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Abstract

We formulate and address the problem of discovering dynamaiicious regions
on the Internet. We model this problem as one of adaptivalyimg a known
decision tree, but with additional challenges: (1) sevpees requirements, since
the underlying decision tree has over 4 billion leaves, &)da(changing target
function, since malicious activity on the Internet is dynemVe present a novel
algorithm that addresses this problem, by putting togegheumber of different
“experts” algorithms and online paging algorithms. We mrauarantees on our
algorithm’s performance as a function of the best possiblmipg of a similar
size, and our experiments show that our algorithm achieiggsdtcuracy on large
real-world data sets, with significant improvements ovéstaxy approaches.

1 Introduction

Itis widely acknowledged that identifying the regions thaginate malicious traffic on the Internet
is vital to network security and management, e.g., in thngftattack traffic for fast mitigation, iso-
lating infected sub-networks, and predicting future &6, 18, 19, 24, 26]. In this paper, we show
how this problem can be modeled as a version of a questiorestbgt Helmbold and Schapire [11]
of adaptively learning a good pruning of a known decisior timit with a number of additional chal-
lenges and difficulties. These include a changing targettfon and severe space requirements due
to the enormity of the underlying IP address-space tree. &Veldp new algorithms able to address
these difficulties that combine the underlying approact af vith the sleeping experts framework
of [4, 10] and the online paging problem of [20]. We show hovdé&al with a number of practical
issues that arise and demonstrate empirically on realdrdatasets that this method substantially
improves over existing approaches of /24 prefixes and nébhawaare clusters [6,19,24] in correctly
identifying malicious traffic. Our experiments on data s&t426 million IP addresses demonstrate
that our algorithm is able to achieve a clustering that is©\llaghly accurate and meaningful.

1.1 Background

Multiple measurement studies have indicated that malgctoaffic tends to cluster in a way that
aligns with the structure of the IP address space, and timtstrue for many different kinds of
malicious traffic — spam, scanning, botnets, and phishing§619, 24]. Such clustered behaviour
can be easily explained: most malicious traffic originatesifhosts in poorly-managed networks,
and networks are typically assigned contiguous blocks eflthaddress space. Thus, it is natural
that malicious traffic is clustered in parts of the IP addrgsace that belong to poorly-managed
networks.

From a machine learning perspective, the problem of idgntifregions of malicious activity can
be viewed as one of finding a good pruning of a known decisiemtrthe IP address space may be
naturally interpreted as a binary tree (see Fig.1(a)), hadjbal is to learn a pruning of this tree that
is not too large and has low error in classifying IP addressemalicious or non-malicious. The
structure of the IP address space suggests that there midyarsepruning with only a modest num-
ber of leaves that can classify most of the traffic accuratBhus, identifying regions of malicious
activity from an online stream of labeled data is much like pnoblem considered by Helmbold and
Schapire [11] of adaptively learning a good pruning of a knalgcision tree. However, there are a



number of real-world challenges, both conceptual and acthat must be addressed in order to
make this successful.

One major challenge in our application comes from the schth@data and size of a complete
decision tree over the IP address space. A full decisiondves the IPv4 address space would
have23? leaves, and over the IPv6 address space (which is slowlygbeifed out),2'%® leaves.
With such large decision trees, it is critical to have algoris that do not build the complete tree,
but instead operate in space comparable to the size of a goaithg. These space constraints are
also important because of the volume of traffic that may neduktanalyzed — ISPs often collect
terabytes of data daily and an algorithm that needs to sibits @ata in memory simultaneously
would be infeasible.

A second challenge comes from the fact that the regions oitioab activity may shift longitu-
dinally over time [25]. This may happen for many reasons,, @agministrators may eventually
discover and clean up already infected bots, and attackaysanget new vulnerabilities and attack
new hosts elsewhere. Such dynamic behaviour is a primaspreahy individual IP addresses tend
to be such poor indicators of future malicious traffic [15].ZBhus, we cannot assume that the data
comes from a fixed distribution over the IP address spacegltd@ithm needs to adapt to dynamic
nature of the malicious activity, and track these changeasrately and quickly. That is, we must
consider not only an online sequence of examples but alsaragahg target function.

While there have been a number of measurement studies [,181] that have examined the origin
of malicious traffic from IP address blocks that are kept figpdori, none of these have focused on
developing online algorithms that find the best predictiratidress tree. Our challenge is to develop
an efficient high-accuracy online algorithm that handlesstvere space constraints inherent in this
problem and accounts for the dynamically changing natunmalfcious behavior. We show that
we can indeed do this, both proving theoretical guaranteeadaptive regret and demonstrating
successful performance on real-world data.

1.2 Contributions

In this paper, we formulate and address the problem of destiog and tracking malicious regions of
the IP address space from an online stream of data. We prasetgorithm that adaptively prunes
the IP address tree in a way that maintains at medeaves and performs nearly as well as the
optimum adaptive pruning of the IP address tree with a coatparsize. Intuitively, we achieve the
required adaptivity and the space constraints by combisewgral “experts” algorithms together
with a tree-based version of paging. Our theoretical resufove that our algorithm can predict
nearly as well as the best adaptive decision tree Wwidaves when usin@(k log k) leaves.

Our experimental results demonstrate that our algorithentifies malicious regions of the IP ad-
dress space accurately, with orders of magnitude improwémeer previous approaches. Our ex-
periments focus on classifying spammers and legitimatdessron two mail data sets, one with 126
million messages collected over 38 days from the mail ssreéi tier-1 ISP, and a second with
28 million messages collected over 6 months from an enwpniail server. Our experiments also
highlight the importance of allowing the IP address treedalpnamic, and the resulting view of the
IP address space that we get is both compelling and meahingfu

2 Definitions and Preliminaries
We now present some basic definitions as well as our forméalleno statement.

The IP address hierarchy can be naturally interpreted al liiary tree, as in Fig. 1: the leaves of
the tree correspond to individual IP addresses, and thdeafmodes correspond to the remaining
IP prefixes. LetP denote the set of all IP prefixes, addlenote the set of all IP addresses. We also
use ternclustersto denote the IP prefixes.

We define anlPTree T to be a pruning of the full IP address tree: a tree whose nodetPa
prefixesP € P, and whose leaves are each associated with a label, i.écjonalor non-malicious.
An [Ptree can thus be interpreted as a classification funétiothe IP addresses an IP address
gets the label associated with its longest matching prefiX ikig. 1 shows an example of an IPtree.
We define thesizeof an IPtree to be the number of leaves it has. For exampldginifa), the size
of the IPtree is 6.

As described in Sec. 1, we focus on online learning in thisepag typical point of comparison
used in the online learning model is the error of th@imal offline fixedalgorithm. In this case,
the optimal offline fixed algorithm is the IPtree of a givenesizi.e., the tree of sizé that makes
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(a) An example IPTree (b) A real IPTree (Color coding expdliin Sec. 5)
Figure 1: IPTrees: example and real. Recall that an IP addsesterpreted as a 32-bit string, read
from left to right. This defines a path on the binary tree, gdeft for 0 and right for 1. An IP prefix
is denoted by IPn, wheren indicates the number of bits relevant to the prefix.

the fewest mistakes on the entire sequence. However, iftleamnderlying IPtree may change over
time, a better point of comparison would allow the offlinectte also change over time. To make
such a comparison meaningful, the offline tree must pay aitiaddl penalty each time it changes
(otherwise the offline tree would not be a meaningful poircmhparison — it could change for each
IP address in the sequence, and thus make no mistakes). Wotiedimit the kinds of changes the
offline tree can make, and compare the performance of ouritigoto every IPtree wittk leaves,
as a function of the errors it makes and the changes it makes.

We define aradaptive IPtreeof sizek to be an adaptive tree that can (a) grow nodes over time so
long as it never has more thaneaves, (b) change the labels of its leaf nodes, and (c) mok/
reconfigure itself completely. Our goal is to develop an malalgorithmT such that for any se-
quence of IP addresses, (1) fareryadaptive tred” of sizek, the number of mistakes made By

is bounded by a (small) function of the mistakes and the chapfjtypes (a), (b), and (c) made by
T’, and (2)T uses no more tha@ (k) space. In the next section, we describe an algorithm meeting
these requirements.

3 Algorithms and Analysis

In this section, we describe our main algorithm TracklPTes®l present theoretical guarantees on
its performance. At a high-level, our approach keeps a nurabexperts in each prefix of the
IPtree, and combines their predictions to classify everpdEress. The inherent structure in the
IPtree allows us to decompose the problem into a number adrexpoblems, and provide lower
memory bounds and better guarantees than earlier appmache

We begin with an overview. Define thpath-node®f an IP address to be the set of all prefixes of
in 7', and denote this set by, . To predict the label of an IB, the algorithm looks up all the path-

nodes inP; 7, considers their predictions, and combines these predigtio produce a final label

for i. To update the tree, the algorithm rewards the path-no@épthdicted correctly, penalizes the
incorrect ones, and modifies the tree structure if necessary

To fill out this overview, there are four technical questidhat we need to address: (1) Of all the
path-nodes irP; 7, how do we learn the ones that are the most important? (2) Howedlearn the
correct label to predict at a particular path-nodédny (i.e., positive or negative)? (3) How do we
grow the IPtree appropriately, ensuring that it grows priflgahe prefixes needed to improve the
classification accuracy? (4) How do we ensure that the sitieeofPtree stays bounded by? We
address these questions by treating them as separate blémpspand we show how they fit together
to become the complete algorithm in Figure 3.1.

3.1 Subproblems ofTrackl PTree

We now describe our algorithm in detail. Since our algoritietomposes naturally into the four
subproblems mentioned above, we focus on each subprobperesely to simplify the presentation.
We use the following notation in our descriptions: RecalhfrSec. 2 that» is the maximum number

of leaves allowed to our algorithm,is the size of the optimal offline tree, atlr denotes the set

of path-nodes, i.e., the prefixes ofdh the current IPtred".

Relative Importance of the Path Nodedg-irst, we consider the problem of deciding which of the
prefix nodes in the patR; r is most important. We formulate this askeeping experts problef,

10]. We set an expertin each node, and call thenp#th-node expertsind for an IR, we consider
the set of path-node experts i) 1 to be the “awake” experts, and the rest to be “asleep”. The
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Figure 2: Decomposing the TrackIPTree Algorithm

sleeping experts algorithm makes predictions using thekawaperts, and intuitively, has the goal
of predicting nearly as well as the best awake expert on th@mte: 1. In our context, the best
awake expert on the IPcorresponds to the prefix @in the optimal IPtree, which remains sleeping
until the IPtree grows that prefix. Fig. 2(a) illustrates #feeping experts framework in our context:
the shaded nodes are “awake” and the rest are “asleep”.

Specifically, letz; denote the weight of the path-node expert at nodd letS; r = >, p . =t

To predict on IP addregs the algorithm chooses the expert at neddth probabilityz,/S; r. To

update, the algorithm penalizes all incorrect expert®ir, reducing their weight;, to vz,. (e.g.,
~v = 0.8). It then renormalizes the weights of all the expert$’ji- so that their sund; - does not
change. (In our proof, we use a slightly different versionhaf sleeping experts algorithm [4]).

Deciding Labels of Individual NodesNext, we need to decide whether the path-node expert at
a noden should predict positive or negative. We use a different espagorithm to address this
subproblem — thehifting expertsalgorithm [12]. Specifically, we allow each nodeto have two
additional experts — a positive expert, which always presdiositive, and a negative expert, which
always predicts negative. We call these expeade-labekxperts.

Lety, 4+ andy, _ denote the weights of the positive and negative node-latprés respectively,
with y, — +y, + = 1. The algorithm operates as follows: to predict, the nodelipte positive with
probability y,, + and negative with probability,, _. To update, when the node receives a label, it
increases the weight of the correct node-label expett land decreases the weight of the incorrect
node-label expert by (upto a maximum of 1 and a minimum of 0). Note that this aldwnihaturally
adapts when a leaf of the optimal IPtree switches labels releegant node in our IPtree will slowly
shift weights from the incorrect node-label expert to ther@ct one, making an expectédnistakes

in the process. Fig. 2(b) illustrates the shifting expeestiisg on an IPtree: each node has two
experts, a positive and a negative. Fig. 3 shows how it fitsiih thie sleeping experts algorithm.

Building Tree Structure We next address the subproblem of building the appropriatetsire for
the IPtree. The intuition here is: when a node in the IPtre&amanany mistakes, then either
that node has a subtree in the optimal IPtree that sepatategasitive and negative instances,
or the optimal IPtree must also make the same mistakes. SirakIPTree cannot distinguish
between these two situations, it simply splits any noderiedtes sufficient mistakes. In particular,
TracklPTree starts with only the root node, and tracks thaher of mistakes made at every node.
Every time a leaf make§ mistakes, TracklPTree splits that leaf into its childremgl anstantiates
and initializes the relevant path-node experts and nobletexperts of the children. In effect, it is
as if the path-node experts of the children had been aslgépidi point, but will now be “awake”
for the appropriate IP addresses.

TrackIPTree waits fo% mistakes at each node before growing it, so that there isla fgsilence
with noisy data — otherwise, it would split a node every titme dptimal tree made a mistake, and the
IPtree would grow very quickly. Note also that it naturalhcorporates the optimal IPtree growing
a leaf; our tree will grow the appropriate nodes when thdthes madt% mistakes.

Bounding Size of IPtreeSince TrackIPTree splits any node after it makesistakes, it is likely
that the IPtree it builds is split much farther than the optitiPtree — TracklPTree does not know
when to stop growing a subtree, and it splits even if the sanstakes are made by the optimal
IPtree. While this excessive splitting does not impact tleeljgtions of the path-node experts or the
node-label experts significantly, we still need to ensued the IPtree built by our algorithm does
not become too large.

1We leave the exact statement of the guarantee to the prod8jn [
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Figure 3: The Complete TrackIPTree Algorithm

We do this by framing it as a paging problem [20]: considetheaade in the IPtree to be a page,
and the maximum allowed nodes in the IPtree to be the sizeeafdbhe. The offline IPtree, which
hask leaves, needs a cache of siZe The IPtree built by our algorithm may have at mosteaves
(and thus2m nodes, since it is a binary tree), and so the size of its cacBeiiand the offline
cache i2k. We may then select nodes to be discarded as if they were patgescache once the
IPtree grows beyon@m nodes; so, for example, we may choose the least recentlynabek in
the IPtree, with LRU as the paging algorithm. Our analysisnghthat settingn = O(Eﬁ2 log %)
suffices, when TracklPTree uses USH-WHEN-FuLL (FWF) as its paging algorithm — this is a
simple paging algorithm that discards all the pages in tlotheavhen the cache is full, and restarts
with an empty cache. We use FWF here for a clean analysis,spetrlly since in simple paging
models, many algorithms achieve no better guarantees R&.our experiments, we implement
LRU, and our results show that this approach, while perhapssophisticated, still maintains an
accurate predictive IPtree.

3.2 Analysis

In this section, we present theoretical guarantees on TPdcke’s performance. We show our
algorithm performs nearly as well as best adapkiM®tree, bounding the number of mistakes made
by our algorithm as a function of the number of mistakes, neinalf labels changes and number of
complete reconfigurations of the optimal such tree in higlasi

Theorem 3.1 Fix k. Set the maximum number of leaves allowed to the TracklRilgesithmm to
be 1% Jog % LetT' be an adaptivé-IPtree. LetAr , denote the number of tim&@schanges labels
on the its leaves over the sequencend Ry , denote the number of times timEBdas completely
reconfigured itself ovet.

The algorithm TracklPTreeensures that on any sequencestinnes:, for eachT’, the number of
mistakes made by TrackIPTree is at m@dst 3¢) Mr. + (£ + 3)Ar. + 2% log £(Ry,. + 1) with
_k_
probability at leastl — () 2.
In other words, if there is an offline adaptikelPtree, that makes few changes and few mistakes

on the input sequence of IP addresses, then TrackIPTrealsdl make only a small number of
mistakes. Due to space constraints, we present the proloéitethnical report [23].

4 Evaluation Setup

We now describe our evaluation set-up: data, practical gégario the algorithm, and baseline
schemes that compare against. While there are many issategatinto converting the algorithm in
Sec. 3 for practical use, we describe here those most imgddgeour experiments, and defer the
rest to the technical report [23].



Data We focus on IP addresses derived from mail data, since spesmamesent a significant frac-
tion of the malicious activity and compromised hosts on titerhet [6], and labels are relatively
easy to obtain from spam-filtering run by the mail serverst ¢t evaluation, we consider labels
from the mail servers’ spam-filtering to be ground truth. Aeryors in the spam-filtering will influ-
ence the tree that we construct and our experimental rem@témited by this assumption.

One data set consists of log extracts collected at the maikseof a tier-1 ISP with 1 million
active mailboxes. The extracts contain the IP addressdseofmiil servers that send mail to the
ISP, the number of messages they sent, and the fraction sé tin@ssages that are classified as
spam, aggregated over 10 minute intervals. The mail sergpam-filtering software consists of a
combination of hand-crafted rules, DNS blacklists, andyBuinail [1], and we take their results as
labels for our experiments. The log extracts were collectegt 38 days from December 2008 to
January 2009, and contain 126 million IP addresses, of whd&hmillion are spam and 21 million
are legitimate.

The second data set consists of log extracts from the erdenpail server of a large corporation with
1300 active mailboxes. These extracts also contain thedReades of mail servers that attempted to
send mail, along with the number of messages they sent arfichtition of these messages that were
classified spam by SpamAssassin [2], aggregated over 1Qeriimervals. The extracts contain 28
million IP addresses, of which around 1.2 million are legdie and the rest are spammers.

Note that in both cases, our data only contains aggregaiemaition about the IP addresses of the
mail serversendingmail to the ISP and enterprise mail servers, and so we do et tha ability
to map any information back to individual users of the ISPrdegorise mail servers.

TracklPTree For the experimental results, we use LRU as the paging dlgonvhen nodes need
to be discarded from the IPtree (Sec. 3.1). In our implentemawe set TracklPTree to discard
1% of m, the maximum leaves allowed, every time it needs to expiceaoThe learning rateis
set to 0.05 and the penalty factpfor sleeping experts is set to 0.1 respectively. Our resukanot
affected if these parameters are changed by a factor of 2-3.

While we have presented an online learning algorithm, irctica, it will often need to predict
on data without receiving labels of the instances right awBlyerefore, we study TrackIPTree’s
accuracy on the following day’s data, i.e., to compute el accuracy of day, TrackiPTree is
allowed to update until day— 1. We choose intervals of a day’s length to allow the tree’slotéons
to be updated at least every day.

Apriori Fixed Clusters We compare TrackIPTree to two setsagfriori fixed clusters (1) network-
aware clusters, which are a set of unique prefixes derived BGP routing table snapshots [17], and
(2) 124 prefixes. We choose these clusters as a baselinesyakatie been the basis of measurement
studies discussed earlier (Sec. 1), prior work in IP-basaskification [19, 24], and are even used
by popular DNS blacklists [3].

We use the fixed clusters to predict the label of an IP in thaluswanner: we simply assign an
IP the label of its longest matching prefix among the clus@drsourse, we first need to assign
these clusters their own labels. To ensure that they claasifvell as possible, we assign them the
optimal labeling over the data they need to classify; we dolily allowing them to make multiple
passes over the data. That is, for each day, we assign labtilatshe fixed clusters maximize their
accuracy on spam for a given required accuracy on legitimai&?. It is clear that this experimental
set-up is favourable to the apriori fixed clusters.

We do not directly compare against the algorithm in [11],tagquires every unique IP address in
the data set to be instantiated in the tree. In our experisr(erg., with the ISP logs), this means that
it requires over 90 million leaves in the tree. We insteadufoon practical prior approaches with

more cluster sizes in our experiments.

5 Results

We report three sets of experimental results regarding tee@igtion accuracy of TrackIPTree using
the experimental set-up of Section 4. While we do not pro@dextensive evaluation of our al-
gorithm’s computational efficiency, we note that our (unimized) implementation of TracklPTree
takes under a minute to learn over a million IP addresses,2#@Hz Sparc64-VI core.

2For space reasons, we defer the details of how we assigratietinig to the technical report [23]
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Figure 4: Results for Experiments 1, 2, and 3

Our results compare the fraction of spamming IPs that thetets classify correctly, subject to
the constraint that they classify at least legitimate mail IPs correctly (we term this to be the
coverage of the legitimate IPs required). Thus, we effetfiplot the true positive rate against
the true negative rate. (This is just the ROC curve with:ithexis reversed, since we plot the true
positive against the true negative, instead of plottingithe positive against the false positive.)

Experiment 1: Comparisons with Apriori Fixed Clusters Our first set of experiments compares
the performance of our algorithm with network-aware clustnd /24 IP prefixes. Figs. 4(a) & 4(b)
illustrate the accuracy tradeoff of the three sets of chgste the two data sets. Clearly, the accuracy
of TracklPTree is a tremendous improvement on both setsridrafixed clusters — for any choice
of coverage on legitimate IPs, the accuracy of spam IPs bgkTParee is far higher than the apriori
fixed clusters, even by as much as a factor of 2.5. In particutde that when the coverage required
on legitimate IPs i95%, TrackIPTree achieved % accuracy in classifying spam on both data sets,
compared to th85 — 45% achieved by the other clusters.

In addition, TrackIPTree gains this classification accynasing a far smaller tree. Table 1 shows
the median number of leaves instantiated by the tree at th@®esach day. (To be fair to the fixed
clusters, we only instantiate the prefixes required to dlasise day’s data, rather than all possible
prefixes in the clustering scheme.) Table 1 shows that tleepreduced by TrackIPTree is a factor
of 2.5-17 smaller with the ISP logs, and a factor of 20-100lEmavith the enterprise logs. These
numbers highlight that the apriori fixed clusters are pesttap coarse to classify accurately in parts
of the IP address space, and also are insufficiently aggrégabther parts of the address space.

Experiment 2: Changing the Maximum Leaves AllowedNext, we explore the effect of changing
m, the maximum number of leaves allowed to TracklPTree. Fig) & 4(d) show the accuracy-
coverage tradeoff for TracklPTree whenranges between 20,000-200,000 leaves for the ISP logs,
and 1,000-50,000 leaves for the enterprise logs. Clearlyath cases, the predictive accuracy
increases withm only until m is “sufficiently large” — oncen is large enough to capture all the
distinct subtrees in the underlying optimal IPtree, thedtive accuracy will not increase. While
the actual values af: are specific to our data sets, the results highlight the itapee of having a
space-efficient and flexible algorithm — both 10,000 and A@@are very modest sizes compared to
the number of possible apriori fixed clusters, or the sizéneflPv4 address space, and this suggests
that the underlying decision tree required is indeed of ae@sbsdize.

Experiment 3: Does a Dynamic Tree Help?In this experiment, we demonstrate empirically that
our algorithm’s dynamic aspects do indeed significantlyagrde its accuracy over static clustering
schemes. The static clustering that we compare to is a treergied by our algorithm, but one that
learns over the first days, and then stays unchanged. For ease of reference, vseidala tree a
z-static tree; in our experiments, we set= 5 andz = 10. We compare these trees by examining
separately the errors incurred on legitimate and spam IPs.



Wy Implication Colour
2 Strongly Legit Dark Green
,0.2) Weakly Legit Light Green
(—0.2,0) | Weakly Malicious Blue
.2 | Strongly Malicious White

ISP Enterprise
TrackIPTree 99942 9963
124 Prefixes | 1732441 1426445

Network-aware| 260132 | 223025

Table 1: Sizes of Clustering Schemes

Table 2: Colour coding for IPtree in Fig 1(b)

Fig. 4(e) & 4(f) compare the errors of thestatic trees and the dynamic tree on legitimate and spam
IPs respectively, using the ISP logs. Clealdgth z-static trees degrade in accuracy over time, and
they do so on both legitimate and spam IPs. On the other headidcuracy of the dynamic tree
does not degrade over this period. Further, the in error gneith time; after 28 days, the 10-static
tree has almost a factor of 2 higher error on both spam IPseagitirhate IPs.

Discussion and ImplicationsOur experiments demonstrate that our algorithm is able hoeae
high accuracy in predicting legitimate and spam IPs, etg@am predic95% of the spam IPs cor-
rectly, when misclassifying onl$% of the legitimate IPs. However, it does not classify the IPs
perfectly. This is unsurprising — achieving zero classtf@aerror in these applications is practi-
cally infeasible, given IP address dynamics [25]. Nevdeb® our IPtree still provides insight into
the malicious activity on the Internet.

As an example, we examine a high-level view of the Internédioled from our tree, and its impli-
cations. Fig. 1(b) visualizes an IPtree on the ISP logs witf0@0 leaves. It is laid out so that the
root prefix is near the center, and the prefixes grow theideéil outwards. The nodes are coloured
depending on their weights, as shown in Table 2: for noakefinew; = 3, o z;(yj+ — vj,-),
whereQ is the set of prefixes of nodg(including nodet itself. Thus, the blue central nodes are the
large prefixes (e.g., /8 prefixes), and the classificatiog tugput is slightly malicious; this means
that an IP address without a longer matching prefix in theig&gpically classified to be malicious.
This suggests, for example, that an unseen IP address @aliyptlassified as a spammer by our
IPtree, which is consistent with the observations of nekvaatministrators. A second observation
we can make is that the tree has many short branches as wefigabianches, suggesting that some
IP prefixes are grown to much greater depth than others. Tigistrhappen, for instance, if active IP
addresses for this application are not distributed unifgimthe address space (and so all prefixes
do not need to be grown at uniform rates), which is also whatight expect to see based on prior
work [16].

Of course, these observations are only examples; a congiatgsis of our IPtree’s implications is
part of our future work. Nevertheless, these observatioggest that our tree does indeed capture
an appropriate picture of the malicious activity on the inés.

6 Other Related Work

In the networking and databases literature, there has berh mterest in designing streaming
algorithms to identify IP prefixes with significant netwonaffic [7, 9, 27], but these algorithms
do not explore how to predict malicious activity. Previo#shased approaches to reduce spam
traffic [22, 24], as mentioned earlier, have also exploratividual IP addresses, which are not
particularly useful since they are so dynamic [15, 19, 25ha#g et al [26] also examine how to
predict whether known malicious IP addresses may appeagatea network, by analyzing the
co-occurence of all known malicious IP addresses at a nuofliifferent networks. More closely
related is [21], who present algorithms to extract prefisduffiltering rules for IP addresses that may
be used in offline settings. There has also been work on cangpdécision trees over streaming
data [8, 13], but this work assumes that data comes from a @ilstidbution.

7 Conclusion

We have addressed the problem of discovering dynamic roakaiegions on the Internet. We model
this problem as one of adaptively pruning a known decisiea,tbut with the additional challenges
coming from real-world settings — severe space requiresnantl a changing target function. We
developed new algorithms to address this problem, by coimipifexperts” algorithms and online
paging algorithms. We showed guarantees on our algoritper®rmance as a function of the best
possible pruning of a similar size, and our experimentallten real-world datasets are orders of
magnitude better than current approaches.
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