that the iterations have converged, and that the compensation satisfies
Equation 3. Similarly, for REC-I compensations, we use the update equations:

θt(Xi =x) = 1
1+k

c-mapt−1(Xj =x)− θt−1(Xj =x) (7)

θt(Xj =x) = 1
1+k

c-mapt−1(Xi =x)− θt−1(Xi =x) (8)

to identify compensations that satisfy Equation 4.

Algorithm 1 summarizes our proposal to compensate for a relaxation, using the iterative procedures
for REC-BP and REC-I. We refer to this algorithm more generically as RelaxEq-and-Compensate
(REC). Note that in Line 11, we further damp the updates by q, which is typical for such algorithms
(we use q = 1

2
). Note also that in Line 3, we suggest that we initialize parameters by 1

2
r-map

⋆. The

consequence of this is that our initial compensation has the MAP value 1
1+k

c-map
⋆
0 = r-map

⋆.1 That

is, the initial compensation is equivalent to the relaxation, for both REC-BP and REC-I. Typically,
both algorithms tend to have compensations with decreasing MAP values. REC-BP may eventually
have MAP values that oscillate however, and may not converge. On the other hand, by Theorem 3,
we know that a REC-I compensation must yield an upper bound on the true MAP value map

⋆.
Starting with an initial upper bound r-map

⋆ from the relaxation, REC-I yields, at least empirically,
monotonically decreasing upper bounds on the true MAP value from iteration to iteration. We
explore this point further in the following section.

1
c-map

⋆
0

= maxx c-map
0
(x) = maxx[r-map(x) +

P

Xi≡Xj
θ(Xi =x) + θ(Xj =x)]

= maxx[r-map(x) + k · r-map
⋆] = r-map

⋆ + k · r-map
⋆
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Figure 1: The REC algorithm in 10× 10 grids. Left column: random grids, using REC-BP (top) and
REC-I (bottom). Center column: frustrated grids, using REC-I with p = 1

2
(top), p = 1

3
(bottom).

Right column: frustrated grids, using REC-BP (top) with a fully disconnected relaxation, and REC-I

(bottom) with a relaxation with max cluster size 3.

6 Experiments

Our goal in this section is to highlight the degree to which different types of compensations can
tighten a relaxation, as well as to highlight the differences in the iterative algorithms to find them.
We evaluated our compensations using randomly parametrized 10×10 grid networks. We judge the
quality of an approximation by the degree to which a compensation is able to improve a relaxation.

In particular, we measured the error E =
1

1+k
c-map

⋆
−map

⋆

r-map⋆
−map⋆ which is zero when the compensation is

exact, and one when the compensation is equivalent to the relaxation (remember that we initialize the
REC algorithm, for both types of compensations, with parameters that led to an initial compensation
with an optimal MAP value 1

1+k
c-map

⋆
0 = r-map

⋆). Note also that we use no instances where the

error E is undefined, i.e., r-map
⋆ − c-map

⋆ = 0, where the relaxation alone was able to recover the
exact solution.

We first consider grid networks where factors ψa(xi, xj) were assigned to grid edges (i, j), with
values drawn uniformly at random from 0 to 1 (we assigned no factors to nodes). We assumed first
the coarsest possible relaxation, one that results in a fully disconnected approximation, and where
the MAP value is found by maximizing factors independently.2 We expect a relaxation’s upper
bound to be quite loose in this case.

Consider first Figure 1 (left), where we generated ten random grid networks (we plotted only ten
for clarity) and plotted the compensation errors (y-axis) as they evolved over iterations (x-axis). At
iteration 0, the MAP value of each compensation is equivalent to that of the relaxation (by design).
We see that, once we start iterating, that both methods of compensation can tighten the approxima-
tion of our very coarse relaxation. For REC-BP, we do so relatively quickly (in fewer iterations),
and to exact or near-exact levels (note that the 10 instances plotted behave similarly). For REC-I,
convergence is slower, but the compensation is still a significant improvement over the relaxation.
Moreover, it is apparent that further iterations would benefit the compensation further.

We next generated random grid networks with frustrated interactions. In particular, each edge was
given either an attractive factor or repulsive factor, at random each with probability 1

2
. An attractive

factor ψa(Xi,Xj) was given a value at random from 1 − p to 1 if xi = xj and a value from 0 to

2For each factor ψa and for each variable X in ψa, we replaced variable X with a unique clone X̂ and

introduced the equivalence constraint X≡X̂ . When we then relax all equivalence constraints, the resulting
factor graph is fully disconnected. This corresponds to deleting all factor graph edges, as described in Section 3.
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p if xi 6= xj , which favors configurations xi = xj when p ≤ 1
2

. Similarly for repulsive factors,
which favors instead configurations where xi 6= xj . It is well known that belief propagation tends to
not converge in networks with frustrated interactions [11]. Non-convergence is the primary failure
mode for belief propagation, and in such cases, we may try to use instead REC-I. We generated 10
random grid networks with p = 1

2
and another 10 networks with p = 1

3
. Although the frustration

in these networks is relatively mild, REC-BP did not converge in any of these cases. On the other
hand, REC-I compensations were relatively well behaved, and produced monotonically decreasing
upper bounds on the MAP value; see Figure 1 (center). Although the degree of compensation is not
as dramatic, we note that we are compensating for a very coarse relaxation (fully disconnected).

In Figure 1 (right), we considered frustrated grid networks where p = 1
10

, where REC-BP converged
in only one of 10 networks generated. Moreover, we can see in that one instance, REC-BP converges
below the true MAP value; remember that by Theorem 3, REC-I compensations always yield upper
bounds. In the case of REC-I, the compensations did not improve significantly on the fully discon-
nected relaxations (not shown). It is, however, straightforward to try less extreme relaxations. For
example, we used the mini-buckets-based approach to relaxation proposed in [4], and identified re-
laxed modelsM′ with jointrees that had a maximum cluster size of 3 (c.f., [12] which re-introduced
constraints over triples). Surprisingly, this was enough for REC-I to compensate for the relaxation
completely (to within 10−8) in 7 of the 10 instances plotted. REC-BP benefits from added structure
as well, converging and compensating completely (to within 10−4) in 9 of 10 instances (not plotted).

7 Discussion

There are two basic concepts underlying our proposed framework. The first is to relax a problem by
dropping equivalence constraints. The second is that of compensating for a relaxation in ways that
can capture existing algorithms as special cases, and in ways that allow us to design new algorithms.
The idea of using structural relaxations for upper-bounding MAP solutions in probabilistic graphical
models goes back to mini-bucket approximations [13], which can be considered to be a particular
way of relaxing equivalence constraints from a model [4]. In this paper, we propose further a way
to compensate for these relaxations, by restoring a weaker notion of equivalence. One approach to
compensation identified a generalized class of max-product belief propagation approximations. We
then identified a second approach that led to another class of approximations that we have observed
to yield tighter upper bounds on MAP solutions as compared to a relaxation alone.

An orthogonal approach to upper-bounding MAP solutions is based on linear programming (LP)
relaxations, which has seen significant interest in recent years [1, 2]. This perspective is based on
formulating MAP problems as integer programs, whose solutions are upper-bounded by tractable LP
relaxations. A related approach based on Lagrangian relaxations is further capable of incorporating
structural simplifications [14]. Indeed, there has been significant interest in identifying a precise
connection between belief propagation and LP relaxations [2, 10].

In contrast to the above approaches, compensations further guarantee, in Theorem 4, upper bounds
on MAP solutions under any partial assignment (without rerunning the algorithm). This property
has the potential to impact algorithms, such as [3, 4], that rely on such upper bounds, under partial
assignments, to perform a branch-and-bound search for optimal MAP solutions.3 Further, as we
approximate MAP by computing it exactly in a compensated model, we avoid the difficulties that al-
gorithms such as max-product BP and related algorithms face, which infer MAP assignments using
max-marginals (which may not have unique maximal states), which is based on local information
only [1]. The perspective that we propose further allows us to identify the intuitive differences be-
tween belief propagation and an upper-bound approximation, namely that they arise from different
notions of compensation. We hope that this perspective will enable the design of new approxima-
tions, especially in domains where specific notions of compensation may suggest themselves.
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