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1 Proof of Theorem 2

Construction of the projective limit: In the following, we have to explicitly treat the conditional
P I

X(X I|ΘI) as the function P I
X(A|ΘI)(ω) for A ∈ BI

x and ω ∈ Ω. As a function of ω, the condi-
tional is measurable w.r.t. the σ-algebra σ(ΘI). As a regular conditional probability, the function
A 7→ P I

X(A|ΘI)(ω) is a probability measure for P-almost all ω ∈ Ω. The null set of exceptions
will be denoted N I ⊂ Ω. Since the conditional probabilities are conditionally projective, we have
P I

X( . |ΘI)(ω) = P J
X(π-1

JI . |ΘJ)(ω) for almost all ω. Again there is a null set of exceptions, which
we will denote N JI. Denote the union of all exceptions a N := (∪IN I) ∪ (∪I⊂JN JI). As a count-
able union of null sets, N is itself a null set. Now for any fixed ω 6∈ N , the probability measures
P I

X( . |ΘI)(ω) form a projective family of measures in the sense of the Kolmogorov theorem. Appli-
cation of the theorem yields a unique probability measure νω on (ΩE

x,BE
x) for each ω 6∈ N . Treat

this collection of measures as a function ν(A,ω) := νω(A) for ω 6∈ N , and set ν(A,ω) := δXE(ω)

for ω ∈ N , where δx denotes the Dirac measure concentrated at x. (The only purpose of the latter
is to ensure that v is a probability measure for every ω; the choice of the Dirac measure is arbitrary.)
CE-measurability: The function ν( . , . ) so obtained describes a conditional distribution of XE w.r.t.
a σ-algebra CE if we can show that ω 7→ ν(A,ω) is CE-measurable for every A ∈ BE

x. This
can be shown by means of the π-λ theorem (also called the Dynkin lemma, [2]): First show that
ν(A,ω) is measurable for all A in a generator of BE

x, and then deduce that this implies measur-
ability for all A by means of the π-λ theorem. As a generator, we choose the “cylinder sets”
ZE = {A ∈ BE

x|A = π-1
EIA

I}, i.e. the set of all sets which are preimages under projection of
some finite-dimensional event. Then BE

x = σ(ZE), a fact used for example in the proof of the
Kolmogorov theorem (cf [1]). For any A ∈ ZE, the function ν(A, . ) is measurable: Since
ν(π-1

EIA
I, ω) = P I

X(AI|ΘI)(ω), the function ω 7→ ν(π-1
EIA

I, ω) is σ(ΘI)-measurable, and therefore
CE-measurable as σ(ΘI) ⊂ CE. Let L ⊂ BE

x denote the system of all A for which ν(A, . ) is CE-
measurable. In the sense of the π-λ theorem, L is a λ-system: For A = ΩE

x, ν is constant hence
measurable. Let A ∈ L. Then ν({A, . ) = 1 − ν(A, . ), which is measurable. If An ∈ L is a
pairwise disjoint sequence and A′ = ∪∞n An, then ν(A, . ) = limn→∞

∑n
i=1 ν(An, . ), which as

a limit of measurable functions is measurable. It is well known that the cylinder sets ZE form an
algebra [1], so ZE is in particular a π-system. Then by the π-λ theorem,

BE
x = σ(ZE) = L ⊂ BE

x . (1)

In other words, the set of all sets A for which ω 7→ ν(A,ω) is CE-measurable is just BE
x. There-

fore, ν(A,ω) is a regular version of the conditional probability P E
X (A|CE)(ω). By construction, its

marginals are πEIP
E
X ( . |CE)(ω) = P I

X( . |σ(ΘI))(ω) almost everywhere.

Interpreting P E
X (XE|CE) as P E

X (XE|ΘE): Under the additional assumption πJIΘJ = ΘI, define the
variable ΘE as ΘE :=

⊗
i∈E Θ{i}. Then any conditional distribution given CE can serve as a condi-

tional given ΘE, since the σ-algebra σ(ΘE) generated by ΘE is just CE:

σ(ΘE) =ΘE,-1(BE
θ) = ΘE,-1

(
∪I∈F(E)σ(π-1

EIBI
θ)
)

= σ
(
∪I∈F(E)ΘE,-1π-1

EIBI
θ

)
=σ
(
∪I∈F(E)ΘI,-1BI

θ

)
= σ

(
∪I∈F(E)σ(ΘI,-1

)
= CE .

(2)

2 Proof of Theorem 3

Proof of (1). We have to construct a candidate for the probability kernel kE, and show that T is
a posterior index for the projective limit posterior with kernel kE. To this end we will show that
the conditionals P I

Θ(ΘI|T I) are conditionally projective and define kE in terms of their projective
limit. For each I ∈ F(E) and AI ∈ BI

θ, the function ω 7→ kI(AI, . ) ◦ T I ◦ X I(ω) is σ(T I ◦ X I)-
measurable, and kI(AI, . ) ◦ T I ◦ X I(ω) = P I

Θ(AI|T I)(ω) a.e. Therefore, kI(AI, . ) ◦ T I ◦ X I is a
version of P I

Θ(AI|T I). The conditional probabilities P I
Θ(ΘI|T I) are conditionally projective:

P I
Θ(AI|T I = tI) =P I

Θ(AI|X I ∈ T I,-1(tI)) = P J
Θ(π-1

JIA
I|X J ∈ π-1

JIT
I,-1(tI))

=P J
Θ(π-1

JIA
I|X J ∈ T J,-1π-1

JI (t
I)) = P J

Θ(π-1
JIA

I|T J ∈ π-1
JI (t

I))
(3)

1



Hence P J
Θ(π-1

JIA
I|T J) = P I

Θ(AI|T I), which is just the definition of conditional projectiveness. By
Theorem 2 there is an a.e.-unique projective limit of the form P E

Θ(ΘE|CE), where CE is the σ-algebra

CE := σ
(
∪I∈F(E)σ(T I)

)
. (4)

It is straightforward to check that σ(T ) = CE, because T satisfies Eq. (4). Therefore, the projective
limit P E

Θ(ΘE|CE) can serve as the conditional distribution P E
Θ(ΘE|T ). Now define a candidate for

the kernel kE as

kE(A, t) := P E
Θ(A|T = t) for all A ∈ BE

θ, t ∈ ΩE
t . (5)

What remains to be shown is that kE(A, T (x)) = P E
Θ(A|XE = x) a.e. for all A ∈ F(E). If this

identity can be shown to hold for A ∈ ZE, then it holds for all A: Since σ(ZE) = BE
θ, and since

ZE is an algebra, the Carathéodory extension theorem is applicable to extend measures from ZE

to BE
θ. Since the conditional probability kE is a Markov kernel, the Carathéodory theorem can be

applied pointwise in x. (For a conditional that is not a Markov kernel, the subset of exceptional
points x ∈ ΩE

x on which the conditional is not unique depends on A. Over all A, these could then
aggregate into a non-null set.) To show that the identity holds on ZE, consider any A ∈ ZE, i.e.
there is some I ∈ F(E) such that A = π-1

EIA
I. Then

kE(π-1
EIA

I, t ∈ π-1
EIt

I) =P E
Θ(π-1

EIA
I|T ∈ π-1

EIt
I) = P I

Θ(AI|T I = tI) = P I
Θ(AI|X I ∈ T I,-1tI)

=P E
Θ(π-1

EIA
I|XE ∈ π-1

EIT
I,-1tI) = P E

Θ(π-1
EIA

I|XE ∈ T -1π-1
EIt

I) ,
(6)

such that kE(π-1
EIA

I, T (x)) = P E
Θ(π-1

EIA
I|XE = x). By the Carathéodory theorem, this implies that

kE(π-1
EIA

I, T (x)) = P E
Θ(π-1

EIA
I|XE = x), and hence T is a posterior index for the projective limit

posterior P E
Θ(ΘE|XE), and kE is the probability kernel corresponding to T .

Proof of (2). To proof part (2), we have to show that the posterior index T I and corresponding
probability kernel kI as specified in the theorem make each of the marginal Bayesian systems on the
finite-dimensional subspaces ΩI

x conjugate. That is, we have to verify kI(AI, T I(xI)) = P I
Θ(AI|X I =

xI). To this end, write

kI(AI, tI) =k(π-1
EIA

I, t ∈ π-1
EIt

I) = P E
Θ(π-1

EIA
I|XE ∈ T -1π-1

EIt
I) = P I

Θ(AI|X I ∈ πEIT
-1π-1

EIt
I)

=P I
Θ(AI|X I ∈ πEIT

I,-1tI)
(7)

Since, for each xI, there is some tI such that T I(xI) = tI, this means:

kI(AI, tI) = P I
Θ(AI|X I = xI) ⇔ xI ∈ T I,-1(tI) , (8)

and thus P I
Θ(AI|X I = xI) = kI(AI, T I(xI)) as we had to show. In other words, the posterior

P I
Θ(AI|X I) is conjugate with posterior index T I and probability kernel kI.
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