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Abstract

This paper tackles the problem of selecting among several linear estimators in
non-parametric regression; this includes model selection for linear regression, the
choice of a regularization parameter in kernel ridge regression or spline smooth-
ing, and the choice of a kernel in multiple kernel learning. We propose a new
algorithm which first estimates consistently the variance of the noise, based upon
the concept of minimal penalty which was previously introduced in the context of
model selection. Then, plugging our variance estimate in Mallows’CL penalty
is proved to lead to an algorithm satisfying an oracle inequality. Simulation ex-
periments with kernel ridge regression and multiple kernel learning show that the
proposed algorithm often improves significantly existing calibration procedures
such as 10-fold cross-validation or generalized cross-validation.

1 Introduction

Kernel-based methods are now well-established tools for supervised learning, allowing to perform
various tasks, such as regression or binary classification, with linear and non-linear predictors [1, 2].
A central issue common to all regularization frameworks is the choice of the regularization parame-
ter: while most practitioners use cross-validation procedures to select such a parameter, data-driven
procedures not based on cross-validation are rarely used. The choice of the kernel, a seemingly
unrelated issue, is also important for good predictive performance: several techniques exist, either
based on cross-validation, Gaussian processes or multiple kernel learning [3, 4, 5].

In this paper, we consider least-squares regression and cast these two problems as the problem of
selecting among severallinear estimators, where the goal is to choose an estimator with a quadratic
risk which is as small as possible. This problem includes for instance model selection for linear
regression, the choice of a regularization parameter in kernel ridge regression or spline smoothing,
and the choice of a kernel in multiple kernel learning (see Section 2).

The main contribution of the paper is to extend the notion ofminimal penalty[6, 7] to all discrete
classes of linear operators, and to use it for defining a fully data-driven selection algorithm satisfying
a non-asymptotic oracle inequality. Our new theoretical results presented in Section 4 extend simi-
lar results which were limited to unregularized least-squares regression (i.e., projection operators).
Finally, in Section 5, we show that our algorithm improves the performances of classical selection
procedures, such as GCV [8] and 10-fold cross-validation, for kernel ridge regression or multiple
kernel learning, for moderate values of the sample size.

∗http://www.di.ens.fr/∼arlot/
†http://www.di.ens.fr/∼fbach/
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2 Linear estimators

In this section, we define the problem we aim to solve and give several examples of linear estimators.

2.1 Framework and notation

Let us assume that one observes

Yi = f(xi) + εi ∈ R for i = 1 . . . n ,

whereε1, . . . , εn are i.i.d. centered random variables withE[ε2
i ] = σ2 unknown,f is an unknown

measurable functionX 7→ R andx1, . . . , xn ∈ X are deterministic design points. No assumption
is made on the setX . The goal is to reconstruct the signalF = (f(xi))1≤i≤n ∈ R

n , with some
estimatorF̂ ∈ R

n , depending only on(x1, Y1), . . . , (xn, Yn) , and having a small quadratic risk
n−1‖F̂ − F‖2

2 , where∀t ∈ R
n , we denote by‖t‖2 theℓ2-norm oft , defined as‖t‖2

2 :=
∑n

i=1
t2i .

In this paper, we focus onlinear estimatorsF̂ that can be written as a linear function ofY =

(Y1, . . . , Yn) ∈ R
n , that is, F̂ = AY , for some (deterministic)n × n matrix A . Here and in

the rest of the paper, vectors such asY or F are assumed to be column-vectors. We present in
Section 2.2 several important families of estimators of this form. The matrixA may depend on
x1, . . . , xn (which are known and deterministic), but not onY , and may be parameterized by certain
quantities—usually regularization parameter or kernel combination weights.

2.2 Examples of linear estimators

In this paper, our theoretical results apply to matricesA which are symmetric positive semi-definite,
such as the ones defined below.

Ordinary least-squares regression / model selection. If we consider linear predictors from a
design matrixX ∈ R

n×p , thenF̂ = AY with A = X(X⊤X)−1X⊤ , which is a projection matrix
(i.e.,A⊤A = A); F̂ = AY is often called aprojection estimator. In the variable selection setting,
one wants to select a subsetJ ⊂ {1, . . . , p} , and matricesA are parameterized byJ .

Kernel ridge regression / spline smoothing. We assume that a positive definite kernelk : X ×
X → R is given, and we are looking for a functionf : X → R in the associated reproducing kernel
Hilbert space (RKHS)F , with norm ‖ · ‖F . If K denotes then × n kernel matrix, defined by
Kab = k(xa, xb) , then the ridge regression estimator—a.k.a. spline smoothing estimator for spline
kernels [9]—is obtained by minimizing with respect tof ∈ F [2]:

1

n

n∑

i=1

(Yi − f(xi))
2 + λ‖f‖2

F .

The unique solution is equal tôf =
∑n

i=1
αik(·, xi) , whereα = (K +nλI)−1Y . This leads to the

smoothing matrixAλ = K(K + nλIn)−1 , parameterized by the regularization parameterλ ∈ R+ .

Multiple kernel learning / Group Lasso / Lasso. We now assume that we havep different
kernelskj , feature spacesFj and feature mapsΦj : X → Fj , j = 1, . . . , p . The group Lasso [10]
and multiple kernel learning [11, 5] frameworks consider the following objective function

J(f1, . . . , fp)= 1

n

n∑

i=1

(
yi−

∑p
j=1

〈fj ,Φj(xi)〉
)2

+2λ

p∑

j=1

‖fj‖Fj
= L(f1, . . . , fp)+2λ

p∑

j=1

‖fj‖Fj
.

Note that whenΦj(x) is simply thej-th coordinate ofx ∈ R
p , we get back the penalization by the

ℓ1-norm and thus the regular Lasso [12].

Using a1/2 = minb>0
1

2
{a

b + b} , we obtain a variational formulation of the sum of norms

2
∑p

j=1
‖fj‖ = minη∈R

p

+

∑p
j=1

{
‖fj‖

2

ηj
+ ηj

}
. Thus, minimizingJ(f1, . . . , fp) with respect to

(f1, . . . , fp) is equivalent to minimizing with respect toη ∈ R
p
+ (see [5] for more details):

min
f1,...,fp

L(f1, . . . , fp) + λ

p∑

j=1

‖fj‖2

ηj
+ λ

p∑

j=1

ηj =
1

n
y⊤
(∑p

j=1
ηjKj + nλIn

)−1
y + λ

p∑

j=1

ηj ,
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whereIn is then × n identity matrix. Moreover, givenη , this leads to a smoothing matrix of the
form

Aη,λ = (
∑p

j=1
ηjKj)(

∑p
j=1

ηjKj + nλIn)−1 , (1)

parameterized by the regularization parameterλ ∈ R+ and the kernel combinations inRp
+—note

that it depends only onλ−1η , which can be grouped in a single parameter inR
p
+ .

Thus, the Lasso/group lasso can be seen as particular (convex) ways of optimizing overη . In
this paper, we propose a non-convex alternative with better statistical properties (oracle inequality
in Theorem 1). Note that in our setting, finding the solution of the problem is hard in general
since the optimization is not convex. However, while the model selection problem is by nature
combinatorial, our optimization problems for multiple kernels are all differentiable and are thus
amenable to gradient descent procedures—which only find local optima.

Non symmetric linear estimators. Other linear estimators are commonly used, such as nearest-
neighbor regression or the Nadaraya-Watson estimator [13]; those however lead to non symmetric
matricesA , and are not entirely covered by our theoretical results.

3 Linear estimator selection

In this section, we first describe the statistical framework of linear estimator selection and introduce
the notion of minimal penalty.

3.1 Unbiased risk estimation heuristics

Usually, several estimators of the form̂F = AY can be used. The problem that we consider in
this paper is then to select one of them, that is, to choose a matrixA . Let us assume that a family
of matrices(Aλ)λ∈Λ is given (examples are shown in Section 2.2), hence a family of estimators
(F̂λ)λ∈Λ can be used, witĥFλ := AλY . The goal is to choosefrom datasomeλ̂ ∈ Λ , so that the
quadratic risk ofF̂bλ is as small as possible.

The best choice would be theoracle:

λ⋆ ∈ arg min
λ∈Λ

{
n−1‖F̂λ − F‖2

2

}
,

which cannot be used since it depends on the unknown signalF . Therefore, the goal is to define a
data-driven̂λ satisfying anoracle inequality

n−1‖F̂bλ − F‖2
2 ≤ Cn inf

λ∈Λ

{
n−1‖F̂λ − F‖2

2

}
+ Rn , (2)

with large probability, where the leading constantCn should be close to 1 (at least for largen) and
the remainder termRn should be negligible compared to the risk of the oracle.

Many classical selection methods are built upon the “unbiased risk estimation” heuristics: Ifλ̂
minimizes a criterioncrit(λ) such that

∀λ ∈ Λ, E [ crit(λ) ] ≈ E

[
n−1‖F̂λ − F‖2

2

]
,

then λ̂ satisfies an oracle inequality such as in Eq. (2) with large probability. For instance, cross-
validation [14, 15] and generalized cross-validation (GCV) [8] are built upon this heuristics.

One way of implementing this heuristics is penalization, which consists in minimizing the sum of
the empirical risk and a penalty term, i.e., using a criterion of the form:

crit(λ) = n−1‖F̂λ − Y ‖2
2 + pen(λ) .

The unbiased risk estimation heuristics, also called Mallows’ heuristics, then leads to theideal
(deterministic) penalty

penid(λ) := E

[
n−1‖F̂λ − F‖2

2

]
− E

[
n−1‖F̂λ − Y ‖2

2

]
.
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WhenF̂λ = AλY , we have:

‖F̂λ − F‖2
2 = ‖(Aλ − In)F‖2

2
+ ‖Aλε‖2

2
+ 2 〈Aλε, (Aλ − In)F 〉 , (3)

‖F̂λ − Y ‖2
2 = ‖F̂λ − F‖2

2 + ‖ε‖2

2
− 2 〈ε, Aλε〉 + 2 〈ε, (In − Aλ)F 〉 , (4)

whereε = Y − F ∈ R
n and∀t, u ∈ R

n , 〈t, u〉 =
∑n

i=1
tiui . Sinceε is centered with covariance

matrixσ2In , Eq. (3) and Eq. (4) imply that

penid(λ) =
2σ2 tr(Aλ)

n
, (5)

up to the term−E[n−1‖ε‖2
2]= −σ2 , which can be dropped off since it does not vary withλ .

Note thatdf(λ) = tr(Aλ) is called theeffective dimensionalityor degrees of freedom[16], so that
the ideal penalty in Eq. (5) is proportional to the dimensionality associated with the matrixAλ—
for projection matrices, we get back the dimension of the subspace, which is classical in model
selection.

The expression of the ideal penalty in Eq. (5) led to several selection procedures, in particular Mal-
lows’ CL (calledCp in the case of projection estimators) [17], whereσ2 is replaced by some esti-

matorσ̂2 . The estimator ofσ2 usually used withCL is based upon the value of the empirical risk at
someλ0 with df(λ0) large; it has the drawback of overestimating the risk, in a way which depends
onλ0 andF [18]. GCV, which implicitly estimatesσ2 , has the drawback of overfitting if the family
(Aλ)λ∈Λ contains a matrix too close toIn [19]; GCV also overestimates the risk even more thanCL

for mostAλ (see (7.9) and Table 4 in [18]).

In this paper, we define an estimator ofσ2 directly related to the selection task which does not have
similar drawbacks. Our estimator relies on the concept of minimal penalty, introduced by Birgé and
Massart [6] and further studied in [7].

3.2 Minimal and optimal penalties

We deduce from Eq. (3) thebias-variance decompositionof the risk:

E

[
n−1‖F̂λ − F‖2

2

]
= n−1 ‖(Aλ − In)F‖2

2
+

tr(A⊤
λ Aλ)σ2

n
= bias+ variance , (6)

and from Eq. (4) the expectation of the empirical risk:

E

[
n−1‖F̂λ − Y ‖2

2 − ‖ε‖2

2

]
= n−1 ‖(Aλ − In)F‖2

2
−
(
2 tr(Aλ) − tr(A⊤

λ Aλ)
)
σ2

n
. (7)

Note that the variance term in Eq. (6) is not proportional to the effective dimensionalitydf(λ) =
tr(Aλ) but to tr(A⊤

λ Aλ) . Although several papers argue these terms are of the same order (for
instance, they are equal whenAλ is a projection matrix), this may not hold in general. IfAλ is
symmetric with a spectrumSp(Aλ) ⊂ [0, 1] , as in all the examples of Section 2.2, we only have

0 ≤ tr(A⊤
λ Aλ) ≤ tr(Aλ) ≤ 2 tr(Aλ) − tr(A⊤

λ Aλ) ≤ 2 tr(Aλ) . (8)

In order to give a first intuitive interpretation of Eq. (6) and Eq. (7), let us consider the kernel ridge
regression example and assume that the risk and the empirical risk behave as their expectations
in Eq. (6) and Eq. (7); see also Fig. 1. Completely rigorous arguments based upon concentration
inequalities are developed in [20] and summarized in Section 4, leading to the same conclusion as
the present informal reasoning.

First, as proved in [20], the biasn−1 ‖(Aλ − In)F‖2

2
is a decreasing function of the dimensionality

df(λ) = tr(Aλ) , and the variancetr(A⊤
λ Aλ)σ2n−1 is an increasing function ofdf(λ) , as well

as2 tr(Aλ) − tr(A⊤
λ Aλ) . Therefore, Eq. (6) shows that the optimalλ realizes the best trade-off

between bias (which decreases withdf(λ)) and variance (which increases withdf(λ)), which is a
classical fact in model selection.

Second, the expectation of the empirical risk in Eq. (7) can be decomposed into the bias and a
negative variance term which is the opposite of

penmin(λ) := n−1
(
2 tr(Aλ) − tr(A⊤

λ Aλ)
)
σ2 . (9)
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Figure 1: Bias-variance decomposition of the generalization error, and minimal/optimal penalties.

As suggested by the notationpenmin , we will show it is aminimal penaltyin the following sense.
If

∀C ≥ 0, λ̂min(C) ∈ arg min
λ∈Λ

{
n−1‖F̂λ − Y ‖2

2 + C penmin(λ)
}

,

then, up to concentration inequalities that are detailed in Section 4.2,λ̂min(C) behaves like a mini-
mizer of

gC(λ) = E

[
n−1‖F̂λ − Y ‖2

2 + C penmin(λ)
]
−n−1σ2 = n−1 ‖(Aλ − In)F‖2

2
+(C−1) penmin(λ) .

Therefore, two main cases can be distinguished:

• if C < 1 , thengC(λ) decreases withdf(λ) so thatdf(λ̂min(C)) is huge:λ̂min(C) overfits.

• if C > 1 , then gC(λ) increases withdf(λ) when df(λ) is large enough, so that
df(λ̂min(C)) is much smaller than whenC < 1 .

As a conclusion,penmin(λ) is the minimal amount of penalization needed so that a minimizerλ̂ of
a penalized criterion is not clearly overfitting.

Following an idea first proposed in [6] and further analyzed or used in several other papers such as
[21, 7, 22], we now propose to use thatpenmin(λ) is a minimal penalty for estimatingσ2 and plug
this estimator into Eq. (5). This leads to the algorithm described in Section 4.1.

Note that the minimal penalty given by Eq. (9) is new; it generalizes previous results [6, 7] where
penmin(Aλ) = n−1 tr(Aλ)σ2 because allAλ were assumed to be projection matrices, i.e.,A⊤

λ Aλ =
Aλ . Furthermore, our results generalize the slope heuristicspenid ≈ 2 penmin (only valid for
projection estimators [6, 7]) to general linear estimators for whichpenid /penmin ∈ (1, 2] .

4 Main results

In this section, we first describe our algorithm and then present our theoretical results.

4.1 Algorithm

The following algorithm first computes an estimator ofĈ of σ2 using the minimal penalty in Eq. (9),
then considers the ideal penalty in Eq. (5) for selectingλ .

Input: Λ a finite set withCard(Λ) ≤ Knα for someK,α ≥ 0 , and matricesAλ .

• ∀C > 0 , computêλ0(C) ∈ arg minλ∈Λ{‖F̂λ − Y ‖2
2 + C

(
2 tr(Aλ) − tr(A⊤

λ Aλ)
)
} .

• Find Ĉ such thatdf(λ̂0(Ĉ)) ∈
[
n3/4, n/10

]
.

• Select̂λ ∈ arg minλ∈Λ{‖F̂λ − Y ‖2
2 + 2Ĉ tr(Aλ)} .

In the steps 1 and 2 of the above algorithm, in practice, a grid in log-scale is used, and our theoretical
results from the next section suggest to use a step-size of ordern−1/4 . Note that it may not be
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possible in all cases to find aC such thatdf(λ̂0(C)) ∈ [n3/4, n/10] ; therefore, our condition in
step 2, could be relaxed to finding âC such that for allC > Ĉ + δ , df(λ̂0(C)) < n3/4 and for all
C < Ĉ − δ , df(λ̂0(C)) > n/10 , with δ = n−1/4+ξ , whereξ > 0 is a small constant.

Alternatively, using the same grid in log-scale, we can selectĈ with maximal jump between succes-
sive values ofdf(λ̂0(C))—note that our theoretical result then does not entirely hold, as we show
the presence of a jump aroundσ2 , but do not show the absence of similar jumps elsewhere.

4.2 Oracle inequality

Theorem 1 Let Ĉ and λ̂ be defined as in the algorithm of Section 4.1, withCard(Λ) ≤ Knα for
someK,α ≥ 0 . Assume that∀λ ∈ Λ , Aλ is symmetric withSp(Aλ) ⊂ [0, 1] , that εi are i.i.d.
Gaussian with varianceσ2 > 0 , and that∃λ1, λ2 ∈ Λ with

df(λ1) ≥
n

2
, df(λ2) ≤

√
n, and ∀i ∈ {1, 2} , n−1 ‖(Aλi

− In)F‖2

2
≤ σ2

√
ln(n)

n
. (A1−2)

Then, a numerical constantCa and an event of probability at least1 − 8Kn−2 exist on which, for
everyn ≥ Ca ,(

1 − 91(α + 2)

√
ln(n)

n

)
σ2 ≤ Ĉ ≤

(
1 +

44(α + 2)
√

ln(n)

n1/4

)
σ2 . (10)

Furthermore, if

∃κ ≥ 1, ∀λ ∈ Λ, n−1 tr(Aλ)σ2 ≤ κE

[
n−1‖F̂λ − F‖2

2

]
, (A3)

then, a constantCb depending only onκ exists such that for everyn ≥ Cb , on the same event,

n−1‖F̂bλ − F‖2
2 ≤

(
1 +

40κ

ln(n)

)
inf
λ∈Λ

{
n−1‖F̂λ − F‖2

2

}
+

36(κ + α + 2) ln(n)σ2

n
. (11)

Theorem 1 is proved in [20]. The proof mainly follows from the informal arguments developed in
Section 3.2, completed with the following two concentration inequalities: Ifξ ∈ R

n is a standard
Gaussian random vector,α ∈ R

n andM is a real-valuedn × n matrix, then for everyx ≥ 0 ,

P

(
|〈α, ξ〉| ≤

√
2x ‖α‖

2

)
≥ 1 − 2e−x (12)

P

(
∀θ > 0,

∣∣∣‖Mξ‖2

2
− tr(M⊤M)

∣∣∣ ≤ θ tr(M⊤M) + 2(1 + θ−1) ‖M‖2
x
)
≥ 1 − 2e−x , (13)

where‖M‖ is the operator norm ofM . A proof of Eq. (12) and (13) can be found in [20].

4.3 Discussion of the assumptions of Theorem 1

Gaussian noise. Whenε is sub-Gaussian, Eq. (12) and Eq. (13) can be proved forξ = σ−1ε at the
price of additional technicalities, which implies that Theorem 1 is still valid.

Symmetry. The assumption that matricesAλ must be symmetric can certainly be relaxed, since it
is only used for deriving from Eq. (13) a concentration inequality for〈Aλξ, ξ〉 . Note thatSp(Aλ) ⊂
[0, 1] barely is an assumption since it means thatAλ actually shrinksY .

Assumptions (A1−2). (A1−2) holds if maxλ∈Λ {df(λ)} ≥ n/2 and the bias is smaller than
cdf(λ)−d for somec, d > 0 , a quite classical assumption in the context of model selection. Besides,
(A1−2) is much less restrictive and can even be relaxed, see [20].

Assumption (A3). The upper bound (A3) on tr(Aλ) is certainly the strongest assumption of
Theorem 1, but it is only needed for Eq. (11). According to Eq. (6), (A3) holds withκ = 1 when
Aλ is a projection matrix sincetr(A⊤

λ Aλ) = tr(Aλ) . In the kernel ridge regression framework,
(A3) holds as soon as the eigenvalues of the kernel matrixK decrease likej−α—see [20]. In
general, (A3) means that̂Fλ should not have a risk smaller than the parametric convergence rate
associated with a model of dimensiondf(λ) = tr(Aλ) .

When (A3) does not hold, selecting among estimators whose risks are below the parametric rate
is a rather difficult problem and it may not be possible to attain the risk of the oracle in general.
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Figure 2: Selected degrees of freedom vs. penalty strengthlog(C/σ2) : note that when penalizing
by the minimal penalty, there is a strong jump atC = σ2 , while when using half the optimal penalty,
this is not the case. Left: single kernel case, Right: multiple kernel case.

Nevertheless, an oracle inequality can still be proved without (A3), at the price of enlarginĝC
slightly and adding a small fraction ofσ2n−1 tr(Aλ) in the right-hand side of Eq. (11), see [20].
EnlargingĈ is necessary in general: Iftr(A⊤

λ Aλ) ≪ tr(Aλ) for mostλ ∈ Λ , the minimal penalty
is very close to2σ2n−1 tr(Aλ) , so that according to Eq. (10), overfitting is likely as soon asĈ
underestimatesσ2 , even by a very small amount.

4.4 Main consequences of Theorem 1 and comparison with previous results

Consistent estimation of σ2 . The first part of Theorem 1 shows thatĈ is a consistent estimator
of σ2 in a general framework and under mild assumptions. Compared to classical estimators ofσ2 ,
such as the one usually used with Mallows’CL, Ĉ does not depend on the choice of some model
assumed to have almost no bias, which can lead to overestimatingσ2 by an unknown amount [18].

Oracle inequality. Our algorithm satisfies an oracle inequality with high probability, as shown by
Eq. (11): The risk of the selected estimatorF̂bλ is close to the risk of the oracle, up to a remainder
term which is negligible when the dimensionalitydf(λ⋆) grows withn faster thanln(n) , a typical
situation when the bias is never equal to zero, for instance in kernel ridge regression.

Several oracle inequalities have been proved in the statistical literature for Mallows’CL with a con-
sistent estimator ofσ2 , for instance in [23]. Nevertheless, except for the model selection problem
(see [6] and references therein), all previous results were asymptotic, meaning thatn is implicitly
assumed to be larged compared to each parameter of the problem. This assumption can be prob-
lematic for several learning problems, for instance in multiple kernel learning when the numberp
of kernels may grow withn . On the contrary, Eq. (11) isnon-asymptotic, meaning that it holds for
every fixedn as soon as the assumptions explicitly made in Theorem 1 are satisfied.

Comparison with other procedures. According to Theorem 1 and previous theoretical results
[23, 19],CL, GCV, cross-validation and our algorithm satisfy similar oracle inequalities in various
frameworks. This should not lead to the conclusion that these procedures are completely equivalent.
Indeed, second-order terms can be large for a givenn , while they are hidden in asymptotic results
and not tightly estimated by non-asymptotic results. As showed by the simulations in Section 5, our
algorithm yields statistical performances as good as existing methods, and often quite better.

Furthermore, our algorithm never overfits too much becausedf(λ̂) is by construction smaller than
the effective dimensionality of̂λ0(Ĉ) at which the jump occurs. This is a quite interesting property
compared for instance to GCV, which is likely to overfit if it is not corrected because GCV minimizes
a criterion proportional to the empirical risk.

5 Simulations

Throughout this section, we consider exponential kernels onR
d , k(x, y)=

∏d
i=1

e−|xi−yi| , with the
x’s sampled i.i.d. from a standard multivariate Gaussian. The functionsf are then selected randomly
as
∑m

i=1
αik(·, zi) , where bothα andz are i.i.d. standard Gaussian (i.e.,f belongs to the RKHS).
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Figure 3: Comparison of various smoothing parameter selection (minikernel, GCV, 10-fold cross
validation) for various values of numbers of observations, averaged over 20 replications. Left: single
kernel, right: multiple kernels.

Jump. In Figure 2 (left), we consider dataxi ∈ R
6 , n = 1000, and study the size of the jump

in Figure 2 for kernel ridge regression. With half the optimal penalty (which is used in traditional
variable selection for linear regression), we do not get any jump, while with the minimal penalty we
always do. In Figure 2 (right), we plot the same curves for the multiple kernel learning problem with
two kernels on two different 4-dimensional variables, with similar results. In addition, we show two
ways of optimizing overλ ∈ Λ = R

2
+ , by discrete optimization withn different kernel matrices—a

situation covered by Theorem 1—or with continuous optimization with respect toη in Eq. (1), by
gradient descent—a situation not covered by Theorem 1.

Comparison of estimator selection methods. In Figure 3, we plot model selection results for 20
replications of data (d= 4, n = 500), comparing GCV [8], our minimal penalty algorithm, and
cross-validation methods. In the left part (single kernel), we compare to the oracle (which can be
computed because we can enumerateΛ), and use for cross-validation all possible values ofλ . In the
right part (multiple kernel), we compare to the performance of Mallows’CL whenσ2 is known (i.e.,
penalty in Eq. (5)), and since we cannot enumerate allλ’s, we use the solution obtained by MKL
with CV [5]. We also compare to using our minimal penalty algorithm with the sum of kernels.

6 Conclusion

A new light on the slope heuristics. Theorem 1 generalizes some results first proved in [6] where
all Aλ are assumed to be projection matrices, a framework where assumption (A3) is automatically
satisfied. To this extent, Birgé and Massart’s slope heuristics has been modified in a way that sheds
a new light on the “magical” factor 2 between the minimal and the optimal penalty, as proved in
[6, 7]. Indeed, Theorem 1 shows that for general linear estimators,

penid(λ)

penmin(λ)
=

2 tr(Aλ)

2 tr(Aλ) − tr(A⊤
λ Aλ)

, (14)

which can take any value in(1, 2] in general; this ratio is only equal to 2 whentr(Aλ) ≈ tr(A⊤
λ Aλ) ,

hence mostly whenAλ is a projection matrix.

Future directions. In the case of projection estimators, the slope heuristics still holds when the de-
sign is random and data are heteroscedastic [7]; we would like to know whether Eq. (14) is still valid
for heteroscedastic data with general linear estimators. In addition, the good empirical performances
of elbow heuristics based algorithms (i.e., based on the sharp variation of a certain quantity around
good hyperparameter values) suggest that Theorem 1 can be generalized to many learning frame-
works (and potentially to non-linear estimators), probably with small modifications in the algorithm,
but always relying on the concept of minimal penalty.

Another interesting open problem would be to extend the results of Section 4, whereCard(Λ) ≤
Knα is assumed, to continuous setsΛ such as the ones appearing naturally in kernel ridge regression
and multiple kernel learning. We conjecture that Theorem 1 is valid without modification for a
“small” continuousΛ , such as in kernel ridge regression where taking a grid of sizen in log-scale is
almost equivalent to takingΛ = R+ . On the contrary, in applications such as the Lasso withp ≫ n
variables, the natural setΛ cannot be well covered by a grid of cardinalitynα with α small, and our
minimal penalty algorithm and Theorem 1 certainly have to be modified.
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[21] É. Lebarbier. Detecting multiple change-points in the mean of a gaussian process by model
selection.Signal Proces., 85:717–736, 2005.

[22] C. Maugis and B. Michel. Slope heuristics for variable selection and clustering via gaussian
mixtures. Technical Report 6550, INRIA, 2008.

[23] K.-C. Li. Asymptotic optimality forCp, CL, cross-validation and generalized cross-validation:
discrete index set.Ann. Statist., 15(3):958–975, 1987.

9


