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Abstract

A crucial technique for scaling kernel methods to very large data sets reaching
or exceeding millions of instances is based on low-rank approximation of kernel
matrices. We introduce a new family of algorithms based on mixtures of Nyström
approximations,ensemble Nyström algorithms, that yield more accurate low-rank
approximations than the standard Nyström method. We give a detailed study of
variants of these algorithms based on simple averaging, an exponential weight
method, or regression-based methods. We also present a theoretical analysis of
these algorithms, including novel error bounds guaranteeing a better convergence
rate than the standard Nyström method. Finally, we report results of extensive
experiments with several data sets containing up to 1M points demonstrating the
significant improvement over the standard Nyström approximation.

1 Introduction

Modern learning problems in computer vision, natural language processing, computational biology,
and other areas are often based on large data sets of tens of thousands to millions of training in-
stances. But, several standard learning algorithms such as support vector machines (SVMs) [2, 4],
kernel ridge regression (KRR) [14], kernel principal component analysis (KPCA) [15], manifold
learning [13], or other kernel-based algorithms do not scale to such orders of magnitude. Even the
storage of the kernel matrix is an issue at this scale since it is often not sparse and the number of
entries is extremely large. One solution to deal with such large data sets is to use an approximation
of the kernel matrix. As shown by [18], later by [6, 17, 19], low-rank approximations of the kernel
matrix using the Nystr̈om method can provide an effective technique for tackling large-scale scale
data sets with no significant decrease in performance.

This paper deals with very large-scale applications where the sample size can reach millions of in-
stances. This motivates our search for further improved low-rank approximations that can scale to
such orders of magnitude and generate accurate approximations. We show that a new family of al-
gorithms based on mixtures of Nyström approximations,ensemble Nyström algorithms, yields more
accurate low-rank approximations than the standard Nyström method. Moreover, these ensemble al-
gorithms naturally fit distributed computing environment where their computational cost is roughly
the same as that of the standard Nyström method. This issue is of great practical significance given
the prevalence of distributed computing frameworks to handle large-scale learning problems.

The remainder of this paper is organized as follows. Section 2 gives an overview of the Nyström
low-rank approximation method and describes our ensemble Nyström algorithms. We describe sev-
eral variants of these algorithms, including one based on simple averaging ofp Nyström solutions,
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an exponential weight method, and a regression method which consists of estimating the mixture pa-
rameters of the ensemble using a few columns sampled from the matrix. In Section 3, we present a
theoretical analysis of ensemble Nyström algorithms, namely bounds on the reconstruction error for
both the Frobenius norm and the spectral norm. These novel generalization bounds guarantee a bet-
ter convergence rate for these algorithms in comparison to the standard Nyström method. Section 4
reports the results of extensive experiments with these algorithms on several data sets containing up
to 1M points, comparing different variants of our ensemble Nyström algorithms and demonstrating
the performance improvements gained over the standard Nyström method.

2 Algorithm

We first give a brief overview of the Nyström low-rank approximation method, introduce the notation
used in the following sections, and then describe our ensemble Nyström algorithms.

2.1 Standard Nystr̈om method

We adopt a notation similar to that of [5, 9] and other previous work. The Nyström approximation
of a symmetric positive semidefinite (SPSD) matrixK is based on a sample ofm≪ n columns
of K [5, 18]. LetC denote then×m matrix formed by these columns andW them×m matrix
consisting of the intersection of thesem columns with the correspondingm rows ofK. The columns
and rows ofK can be rearranged based on this sampling so thatK andC be written as follows:

K =

[
W K

⊤
21

K21 K22

]
and C =

[
W

K21

]
. (1)

Note thatW is also SPSD sinceK is SPSD. For a uniform sampling of the columns, the Nyström
method generates a rank-kapproximationK̃ of K for k≤m defined by:

K̃ = CW
+
k C

⊤ ≈ K, (2)

where Wk is the bestk-rank approximation ofW for the Frobenius norm, that isWk =
argminrank(V)=k ‖W − V‖F andW

+
k denotes the pseudo-inverse ofWk [7]. W

+
k can be de-

rived from the singular value decomposition (SVD) ofW, W = UΣU
⊤, whereU is orthonormal

andΣ = diag(σ1, . . . , σm) is a real diagonal matrix withσ1 ≥· · ·≥ σm ≥ 0. Fork≤ rank(W), it

is given byW+
k =

∑k
i=1 σ

−1
i U

i
U

i⊤, whereU
i denotes theith column ofU. Since the running

time complexity of SVD isO(m3) andO(nmk) is required for multiplication withC, the total
complexity of the Nystr̈om approximation computation isO(m3+nmk).

2.2 Ensemble Nystr̈om algorithm

The main idea behind our ensemble Nyström algorithm is to treat each approximation generated by
the Nystr̈om method for a sample ofm columns as anexpertand to combinep≥ 1 such experts to
derive an improved hypothesis, typically more accurate than any of the original experts.

The learning set-up is defined as follows. We assume a fixed kernel functionK : X ×X → R that
can be used to generate the entries of a kernel matrixK. The learner receives a sampleS of mp
columns randomly selected from matrixK uniformly without replacement.S is decomposed into
p subsamplesS1,. . ., Sp. Each subsampleSr, r ∈ [1, p], containsm columns and is used to define
a rank-kNyström approximationK̃r. Dropping the rank subscriptk in favor of the sample index
r, K̃r can be written as̃Kr = CrW

+
r C

⊤
r , whereCr andWr denote the matrices formed from

the columns ofSr andW
+
r is the pseudo-inverse of the rank-kapproximation ofWr. The learner

further receives a sampleV of s columns used to determine the weightµr ∈ R attributed to each
expertK̃r. Thus, the general form of the approximation ofK generated by the ensemble Nyström
algorithm is

K̃
ens =

p∑

r=1

µrK̃r. (3)

The mixture weightsµr can be defined in many ways. The most straightforward choice consists of
assigning equal weight to each expert,µr = 1/p, r ∈ [1, p]. This choice does not require the addi-
tional sampleV , but it ignores the relative quality of each Nyström approximation. Nevertheless,
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this simpleuniform methodalready generates a solution superior to any one of the approximations
K̃r used in the combination, as we shall see in the experimental section.

Another method, theexponential weight method, consists of measuring the reconstruction errorǫ̂r of
each expert̃Kr over the validation sampleV and defining the mixture weight asµr =exp(−ηǫ̂r)/Z,
whereη > 0 is a parameter of the algorithm andZ a normalization factor ensuring that the vector
µ = (µ1, . . . , µp) belongs to the simplex∆ of R

p: ∆ = {µ ∈ R
p : µ ≥ 0 ∧ ∑p

r=1 µr = 1}. The
choice of the mixture weights here is similar to those used in the weighted-majority algorithm [11].
Let KV denote the matrix formed by using the samples fromV as its columns and let̃KV

r denote
the submatrix of̃Kr containing the columns corresponding to the columns inV . The reconstruction
error ǫ̂r =‖K̃V

r − KV ‖ can be directly computed from these matrices.

A more general class of methods consists of using the sampleV to train the mixture weightsµr to
optimize a regression objective function such as the following:

min
µ

λ‖µ‖2
2 + ‖

p∑

r=1

µrK̃
V
r − KV ‖2

F , (4)

whereKV denotes the matrix formed by the columns of the samplesS andV andλ> 0. This can
be viewed as a ridge regression objective function and admits a closed form solution. We will refer
to this method as theridge regression method.

The total complexity of the ensemble Nyström algorithm isO(pm3 +pmkn+Cµ), whereCµ is
the cost of computing the mixture weights,µ, used to combine thep Nyström approximations. In
general, the cubic term dominates the complexity since the mixture weights can be computed in
constant time for the uniform method, inO(psn) for the exponential weight method, or inO(p3+
pms) for the ridge regression method. Furthermore, although the ensemble Nyström algorithm
requiresp times more space and CPU cycles than the standard Nyström method, these additional
requirements are quite reasonable in practice. The space requirement is still manageable for even
large-scale applications given thatp is typically O(1) andm is usually a very small percentage of
n (see Section 4 for further details). In terms of CPU requirements, we note that our algorithm
can be easily parallelized, as allp experts can be computed simultaneously. Thus, with a cluster
of p machines, the running time complexity of this algorithm is nearly equal to that of the standard
Nyström algorithm withm samples.

3 Theoretical analysis

We now present a theoretical analysis of the ensemble Nyström method for which we use as tools
some results previously shown by [5] and [9]. As in [9], we shall use the following generalization
of McDiarmid’s concentration bound to sampling without replacement [3].

Theorem 1. Let Z1, . . . , Zm be a sequence of random variables sampled uniformly without re-
placement from a fixed set ofm+u elementsZ, and letφ : Zm → R be a symmetric function
such that for alli ∈ [1,m] and for all z1, . . . , zm ∈ Z and z′1, . . . , z

′
m ∈ Z, |φ(z1, . . . , zm)−

φ(z1, . . . , zi−1, z
′
i, zi+1, . . . , zm)|≤c. Then, for allǫ>0, the following inequality holds:

Pr
[
φ− E[φ] ≥ ǫ

]
≤ exp

[ −2ǫ2

α(m,u)c2

]
, (5)

whereα(m,u) = mu
m+u−1/2

1
1−1/(2 max{m,u}) .

We define theselection matrixcorresponding to a sample ofm columns as the matrixS ∈ R
n×m

defined bySii =1 if the ith column ofK is among those sampled,Sij =0 otherwise. Thus,C=KS

is the matrix formed by the columns sampled. SinceK is SPSD, there existsX ∈ R
N×n such that

K = X
⊤
X. We shall denote byKmax the maximum diagonal entry ofK, Kmax =maxi Kii, and

by dKmax the distancemaxij

√
Kii + Kjj − 2Kij .

3.1 Error bounds for the standard Nyström method

The following theorem gives an upper bound on the norm-2 error of the Nyström approximation of
the form‖K−K̃‖2/‖K‖2 ≤ ‖K−Kk‖2/‖K‖2 +O(1/

√
m) and an upper bound on the Frobenius
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error of the Nystr̈om approximation of the form‖K − K̃‖F /‖K‖F ≤ ‖K − Kk‖F /‖K‖F +

O(1/m
1

4 ). Note that these bounds are similar to the bounds in Theorem3 in [9], though in this
work we give new results for the spectral norm and present a tighter Lipschitz condition (9), the
latter of which is needed to derive tighter bounds in Section 3.2.

Theorem 2. Let K̃ denote the rank-kNystr̈om approximation ofK based onm columns sampled
uniformly at random without replacement fromK, andKk the best rank-kapproximation ofK.
Then, with probability at least1 − δ, the following inequalities hold for any sample of sizem:

‖K − K̃‖2 ≤ ‖K − Kk‖2 + 2n√
m

Kmax

[
1 +

√
n−m

n−1/2
1

β(m,n) log 1
δ d

K

max/K
1

2

max

]

‖K − K̃‖F ≤ ‖K − Kk‖F +
[
64k
m

] 1

4nKmax

[
1 +

√
n−m

n−1/2
1

β(m,n) log 1
δ d

K

max/K
1

2

max

] 1

2

,

whereβ(m,n) = 1− 1
2 max{m,n−m} .

Proof. To bound the norm-2 error of the Nyström method in the scenario of sampling without re-
placement, we start with the following general inequality given by [5][proof of Lemma 4]:

‖K − K̃‖2 ≤ ‖K − Kk‖2 + 2‖XX
⊤ − ZZ

⊤‖2, (6)

whereZ =
√

n
m XS. We then apply the McDiarmid-type inequality of Theorem 1 toφ(S) =

‖XX
⊤−ZZ

⊤‖2. Let S′ be a sampling matrix selecting the same columns asS except for one, and
let Z′ denote

√
n
m XS

′. Let z andz
′ denote the only differing columns ofZ andZ

′, then

|φ(S′) − φ(S)| ≤ ‖z′z′⊤ − zz
⊤‖2 = ‖(z′ − z)z′⊤ + z(z′ − z)⊤‖2 (7)

≤ 2‖z′ − z‖2 max{‖z‖2, ‖z′‖2}. (8)

Columns ofZ are those ofX scaled by
√
n/m. The norm of the difference of two columns ofX

can be viewed as the norm of the difference of two feature vectors associated toK and thus can be
bounded bydK. Similarly, the norm of a single column ofX is bounded byK

1

2

max. This leads to the
following inequality:

|φ(S′) − φ(S)| ≤ 2n

m
dKmaxK

1

2

max. (9)

The expectation ofφ can be bounded as follows:

E[Φ] = E[‖XX
⊤ − ZZ

⊤‖2] ≤ E[‖XX
⊤ − ZZ

⊤‖F ] ≤ n√
m

Kmax, (10)

where the last inequality follows Corollary 2 of [9]. The inequalities (9) and (10) combined with
Theorem 1 give a bound on‖XX

⊤ − ZZ
⊤‖2 and yield the statement of the theorem.

The following general inequality holds for the Frobenius error of the Nyström method [5]:

‖K − K̃‖2
F ≤ ‖K − Kk‖2

F +
√

64k ‖XX
⊤ − ZZ

⊤‖2
F nK

max
ii . (11)

Bounding the term‖XX
⊤−ZZ

⊤‖2
F as in the norm-2 case and using the concentration bound of

Theorem 1 yields the result of the theorem.

3.2 Error bounds for the ensemble Nystr̈om method

The following error bounds hold for ensemble Nyström methods based on a convex combination of
Nyström approximations.
Theorem 3. Let S be a sample ofpm columns drawn uniformly at random without replacement
from K, decomposed intop subsamples of sizem, S1, . . . , Sp. For r ∈ [1, p], let K̃r denote the
rank-k Nystr̈om approximation ofK based on the sampleSr, and letKk denote the best rank-k
approximation ofK. Then, with probability at least1 − δ, the following inequalities hold for any
sampleS of sizepm and for anyµ in the simplex∆ andK̃

ens =
∑p

r=1 µrK̃r:

‖K − K̃
ens‖2 ≤ ‖K − Kk‖2 + 2n√

m
Kmax

[
1 + µmaxp

1

2

√
n−pm
n−1/2

1
β(pm,n) log 1

δ d
K

max/K
1

2

max

]

‖K − K̃
ens‖F ≤ ‖K − Kk‖F +

[
64k
m

] 1

4nKmax

[
1 + µmaxp

1

2

√
n−pm
n−1/2

1
β(pm,n) log 1

δ d
K

max/K
1

2

max

] 1

2

,

whereβ(pm, n) = 1− 1
2 max{pm,n−pm} andµmax = maxp

r=1 µr.
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Proof. For r ∈ [1, p], let Zr =
√
n/mXSr, whereSr denotes the selection matrix corresponding

to the sampleSr. By definition ofK̃ens and the upper bound on‖K − K̃r‖2 already used in the
proof of theorem 2, the following holds:

‖K − K̃
ens‖2 =

∥∥∥
p∑

r=1

µr(K − K̃r)
∥∥∥

2
≤

p∑

r=1

µr‖K − K̃r‖2 (12)

≤
p∑

r=1

µr

(
‖K − Kk‖2 + 2‖XX

⊤ − ZrZ
⊤
r ‖2

)
(13)

= ‖K − Kk‖2 + 2

p∑

r=1

µr‖XX
⊤ − ZrZ

⊤
r ‖2. (14)

We apply Theorem 1 toφ(S) =
∑p

r=1 µr‖XX
⊤ − ZrZ

⊤
r ‖2. Let S′ be a sample differing from

S by only one column. Observe that changing one column of the full sampleS changes only one
subsampleSr and thus only one termµr‖XX

⊤ − ZrZ
⊤
r ‖2. Thus, in view of the bound (9) on the

change to‖XX
⊤ − ZrZ

⊤
r ‖2, the following holds:

|φ(S′) − φ(S)| ≤ 2n

m
µmaxd

K

maxK
1

2

max, (15)

The expectation ofΦ can be straightforwardly bounded byE[Φ(S)] =
∑p

r=1 µr E[‖XX
⊤ −

ZrZ
⊤
r ‖2] ≤

∑p
r=1 µr

n√
m

Kmax = n√
m

Kmax using the bound (10) for a single expert. Plugging
in this upper bound and the Lipschitz bound (15) in Theorem 1 yields our norm-2 bound for the
ensemble Nystr̈om method.

For the Frobenius error bound, using the convexity of the Frobenius norm square‖·‖2
F and the

general inequality (11), we can write

‖K − K̃
ens‖2

F =
∥∥∥

p∑

r=1

µr(K − K̃r)
∥∥∥

2

F
≤

p∑

r=1

µr‖K − K̃r‖2
F (16)

≤
p∑

r=1

µr

[
‖K − Kk‖2

F +
√

64k ‖XX
⊤ − ZrZ

⊤
r ‖F nK

max
ii

]
. (17)

= ‖K − Kk‖2
F +

√
64k

p∑

r=1

µr‖XX
⊤ − ZrZ

⊤
r ‖F nK

max
ii . (18)

The result follows by the application of Theorem 1 toψ(S)=
∑p

r=1 µr‖XX
⊤ −ZrZ

⊤
r ‖F in a way

similar to the norm-2 case.

The bounds of Theorem 3 are similar in form to those of Theorem 2. However, the bounds for the
ensemble Nystr̈om are tighter than those for any Nyström expert based on a single sample of size
m even for a uniform weighting. In particular, forµ=1/p, the last term of the ensemble bound for
norm-2 is smaller by a factor larger thanµmaxp

1

2 = 1/
√
p.

4 Experiments

In this section, we present experimental results that illustrate the performance of the ensemble
Nyström method. We work with the datasets listed in Table 1. In Section 4.1, we compare the
performance of various methods for calculating the mixture weights (µr). In Section 4.2, we show
the effectiveness of our technique onlarge-scaledatasets. Throughout our experiments, we mea-
sure the accuracy of a low-rank approximationK̃ by calculating the relative error in Frobenius and
spectral norms, that is, if we letξ = {2, F}, then we calculate the following quantity:

% error=
‖K − K̃‖ξ

‖K‖ξ
× 100. (19)
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Dataset Type of data # Points (n) # Features (d)Kernel
PIE-2.7K [16] face images 2731 2304 linear
MNIST [10] digit images 4000 784 linear
ESS [8] proteins 4728 16 RBF
AB-S [1] abalones 4177 8 RBF
DEXT [1] bag of words 2000 20000 linear
SIFT-1M [12] Image features 1M 128 RBF

Table 1:A summary of the datasets used in the experiments.

4.1 Ensemble Nystr̈om with various mixture weights

In this set of experiments, we show results for our ensemble Nyström method using different tech-
niques to choose the mixture weights as discussed in Section 2.2. We first experimented with the
first five datasets shown in Table 1. For each dataset, we fixed the reduced rank tok=50, and set the
number of sampled columns tom= 3%n.1 Furthermore, for the exponential and the ridge regres-
sion variants, we sampled an additional set ofs= 20 columns and used an additional20 columns
(s′) as a hold-out set for selecting the optimal values ofη andλ. The number of approximations,p,
was varied from2 to 30. As a baseline, we also measured the minimal and mean percent error across
thep Nyström approximations used to constructK̃

ens. For the Frobenius norm, we also calculated
the performance when using the optimalµ, that is, we used least-square regression to find the best
possible choice of combination weights for a fixed set ofp approximations by settings=n.

The results of these experiments are presented in Figure 1 for the Frobenius norm and in Figure 2
for the spectral norm. These results clearly show that the ensemble Nyström performance is signifi-
cantly better than any of the individual Nyström approximations. Furthermore, the ridge regression
technique is the best of the proposed techniques and generates nearly the optimal solution in terms of
the percent error in Frobenius norm. We also observed that whens is increased to approximately5%
to 10% of n, linear regression without any regularization performs about as well as ridge regression
for both the Frobenius and spectral norm. Figure 3 shows this comparison between linear regression
and ridge regression for varying values ofs using a fixed number of experts (p= 10). Finally we
note that the ensemble Nyström method tends to converge very quickly, and the most significant
gain in performance occurs asp increases from2 to 10.

4.2 Large-scale experiments

Next, we present an empirical study of the effectiveness of the ensemble Nyström method on the
SIFT-1M dataset in Table 1 containing1 million data points. As is common practice with large-scale
datasets, we worked on a cluster of several machines for this dataset. We present results comparing
the performance of the ensemble Nyström method, using both uniform and ridge regression mixture
weights, with that of the best and mean performance across thep Nyström approximations used to
constructK̃ens. We also make comparisons with a recently proposedk-means based sampling tech-
nique for the Nystr̈om method [19]. Although thek-means technique is quite effective at generating
informative columns by exploiting the data distribution, the cost of performingk-means becomes
expensive for even moderately sized datasets, making it difficult to use in large-scale settings. Nev-
ertheless, in this work, we include thek-means method in our comparison, and we present results
for various subsamples of the SIFT-1M dataset, withn ranging from5K to 1M.

To fairly compare these techniques, we performed ‘fixed-time’ experiments. To do this, we first
searched for an appropriatem such that the percent error for the ensemble Nyström method with
ridge weights was approximately10%, and measured the time required by the cluster to construct
this approximation. We then alloted an equal amount of time (within1 second) for the other tech-
niques, and measured the quality of the resulting approximations. For these experiments, we set
k=50 andp=10, based on the results from the previous section. Furthermore, in order to speed up
computation on this large dataset, we decreased the size of the validation and hold-out sets tos=2
ands′=2, respectively.

1Similar results (not reported here) were observed for other values ofk andm as well.
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Figure 1: Percent error in Frobenius norm for ensemble Nyström method using uniform (‘uni’), ex-
ponential (‘exp’), ridge (‘ridge’) and optimal (‘optimal’) mixture weights as well as the best (‘best
b.l.’) and mean (‘mean b.l.’) performance of thep base learners used to create the ensemble approx-
imation.
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Figure 2: Percent error in spectral norm for ensemble Nyström method using various mixture
weights as well as the best and mean performance of thep approximations used to create the ensem-
ble approximation. Legend entries are the same as in Figure 1.

The results of this experiment, presented in Figure 4, clearly show that the ensemble Nyström
method is the most effective technique given a fixed amount of time. Furthermore, even with
the small values ofs ands′, ensemble Nystr̈om with ridge-regression weighting outperforms the
uniform ensemble Nyström method. We also observe that due to the high computational cost of
k-means for large datasets, thek-means approximation does not perform well in this ‘fixed-time’
experiment. It generates an approximation that is worse than the mean standard Nyström approxi-
mation and its performance increasingly deteriorates asn approaches1M. Finally, we note that al-
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Figure 3: Comparison of percent error in Frobenius norm for the ensemble Nyström method withp=
10 experts with weights derived from linear regression (‘no-ridge’) and ridge regression (‘ridge’).
The dotted line indicates the optimal combination. The relative size of the validation set equals
s/n×100%.
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Figure 4: Large-scale performance comparison with SIFT-1M dataset. Given fixed computational
time, ensemble Nyström with ridge weights tends to outperform other techniques.

though the space requirements are10 times greater for ensemble Nyström in comparison to standard
Nyström (sincep= 10 in this experiment), the space constraints are nonetheless quite reasonable.
For instance, when working with the full1M points, the ensemble Nyström method with ridge re-
gression weights only required approximately1% of the columns ofK to achieve a percent error of
10%.

5 Conclusion

We presented a novel family of algorithms,ensemble Nyström algorithms, for accurate low-rank ap-
proximations in large-scale applications. The consistent and significant performance improvement
across a number of different data sets, along with the fact that these algorithms can be easily par-
allelized, suggests that these algorithms can benefit a variety of applications where kernel methods
are used. Interestingly, the algorithmic solution we have proposed for scaling these kernel learning
algorithms to larger scales is itself derived from the machine learning idea of ensemble methods.
We also gave the first theoretical analysis of these methods. We expect that finer error bounds and
theoretical guarantees will further guide the design of the ensemble algorithms and help us gain a
better insight about the convergence properties of our algorithms.
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