
Adaptive Regularization of Weight Vectors

Koby Crammer
Department of

Electrical Enginering
The Technion

Haifa, 32000 Israel
koby@ee.technion.ac.il

Alex Kulesza
Department of Computer
and Information Science

University of Pennsylvania
Philadelphia, PA 19104
kulesza@cis.upenn.edu

Mark Dredze
Human Language Tech.

Center of Excellence
Johns Hopkins University

Baltimore, MD 21211
mdredze@cs.jhu.edu

Abstract

We present AROW, a new online learning algorithm that combines sev-
eral useful properties: large margin training, confidence weighting, and the
capacity to handle non-separable data. AROW performs adaptive regular-
ization of the prediction function upon seeing each new instance, allowing
it to perform especially well in the presence of label noise. We derive
a mistake bound, similar in form to the second order perceptron bound,
that does not assume separability. We also relate our algorithm to recent
confidence-weighted online learning techniques and show empirically that
AROW achieves state-of-the-art performance and notable robustness in the
case of non-separable data.

1 Introduction

Online learning algorithms are fast, simple, make few statistical assumptions, and perform
well in a wide variety of settings. Recent work has shown that parameter confidence in-
formation can be effectively used to guide online learning [2]. Confidence weighted (CW)
learning, for example, maintains a Gaussian distribution over linear classifier hypotheses
and uses it to control the direction and scale of parameter updates [6]. In addition to for-
mal guarantees in the mistake-bound model [11], CW learning has achieved state-of-the-art
performance on many tasks. However, the strict update criterion used by CW learning is
very aggressive and can over-fit [5]. Approximate solutions can be used to regularize the
update and improve results; however, current analyses of CW learning still assume that the
data are separable. It is not immediately clear how to relax this assumption.

In this paper we present a new online learning algorithm for binary classification that com-
bines several attractive properties: large margin training, confidence weighting, and the
capacity to handle non-separable data. The key to our approach is the adaptive regular-
ization of the prediction function upon seeing each new instance, so we call this algorithm
Adaptive Regularization of Weights (AROW). Because it adjusts its regularization for each
example, AROW is robust to sudden changes in the classification function due to label
noise. We derive a mistake bound, similar in form to the second order perceptron bound,
that does not assume separability. We also provide empirical results demonstrating that
AROW is competitive with state-of-the-art methods and improves upon them significantly
in the presence of label noise.

2 Confidence Weighted Online Learning of Linear Classifiers

Online algorithms operate in rounds. In round t the algorithm receives an instance xt ∈ Rd

and applies its current prediction rule to make a prediction ŷt ∈ Y. It then receives the true

1

label yt ∈ Y and suffers a loss `(yt, ŷt). For binary classification we have Y = {−1,+1} and
use the zero-one loss `01(yt, ŷt) = 0 if yt = ŷt and 1 otherwise. Finally, the algorithm updates
its prediction rule using (xt, yt) and proceeds to the next round. In this work we consider
linear prediction rules parameterized by a weight vector w: ŷ = hw(x) = sign(w · x).

Recently Dredze, Crammer and Pereira [6, 5] proposed an algorithmic framework for on-
line learning of binary classification tasks called confidence weighted (CW) learning. CW
learning captures the notion of confidence in a linear classifier by maintaining a Gaussian
distribution over the weights with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d. The
values µp and Σp,p, respectively, encode the learner’s knowledge of and confidence in the
weight for feature p: the smaller Σp,p, the more confidence the learner has in the mean
weight value µp. Covariance terms Σp,q capture interactions between weights.

Conceptually, to classify an instance x, a CW classifier draws a parameter vector w ∼
N (µ,Σ) and predicts the label according to sign(w · x). In practice, however, it can be
easier to simply use the average weight vector E [w] = µ to make predictions. This is similar
to the approach taken by Bayes point machines [9], where a single weight vector is used to
approximate a distribution. Furthermore, for binary classification, the prediction given by
the mean weight vector turns out to be Bayes optimal.

CW classifiers are trained according to a passive-aggressive rule [3] that adjusts the dis-
tribution at each round to ensure that the probability of a correct prediction is at least
η ∈ (0.5, 1]. This yields the update constraint Pr [yt (w · xt) ≥ 0] ≥ η . Subject to this
constraint, the algorithm makes the smallest possible change to the hypothesis weight dis-
tribution as measured using the KL divergence. This implies the following optimization
problem for each round t:

(µt,Σt) = min
µ,Σ

DKL

(
N (µ,Σ) ‖N

(
µt−1,Σt−1

))
s.t. Prw∼N (µ,Σ) [yt (w · xt) ≥ 0] ≥ η

Confidence-weighted algorithms have been shown to perform well in practice [5, 6], but they
suffer from several problems. First, the update is quite aggressive, forcing the probability
of predicting each example correctly to be at least η > 1/2 regardless of the cost to the
objective. This may cause severe over-fitting when labels are noisy; indeed, current analyses
of the CW algorithm [5] assume that the data are linearly separable. Second, they are
designed for classification, and it is not clear how to extend them to alternative settings
such as regression. This is in part because the constraint is written in discrete terms where
the prediction is either correct or not.

We deal with both of these issues, coping more effectively with label noise and generalizing
the advantages of CW learning in an extensible way.

3 Adaptive Regularization Of Weights

We identify two important properties of the CW update rule that contribute to its good
performance but also make it sensitive to label noise. First, the mean parameters µ are
guaranteed to correctly classify the current training example with margin following each
update. This is because the probability constraint Pr [yt (w · xt) ≥ 0] ≥ η can be written
explicitly as yt (µ · xt) ≥ φ

√
x>t Σxt, where φ > 0 is a positive constant related to η.

This aggressiveness yields rapid learning, but given an incorrectly labeled example, it can
also force the learner to make a drastic and incorrect change to its parameters. Second,
confidence, as measured by the inverse eigenvalues of Σ, increases monotonically with every
update. While it is intuitive that our confidence should grow as we see more data, this
also means that even incorrectly labeled examples causing wild parameter swings result in
artificially increased confidence.

In order to maintain the positives but reduce the negatives of these two properties, we
isolate and soften them. As in CW learning, we maintain a Gaussian distribution over
weight vectors with mean µ and covariance Σ; however, we recast the above characteristics
of the CW constraint as regularizers, minimizing the following unconstrained objective on

2

each round:

C (µ,Σ) = DKL

(
N (µ,Σ) ‖N

(
µt−1,Σt−1

))
+ λ1`h2 (yt,µ · xt) + λ2x

>
t Σxt , (1)

where `h2 (yt,µ · xt) = (max{0, 1− yt(µ · xt)})2 is the squared-hinge loss suffered using the
weight vector µ to predict the output for input xt when the true output is yt. λ1, λ2 ≥ 0 are
two tradeoff hyperparameters. For simplicity and compactness of notation, in the following
we will assume that λ1 = λ2 = 1/(2r) for some r > 0.

The objective balances three desires. First, the parameters should not change radically on
each round, since the current parameters contain information about previous examples (first
term). Second, the new mean parameters should predict the current example with low loss
(second term). Finally, as we see more examples, our confidence in the parameters should
generally grow (third term).

Note that this objective is not simply the dualization of the CW constraint, but a new
formulation inspired by the properties discussed above. Since the loss term depends on µ
only via the inner-product µ ·xt, we are able to prove a representer theorem (Sec. 4). While
we use the squared-hinge loss for classification, different loss functions, as long as they are
convex and differentiable in µ, yield algorithms for different settings.1

To solve the optimization in (1), we begin by writing the KL explicitly:

C (µ,Σ) =
1
2

log
(

det Σt−1

det Σ

)
+

1
2
Tr
(
Σ−1

t−1Σ
)

+
1
2
(
µt−1 − µ

)>Σ−1
t−1

(
µt−1 − µ

)
− d

2

+
1
2r

`h2 (yt,µ · xt) +
1
2r

x>t Σxt (2)

We can decompose the result into two terms: C1(µ), depending only on µ, and C2(Σ), de-
pending only on Σ. The updates to µ and Σ can therefore be performed independently.
The squared-hinge loss yields a conservative (or passive) update for µ in which the mean
parameters change only when the margin is too small, and we follow CW learning by en-
forcing a correspondingly conservative update for the confidence parameter Σ, updating it
only when µ changes. This results in fewer updates and is easier to analyze. Our update
thus proceeds in two stages.

1. Update the mean parameters: µt = arg min
µ
C1 (µ) (3)

2. If µt 6= µt−1, update the confidence parameters: Σt = arg min
Σ
C2 (Σ) (4)

We now develop the update equations for (3) and (4) explicitly, starting with the former.
Taking the derivative of C (µ,Σ) with respect to µ and setting it to zero, we get

µt = µt−1 −
1
2r

[
d

dz
`h2 (yt, z) |z=µt·xt

]
Σt−1xt , (5)

assuming Σt−1 is non-singular. Substituting the derivative of the squared-hinge loss in (5)
and assuming 1− yt (µt · xt) ≥ 0, we get

µt = µt−1 +
yt

r
(1− yt (µt · xt))Σt−1xt . (6)

We solve for µt by taking the dot product of each side of the equality with xt and substituting
back in (6) to obtain the rule

µt = µt−1 +
max

(
0, 1− ytx

>
t µt−1

)
x>t Σt−1xt + r

Σt−1ytxt . (7)

It can be easily verified that (7) satisfies our assumption that 1− yt (µt · xt) ≥ 0.

1It can be shown that the well known recursive least squares (RLS) regression algorithm [7] is a
special case of AROW with the squared loss.

3

Input parameters r
Initialize µ0 = 0 , Σ0 = I,
For t = 1, . . . , T

• Receive a training example xt ∈ Rd

• Compute margin and confidence mt = µt−1 · xt vt = x>t Σt−1xt

• Receive true label yt, and suffer loss `t = 1 if sign (mt) 6= yt

• If mtyt < 1, update using eqs. (7) & (9):

µt = µt−1 + αtΣt−1ytxt Σt = Σt−1 − βtΣt−1xtx
>
t Σt−1

βt =
1

x>t Σt−1xt + r
αt = max

“
0, 1 − ytx

>
t µt−1

”
βt

Output: Weight vector µT and confidence ΣT .

Figure 1: The AROW algorithm for online binary classification.

The update for the confidence parameters is made only if µt 6= µt−1, that is, if 1 >

ytx
>
t µt−1. In this case, we compute the update of the confidence parameters by setting

the derivative of C (µ,Σ) with respect to Σ to zero:

Σ−1
t = Σ−1

t−1 +
xtx

>
t

r
(8)

Using the Woodbury identity we can also rewrite the update for Σ in non-inverted form:

Σt = Σt−1 −
Σt−1xtx

>
t Σt−1

r + x>t Σt−1xt
(9)

Note that it follows directly from (8) and (9) that the eigenvalues of the confidence pa-
rameters are monotonically decreasing: Σt � Σt−1; Σ−1

t � Σ−1
t−1 . Pseudocode for AROW

appears in Fig. 1.

4 Analysis

We first show that AROW can be kernelized by stating the following representer theorem.

Lemma 1 (Representer Theorem) Assume that Σ0 = I and µ0 = 0. The mean param-
eters µt and confidence parameters Σt produced by updating via (7) and (9) can be written
as linear combinations of the input vectors (resp. outer products of the input vectors with
themselves) with coefficients depending only on inner-products of input vectors.

Proof sketch: By induction. The base case follows from the definitions of µ0 and Σ0,
and the induction step follows algebraically from the update rules (7) and (9).

We now prove a mistake bound for AROW. Denote by M (M = |M|) the set of example
indices for which the algorithm makes a mistake, yt

(
µt−1 · xt

)
≤ 0, and by U (U = |U|) the

set of example indices for which there is an update but not a mistake, 0 < yt (µt · xt) ≤ 1.
Other examples do not affect the behavior of the algorithm and can be ignored. Let XM =∑

t∈M xix
>
i , XU =

∑
t∈U xix

>
i and XA = XM + XU .

Theorem 2 For any reference weight vector u ∈ Rd, the number of mistakes made by
AROW (Fig. 1) is upper bounded by

M ≤
√

r ‖u‖2 + u>XAu

√
log
(

det
(

I +
1
r
XA

))
+ U +

∑
t∈M∪U

gt − U , (10)

where gt = max
(
0, 1− ytu

>xt

)
.

The proof depends on two lemmas; we omit the proof of the first for lack of space.

4

Lemma 3 Let `t = max
(
0, 1− ytµ

>
t−1xt

)
and χt = x>t Σt−1xt. Then, for every t ∈M∪U ,

u>Σ−1
t µt = u>Σ−1

t−1µt−1 +
ytu

>xt

r

µ>t Σ−1
t µt = µ>t−1Σ

−1
t−1µt−1 +

χt + r − `2t r

r (χt + r)

Lemma 4 Let T be the number of rounds. Then∑
t

χtr

r (χt + r)
≤ log

(
det
(
Σ−1

T+1

))
.

Proof: We compute the following quantity:

x>t Σtx
>
t = x>t

(
Σt−1 − βtΣt−1xtx

>
t Σt−1

)
xt = χt −

χ2
t

χt + r
=

χtr

χt + r
.

Using Lemma D.1 from [2] we have that

1
r
x>t Σtx

>
t = 1−

det
(
Σ−1

t−1

)
det
(
Σ−1

t

) . (11)

Combining, we get∑
t

χtr

r (χt + r)
=
∑

t

(
1−

det
(
Σ−1

t−1

)
det
(
Σ−1

t

)) ≤ −
∑

t

log

(
det
(
Σ−1

t−1

)
det
(
Σ−1

t

)) ≤ log
(
det
(
Σ−1

T+1

))
.

We now prove Theorem 2.

Proof: We iterate the first equality of Lemma 3 to get

u>Σ−1
T µT =

∑
t∈M∪U

ytu
>xt

r
≥

∑
t∈M∪U

1− gt

r
=

M + U

r
− 1

r

∑
t∈M∪U

gt . (12)

We iterate the second equality to get

µ>T Σ−1
T µT =

∑
t∈M∪U

χt + r − `2t r

r (χt + r)
=

∑
t∈M∪U

χt

r (χt + r)
+

∑
t∈M∪U

1− `2t
χt + r

. (13)

Using Lemma 4 we have that the first term of (13) is upper bounded by 1
r log

(
det
(
Σ−1

T

))
.

For the second term in (13) we consider two cases. First, if a mistake occurred on example
t, then we have that yt

(
xt · µt−1

)
≤ 0 and `t ≥ 1, so 1− `2t ≤ 0. Second, if an the algorithm

made an update (but no mistake) on example t, then 0 < yt

(
xt · µt−1

)
≤ 1 and `t ≥ 0,

thus 1− `2t ≤ 1. We therefore have∑
t∈M∪U

1− `2t
χt + r

≤
∑
t∈M

0
χt + r

+
∑
t∈U

1
χt + r

=
∑
t∈U

1
χt + r

. (14)

Combining and plugging into the Cauchy-Schwarz inequality

u>Σ−1
T µT ≤

√
u>Σ−1

T u
√

µ>T Σ−1
T µT ,

we get

M + U

r
− 1

r

∑
t∈M∪U

gt ≤
√

u>Σ−1
T u

√
1
r

log
(
det
(
Σ−1

T

))
+
∑
t∈U

1
χt + r

. (15)

Rearranging the terms and using the fact that χt ≥ 0 yields

M ≤
√

r
√

u>Σ−1
T u

√
log
(
det
(
Σ−1

T

))
+ U +

∑
t∈M∪U

gt − U .

5

By definition,

Σ−1
T =I +

1
r

∑
t∈M∪U

xix
>
i =I +

1
r
XA ,

so substituting and simplifying completes the proof:

M ≤
√

r

√
u>
(

I +
1
r
XA

)
u

√
log
(

det
(

I +
1
r
XA

))
+ U +

∑
t∈M∪U

gt − U

=
√

r ‖u‖2 + u>XAu

√
log
(

det
(

I +
1
r
XA

))
+ U +

∑
t∈M∪U

gt − U .

A few comments are in order. First, the two square-root terms of the bound depend on r
in opposite ways: the first is monotonically increasing, while the second is monotonically
decreasing. One could expect to optimize the bound by minimizing over r. However, the
bound also depends on r indirectly via other quantities (e.g. XA), so there is no direct way
to do so. Second, if all the updates are associated with errors, that is, U = ∅, then the bound
reduces to the bound of the second-order perceptron [2]. In general, however, the bounds
are not comparable since each depends on the actual runtime behavior of its algorithm.

5 Empirical Evaluation

We evaluate AROW on both synthetic and real data, including several popular datasets
for document classification and optical character recognition (OCR). We compare with
three baselines: Passive-Aggressive (PA), Second Order Perceptron (SOP)2 and Confidence-
Weighted (CW) learning3.

Our synthetic data are as in [5], but we invert the labels on 10% of the training examples.
(Note that evaluation is still done against the true labels.) Fig. 2(a) shows the online learning
curves for both full and diagonalized versions of the algorithms on these noisy data. AROW
improves over all competitors, and the full version outperforms the diagonal version. Note
that CW-full performs worse than CW-diagonal, as has been observed previously for noisy
data.

We selected a variety of document classification datasets popular in the NLP community,
summarized as follows. Amazon: Product reviews to be classified into domains (e.g.,
books or music) [6]. We created binary datasets by taking all pairs of the six domains (15
datasets). Feature extraction follows [1] (bigram counts). 20 Newsgroups: Approximately
20,000 newsgroup messages partitioned across 20 different newsgroups4. We binarized the
corpus following [6] and used binary bag-of-words features (3 datasets). Each dataset has
between 1850 and 1971 instances. Reuters (RCV1-v2/LYRL2004): Over 800,000 man-
ually categorized newswire stories. We created binary classification tasks using pairs of
labels following [6] (3 datasets). Details on document preparation and feature extraction
are given by [10]. Sentiment: Product reviews to be classified as positive or negative. We
used each Amazon product review domain as a sentiment classification task (6 datasets).
Spam: We selected three task A users from the ECML/PKDD Challenge5, using bag-of-
words to classify each email as spam or ham (3 datasets). For OCR data we binarized two
well known digit recognition datasets, MNIST6 and USPS, into 45 all-pairs problems. We
also created ten one vs. all datasets from the MNIST data (100 datasets total).

Each result for the text datasets was averaged over 10-fold cross-validation. The OCR
experiments used the standard split into training and test sets. Hyperparameters (including

2
For the real world (high dimensional) datasets, we must drop cross-feature confidence terms by projecting

onto the set of diagonal matrices, following the approach of [6]. While this may reduce performance, we make the
same approximation for all evaluated algorithms.

3
We use the “variance” version developed in [6].

4
http://people.csail.mit.edu/jrennie/20Newsgroups/

5
http://ecmlpkdd2006.org/challenge.html

6
http://yann.lecun.com/exdb/mnist/index.html

6

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

200

400

600

800

1000

1200

1400

1600

Instances

M
is

ta
ke

s

Perceptron
PA
SOP
AROW−full
AROW−diag
CW−full
CW−diag

(a) synthetic data

0 2000 4000 6000 8000 10000

Instances
0

100

200

300

400

500

600

700

800

M
is

ta
ke

s

PA
CW
AROW
SOP

0 2000 4000 6000 8000 10000

Instances
0

500

1000

1500

2000

M
is

ta
ke

s

PA
CW
AROW
SOP

(b) MNIST data

Figure 2: Learning curves for AROW (full/diagonal) and baseline methods. (a) 5k synthetic
training examples and 10k test examples (10% noise, 100 runs). (b) MNIST 3 vs. 5 binary
classification task for different amounts of label noise (left: 0 noise, right: 10%).

r for AROW) and the number of online iterations (up to 10) were optimized using a single
randomized run. We used 2000 instances from each dataset unless otherwise noted above.
In order to observe each algorithm’s ability to handle non-separable data, we performed each
experiment using various levels of artifical label noise, generated by independently flipping
each binary label with fixed probability.

5.1 Results and Discussion

Noise level
Algorithm 0.0 0.05 0.1 0.15 0.2 0.3
AROW 1.51 1.44 1.38 1.42 1.25 1.25
CW 1.63 1.87 1.95 2.08 2.42 2.76
PA 2.95 2.83 2.78 2.61 2.33 2.08
SOP 3.91 3.87 3.89 3.89 4.00 3.91

Table 1: Mean rank (out of 4, over all datasets) at differ-
ent noise levels. A rank of 1 indicates that an algorithm
outperformed all the others.

Our experimental results
are summarized in Table 1.
AROW outperforms the base-
lines at all noise levels, but
does especially well as noise
increases. More detailed
results for AROW and CW,
the overall best performing
baseline, are compared in
Fig. 3. AROW and CW are
comparable when there is no
added noise, with AROW
winning the majority of the time. As label noise increases (moving across the rows in
Fig. 3) AROW holds up remarkably well. In almost every high noise evaluation, AROW
improves over CW (as well as the other baselines, not shown). Fig. 2(b) shows the total
number of mistakes (w.r.t. noise-free labels) made by each algorithm during training on the
MNIST dataset for 0% and 10% noise. Though absolute performance suffers with noise,
the gap between AROW and the baselines increases.

To help interpret the results, we classify the algorithms evaluated here according to four
characteristics: the use of large margin updates, confidence weighting, a design that acco-
modates non-separable data, and adaptive per-instance margin (Table 2). While all of these
properties can be desirable in different situations, we would like to understand how they
interact and achieve high performance while avoiding sensitivity to noise.

Large Conf- Non- Adaptive
Algorithm Margin idence Separable Margin
PA Yes No Yes No
SOP No Yes Yes No
CW Yes Yes No Yes
AROW Yes Yes Yes No

Table 2: Online algorithm properties overview.

Based on the results in Ta-
ble 1, it is clear that the com-
bination of confidence informa-
tion and large margin learning
is powerful when label noise is
low. CW easily outperforms
the other baselines in such situ-
ations, as it has been shown to
do in previous work. However,
as noise increases, the separa-
bility assumption inherent in CW appears to reduce its performance considerably.

7

0.75 0.80 0.85 0.90 0.95 1.00

CW
0.75

0.80

0.85

0.90

0.95

1.00

A
R

O
W

20news
amazon
reuters
sentiment
spam

0.5 0.6 0.7 0.8 0.9 1.0

CW
0.5

0.6

0.7

0.8

0.9

1.0

A
R

O
W

20news
amazon
reuters
sentiment
spam

0.5 0.6 0.7 0.8 0.9 1.0

CW
0.5

0.6

0.7

0.8

0.9

1.0

A
R

O
W

20news
amazon
reuters
sentiment
spam

0.90 0.92 0.94 0.96 0.98 1.00

CW
0.90

0.92

0.94

0.96

0.98

1.00

A
R

O
W

USPS 1 vs. All
USPS All Pairs
MNIST 1 vs. All

0.5 0.6 0.7 0.8 0.9 1.0

CW
0.5

0.6

0.7

0.8

0.9

1.0

A
R

O
W

USPS 1 vs. All
USPS All Pairs
MNIST 1 vs. All

0.5 0.6 0.7 0.8 0.9 1.0

CW
0.5

0.6

0.7

0.8

0.9

1.0

A
R

O
W

USPS 1 vs. All
USPS All Pairs
MNIST 1 vs. All

Figure 3: Accuracy on text (top) and OCR (bottom) binary classification. Plots compare
performance between AROW and CW, the best performing baseline (Table 1). Markers
above the line indicate superior AROW performance and below the line superior CW per-
formance. Label noise increases from left to right: 0%, 10% and 30%. AROW improves
relative to CW as noise increases.

AROW, by combining the large margin and confidence weighting of CW with a soft update
rule that accomodates non-separable data, matches CW’s performance in general while
avoiding degradation under noise. AROW lacks the adaptive margin of CW, suggesting
that this characteristic is not crucial to achieving strong performance. However, we leave
open for future work the possibility that an algorithm with all four properties might have
unique advantages.

6 Related and Future Work

AROW is most similar to the second order perceptron [2]. The SOP performs the same type
of update as AROW, but only when it makes an error. AROW, on the other hand, updates
even when its prediction is correct if there is insufficient margin. Confidence weighted (CW)
[6, 5] algorithms, by which AROW was inspired, update the mean and confidence parameters
simultaneously, while AROW makes a decoupled update and softens the hard constraint of
CW. The AROW algorithm can be seen as a variant of the PA-II algorithm from [3] where
the regularization is modified according to the data.

Hazan [8] describes a framework for gradient descent algorithms with logarithmic regret in
which a quantity similar to Σt plays an important role. Our algorithm differs in several
ways. First, Hazan [8] considers gradient algorithms, while we derive and analyze algo-
rithms that directly solve an optimization problem. Second, we bound the loss directly, not
the cumulative sum of regularization and loss. Third, the gradient algorithms perform a
projection after making an update (not before) since the norm of the weight vector is kept
bounded.

Ongoing work includes the development and analysis of AROW style algorithms for other
settings, including a multi-class version following the recent extension of CW to multi-class
problems [4]. Our mistake bound can be extended to this case. Applying the ideas behind
AROW to regression problems turns out to yield the well known recursive least squares
(RLS) algorithm, for which AROW offers new bounds (omitted). Finally, while we used the
confidence term x>t Σxt in (1), we can replace this term with any differentiable, monotoni-
cally increasing function f(x>t Σxt). This generalization may yield additional algorithms.

8

References

[1] John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, bollywood, boom-boxes
and blenders: Domain adaptation for sentiment classification. In ACL, 2007.

[2] Nicoló Cesa-Bianchi, Alex Conconi, and Claudio Gentile. A second-order perceptron
algorithm. Siam J. of Comm., 34, 2005.

[3] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer.
Online passive-aggressive algorithms. Journal of Machine Learning Research, 7:551–
585, 2006.

[4] Koby Crammer, Mark Dredze, and Alex Kulesza. Multi-class confidence weighted
algorithms. In Empirical Methods in Natural Language Processing (EMNLP), 2009.

[5] Koby Crammer, Mark Dredze, and Fernando Pereira. Exact convex confidence-weighted
learning. In Neural Information Processing Systems (NIPS), 2008.

[6] Mark Dredze, Koby Crammer, and Fernando Pereira. Confidence-weighted linear clas-
sification. In International Conference on Machine Learning, 2008.

[7] Simon Haykin. Adaptive Filter Theory. 1996.
[8] Elad Hazan. Efficient algorithms for online convex optimization and their applications.

PhD thesis, Princeton University, 2006.
[9] Ralf Herbrich, Thore Graepel, and Colin Campbell. Bayes point machines. Journal of

Machine Learning Research (JMLR), 1:245–279, 2001.
[10] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. Rcv1: A new benchmark

collection for text categorization research. JMLR, 5:361–397, 2004.
[11] Nick Littlestone. Learning when irrelevant attributes abound: A new linear-threshold

algorithm. Machine Learning, 2:285–318, 1988.

9

