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Here we give the formal proofs of Lemma 8 and Lemma 9. Actually they are simple consequences
of the following two theorem respectively.

Theorem 1 Let f be a function defined dn, 1]¢ and isK th order smooth. Let = f[o 1) |f(z)|dz,
then|| o = O(r%57) = O(r - (1)<¥7), where]| f |c = sup,eo,y4 |F(x)]:

Theorem 2 Let f be a function defined oj), 1]¢ and is infinitely smooth. 'f[o,ud |f(z)|dx =7,
then|| flloc = O(r - log"(})).

Proof of Lemma 8 By the assumption tha®(z)| < 1 |®(z)| for all = € [0,1]%, we have
/ |®(z)|dz = O(r).
[0,1]¢

Since® is K'th order smooth, by Theorem 1 we have
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@ < Bld] = O < ;) ) .
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Lemma 9 can be proved in the same way by Theorem 2.

Therefore

Below, we give the proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1 We first consider the one-dimensional case,d.e= 1. Note that iff € F/,
then

|fE (@) — fED (") < Cla — 2| )

for all z, 2" € [0,1]. Hence we relax the constraint thais Kth order smooth to (1). The idea of
the proof ford = 1 is that, (one of) the optimaf (i.e. || f|l- achieves the maximum) under the
constraint (1) is of the form

C . _¢|K .
o= { ol e 022t @
Thatis
KD (@) FED @] = Cle— |

for all z,2’ € [0,¢], where¢ is determined byfo1 f(x)dx = r. Itis then easy to check that
Iflloc = O(r®51).




For the formal proof, assume th#txz) > 0 for all z € [0, 1]. Let f, be the optimal function, i.e.
I folloo > || flloo for all f satisfying the constraints. We will show that

6" @) = 57V @] = Cle - |

for all z, 2’ such thatf(xz) > 0 and f(z') > 0. Assume, for the sake of contradiction, that this is
not true. Then there exits an interval b) and two constant§’, Cs, such that

fo(l‘) > Cl >0

and
V(@) — (V@) < Colz — 2’| < Cla — 2|

forall z,2’ € (a,b). Let

P - | o

We have

forall z € [0, 1]. We also have
F'(z) > C; >0, |[FE) () — FE) (2] < Cylz — 2| < Cla — 2|
forall z,2" € (a,b). Moreover,[|F’[| achieves the maximum.

Now, we will construct a functiork(z), so that there is a smajl so thatF' + ~vh satisfies all the
constraints but
I+ P oo > [1F]lo

which leads to a contradiction.
Denotex™ = arg max,¢[o,1] F'(x). We will discuss three cases:
z* € (a,b), z*€lbl], z"€l0,a]

If z* € (a,b), let
h(z) = (z — a)K (b — z)K+1

It is easy to check that fdry| sufficiently small,
(F4~h)'(z) >0, z€(0,1],

and
|(F + Vh)(K)(x) - (F + 'Vh)(K)(x,” < C‘l‘ - '75/|7 ;E7.7;‘/ € [07 1]

If 2* € (a, %$2), takey > 0; if 2* € (2£2,b), takey < 0. Itis clear that in both cases
(F' +~h)(x*) > F'(z").

If 2* = %+, we can just us& = a + 3(b — a) instead ob.

If z* € [b,1], let

0 0<z<a,
z—a)Kt1 T—
h(z) = (x_a)K+1_;Z(b_r)K+1 : 1?; a<z<b,
z—1
= b<z<1.

It is not difficult to check that for sufficiently smajl > 0,
(F'+~h)(x) > 0,

and
(F 4+ ~h)% () = (F +yh)" (2')] < Clz — 2|

for all z, 2’ € [0, 1], but
(F 4+ ~h) (z*) > F'(z*).
The caser* € [0, a] can be treated in the same way.



Now we have proved that the optimAlis, on the interval thaf (z) > 0, a K'th order polynomial
with the coefficient of the term® is <. If f(z) > 0 only on|[0,¢) (¢ < 1), then f must be of
the form in Eq.(2). This is becaugehas continuous derivatives up to ord€r— 1 at&, hence the
derivatives up taK — 1th order must vanish a. Thus we only need to exclude the possibility
that f(z) > 0 on [0, 1] except at a finite number of zeros. Below we will show that this is not

possible because suchfanust havefo1 | f(x)|dz is greater than some constant, which contradicts
to f01 |f(z)|dx = r wherer can be arbitrarily small.

Let f be represented by the following standard form

f(l"):ﬁ

wherea; > 0 and the powers summing up i0. So the first terms correspond to real zeros and the
others correspond to complex zeros. In fact we only need to consider the casedhat &l] since
itis easy to see that positive increase[ | f(x)|dx. Therefore we assumghas only real zeros. We
first assume that there is no zerdn1] andp is the total power of all negative zeros. Then

/0 f(2)de > ;/0 (1 — 2)5Pdy
CT(p+ DI(K —p+ 1)
K T(K +2)
oI+
K'T(K+2)’

(x—r)P (= r)P (2 — )P oa] . [( = 1) 2P 4 ]

V

Y

wherel'(+) is the gamma function.

For the case that there are zerog(nl]. Assume without loss of generality that< v < ro <
...<r <1.DenoteA; =71, Ay =19 —71,..., ;41 = 1 — 7. We must havenax A; > ﬁ
Leti* be the corresponding and consider;«_; andr;~. Then we have

1 7%
/ f(2)de > g/ (2 — e 1)P(rse — 2)KPda
0 K' Tix _1
- Q( 1 )KHFQ(% +1)
- KI'K+1 NK+2)°

Thus in either case the integral can not be arbitrarily small.

To conclude thel = 1 case, the optimal functiofyy must satisfy
o @)~ f T @) = Cla |
for all x, 2’ such thatf(z) > 0 and f(2’) > 0. Sincef must have continuous derivatives up to the

(K — 1)th order, (one of) the optima! has to be of the form given in Eq(2). This completes the
proof of the one-dimensional case.

For the general cage> 1, the idea is to relax the constraints that the partial derivatives are Lipschitz
to that the directional partial derivatives are Lipschitz.

First note that allk' — 1th order partial derivatives are Lipschitz implies that all fie- 1th order

directional derivatives are Lipschitz too. To be preciseul®e a unit vector, i.ellu|| = 1. Also

let ¢, . (t) = f(x + tu), wherez is arbitrary. Then theth order directional derivative is defined as
%(t). Itis clear by calculus that if alD* f are Lipschitz with some consta@tfor all k such that

k| = K -1, thengbmﬁ_l)(t) is Lipschitz with some other constaft for all ¢, = andw. Now, let0
be thed-dimensional vectof0, . .., 0) andzg € [0, 1]%. Let ¢y, (1) = £(0 + ¢ 2.

ol

According to the arguments for the one dimensional case, it is not difficult to see tytiéﬁf‘) is
Lipschitz for allt andz € [0, 1]¢ with constantC’, then (one of) the optimal mush be of the form

Slt—¢X  o0<t<g,
¢I0(t)=
0 €<t



Hence the correspondinfhas the forrh
el —¢* o<llel <¢,
0 & < =]l
where¢ is determined byf[O 1)a |f(x)|dz = r. Finally, simple calculations show thif| .. =

O(rk%d). This completes the prodll

Proof of Theorem 2 First consider thel = 1 case. Sincef is infinitely smooth, it isK'th order
smooth for arbitrary largél. Hence we can chood€ depending om. Let

log %

K+1=—>""-.
1oglog%

We know that the optimaf is of the form in (2). We point out that thi&™ is (approximately) the
largestK such that (2) is still the optimal form. K is larger than this¢ will be out of [0, 1], and

the argument in the proof of Theorem 1 does not hold. anjc@"(xﬂ = r, we have

—
Itis clear that o
_ ~ ¢K
1£loe = €.
Remember that
K+1= log 5
~ loglog %7
also note that
1 loglog%

then by Stirling’s formula, it is easy to show tHat|l.. = O(r - log 1).
For the generad > 1 case, take

log &
K+4+d=—"+.
loglog

By similar arguments in the proof Theorem 1 we h&yd.. = O(r - log® 1).m

11 is optimal under the relaxed constraints of directional partial derivatives. Actuallyftinis longer
satisfies the original partial derivative constraints.



