
Dual Averaging Method for Regularized Stochastic
Learning and Online Optimization

Lin Xiao
Microsoft Research, Redmond, WA 98052

lin.xiao@microsoft.com

Abstract

We consider regularized stochastic learning and online optimization problems,
where the objective function is the sum of two convex terms: one is the loss func-
tion of the learning task, and the other is a simple regularization term such as
ℓ1-norm for promoting sparsity. We develop a new online algorithm, theregular-
ized dual averaging(RDA) method, that can explicitly exploit the regularization
structure in an online setting. In particular, at each iteration, the learning variables
are adjusted by solving a simple optimization problem that involves the running
average of all past subgradients of the loss functions and the whole regulariza-
tion term, not just its subgradient. Computational experiments show that the RDA
method can be very effective for sparse online learning withℓ1-regularization.

1 Introduction

In machine learning, online algorithms operate by repetitively drawing random examples, one at a
time, and adjusting the learning variables using simple calculations that are usually based on the
single example only. The low computational complexity (periteration) of online algorithms is often
associated with their slow convergence and low accuracy in solving the underlying optimization
problems. As argued in [1, 2], the combined low complexity and low accuracy, together with other
tradeoffs in statistical learning theory, still make online algorithms a favorite choice for solving large-
scale learning problems. Nevertheless, traditional online algorithms, such as stochastic gradient
descent (SGD), has limited capability of exploiting problem structure in solvingregularizedlearning
problems. As a result, their low accuracy often makes it hardto obtain the desired regularization
effects, e.g., sparsity underℓ1-regularization. In this paper, we develop a new online algorithm, the
regularized dual averaging(RDA) method, that can explicitly exploit the regularization structure in
an online setting. We first describe the two types of problemsaddressed by the RDA method.

1.1 Regularized stochastic learning

The regularized stochastic learning problems we consider are of the following form:

minimize
w

{

�(w) ≜ Ezf(w, z) + Ψ(w)
}

(1)

wherew ∈ R
n is the optimization variable (calledweightsin many learning problems),z = (x, y)

is an input-output pair drawn from an (unknown) underlying distribution,f(w, z) is the loss function
of usingw andx to predicty, andΨ(w) is a regularization term. We assumef(w, z) is convex inw
for eachz, andΨ(w) is a closed convex function. Examples of the loss functionf(w, z) include:

∙ Least-squares:x ∈ R
n, y ∈ R, andf(w, (x, y)) = (y − wTx)2.

∙ Hinge loss:x ∈ R
n, y ∈ {+1,−1}, andf(w, (x, y)) = max{0, 1− y(wTx)}.

∙ Logistic regression:x ∈ R
n, y∈{+1,−1}, andf(w, (x, y))=log

(

1+ exp
(

−y(wTx)
))

.
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Examples of the regularization termΨ(w) include:

∙ ℓ1-regularization:Ψ(w) = �∥w∥1 with � > 0. With ℓ1-regularization, we hope to get a
relatively sparse solution, i.e., with many entries ofw being zeroes.

∙ ℓ2-regularization:Ψ(w) = (�/2)∥w∥22, for some� > 0.

∙ Convex constraints:Ψ(w) is theindicator functionof a closed convex setC, i.e.,Ψ(w) = 0
if w ∈ C and+∞ otherwise.

In this paper, we focus ononline algorithmsthat process samples sequentially as they become avail-
able. Suppose at timet, we have the most up-to-date weightwt. Wheneverzt is available, we can
evaluate the lossf(wt, zt), and a subgradientgt ∈ ∂f(wt, zt) (here∂f(w, z) denotes the subdiffer-
ential off with respect tow). Then we compute the new weightwt+1 based on these information.
For solving the problem (1), the standardstochastic gradient descent(SGD) method takes the form

wt+1 = wt − �t (gt + �t) , (2)

where�t is an appropriate stepsize, and�t is a subgradient ofΨ atwt. The SGD method has been
very popular in the machine learning community due to its capability of scaling with large data sets
and good generalization performance observed in practice (e.g., [3, 4]).

Nevertheless, a main drawback of the SGD method is its lack ofcapability in exploiting problem
structure, especially forregularizedlearning problems. As a result, their low accuracy (compared
with interior-point method for batch optimization) often makes it hard to obtain the desired regu-
larization effect. An important example and motivation forthis paper isℓ1-regularized stochastic
learning, whereΨ(w) = �∥w∥1. Even with relatively big�, the SGD method (2) usually does not
generate sparse solutions because only in very rare cases two float numbers add up to zero. Various
methods for rounding or truncating the solutions are proposed to generate sparse solutions (e.g., [5]).

Inspired by recently developed first-order methods for optimizing composite functions [6, 7, 8], the
regularized dual averaging(RDA) method we develop exploits the full regularization structure at
each online iteration. In other words, at each iteration, the learning variables are adjusted by solving
a simple optimization problem that involves the whole regularization term, not just its subgradients.
For many practical learning problems, we actually are able to find a closed-form solution for the
auxiliary optimization problem at each iteration. This means that the computational complexity per
iteration isO(n), the same as the SGD method. Moreover, the RDA method converges to the optimal
solution of (1) with the optimal rateO(1/

√
t). If the the regularization functionΨ(w) is strongly

convex, we have the better rateO(ln t/t) by setting appropriate parameters in the algorithm.

1.2 Regularized online optimization

In online optimization(e.g., [9]), we make a sequence of decisionwt, for t = 1, 2, 3, . . .. At each
time t, a previously unknown cost functionft is revealed, and we encounter a lossft(wt). We
assume that the functionsft are convex for allt ≥ 1. The goal of an online algorithm is to ensure
that the total cost up to each timet,

∑t

�=1 ft(wt), is not much larger thanminw
∑t

�=1 ft(w),
the smallest total cost of any fixed decisionw from hindsight. The difference between these two
cost is called theregretof the online algorithm. Applications of online optimization include online
prediction of time series and sequential investment (e.g. [10]).

In regularized online optimization, we add to each cost function a convex regularization func-
tionΨ(w). For any fixed decision variablew, consider theregret

Rt(w) ≜

t
∑

�=1

(

f� (w� ) + Ψ(w� )
)

−
t
∑

�=1

(

f� (w) + Ψ(w)
)

. (3)

The RDA method we develop can also be used to solve the above regularized online optimization
problem, and it has anO(

√
t) regret bound. Again, if the regularization termΨ(w) is strongly

convex, the regret bound isO(ln t). However, the main advantage of the RDA method, compared
with other online algorithms, is its explicit regularization effect at each iteration.
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Algorithm 1 Regularized dual averaging (RDA) method
input:

∙ a strongly convex functionℎ(w) with modulus1 ondomΨ, andw0 ∈ R
n, such that

w0 = argmin
w

ℎ(w) ∈ Argmin
w

Ψ(w). (4)

∙ a pre-determined nonnegative and nondecreasing sequence�t for t ≥ 1.

initialize: w1 = w0, ḡ0 = 0.

for t = 1, 2, 3, . . . do
1. Given the functionft, compute a subgradientgt∈∂ft(wt).
2. Update the average subgradientḡt:

ḡt =
t− 1

t
ḡt−1 +

1

t
gt (5)

3. Compute the next iteratewt+1:

wt+1 = argmin
w

{

⟨ḡt, w⟩+Ψ(w) +
�t

t
ℎ(w)

}

(6)

end for

2 Regularized dual averaging method

In this section, we present the generic RDA method (Algorithm 1) for solving regularized stochastic
learning and online optimization problems, and give some concrete examples. To unify notation,
we write f(w, zt) asft(w) for stochastic learning problems. The RDA method uses an auxiliary
strongly convex functionℎ(w). A functionℎ is calledstrongly convexwith respect to a norm∥ ⋅ ∥ if
there exists a constant� > 0 such that

ℎ(�w + (1− �)u) ≤ �ℎ(w) + (1− �)ℎ(u)− �

2
�(1− �)∥w − u∥2, (7)

for all w, u ∈ domℎ. The constant� is called theconvexity parameter, or themodulusof strong
convexity. In equation (4),Argminw Ψ(w) denotes the convex set of minimizers ofΨ.

In Algorithm 1, step 1 is to compute a subgradient offt atwt, which is standard for all (sub)gradient-
based methods. Step 2 is the online version of computing average gradient̄gt (dual average). In
step 3, we assume that the functionsΨ andℎ aresimple, meaning that the minimization problem
in (6) can be solved with litter effort, especially if we are able to find a closed-form solution for
wt+1. This assumption seems to be restrictive. But the followingexamples show that this indeed is
the case for many important learning problems in practice.

If the regularization functionΨ(w) has convexity parameter� = 0 (i.e., it is not strongly convex),
we can choose a parameter
 > 0 and use the sequence

�t = 

√
t, t = 1, 2, 3, . . . (8)

to obtain anO(1/
√
t) convergence rate for stochastic learning, or anO(

√
t) regret bound for online

optimization. The formal convergence theorems are given inSections 3. Here are some examples:

∙ Nesterov’s dual averaging method.Let Ψ(w) be the indicator function of a close convex
setC. This recovers the method of [11]:wt+1 = argminw∈C

{

⟨ḡt, w⟩+ (
/
√
t)ℎ(w)

}

.

∙ ℓ1-regularization:Ψ(w) = �∥w∥1 for some� > 0. In this case, letw0 = 0 and

ℎ(w) =
1

2
∥w∥22 + �∥w∥1,

where� ≥ 0 is asparsity enhancingparameter. The solution to (6) can be found as

w
(i)
t+1 =

⎧



⎨



⎩

0 if
∣

∣

∣
ḡ
(i)
t

∣

∣

∣
≤ �RDA

t ,

−
√
t




(

ḡ
(i)
t − �RDA

t sign
(

ḡ
(i)
t

)

)

otherwise,
i = 1, . . . , n, (9)

where�RDA
t = � + �/

√
t. Notice that the truncating threshold�t is at least as large as�.

This is the main difference of our method from related work, see Section 4.
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If the regularization functionΨ(w) has convexity parameter� > 0, we can use any nonnegative,
nondecreasing sequence{�t}t≥1 that is dominated byln t, to obtain anO(ln t/

√
t) convergence

rate for stochastic learning, or anO(ln t) regret bound for online optimization (see Section 3). For
simplicity, in the following examples, we use�t = 0 for all t ≥ 1, and we do not needℎ(w).

∙ Mixedℓ1/ℓ22-regularization.LetΨ(w) = �∥w∥1 + (�/2)∥w∥22 with �, � > 0. Then

w
(i)
t+1 =

⎧

⎨

⎩

0 if
∣

∣

∣
ḡ
(i)
t

∣

∣

∣
≤ �,

− 1

�

(

ḡ
(i)
t − � sign

(

ḡ
(i)
t

)

)

otherwise,
i = 1, . . . , n.

Of course, setting� = 0 gives the algorithm for pureℓ22-regularization.

∙ Kullback-Leibler (KL) divergence regularization:Ψ(w) = �DKL(w∥p), wherew lies in
the standard simplex,p is a given probability distribution, and

DKL(w∥p) ≜
n
∑

i=1

w(i) ln

(

w(i)

p(i)

)

.

Note thatDKL(w∥p) is strongly convex with respect to∥w∥1 with modulus1 (e.g., [12]).
In this case,

w
(i)
t+1 =

1

Zt+1
p(i) exp

(

− 1

�
ḡ
(i)
t

)

,

whereZt+1 is a normalization parameter such that
∑n

i=1 w
(i)
t+1 = 1.

3 Regret bounds and convergence rates

We first give bounds on the regretRt(w) defined in (3), when the RDA method is used for solving
regularized online optimization problem. To simplify notations, we define the following sequence:

Δt ≜ (�0 − �1)ℎ(w2) + �tD
2 +

L2

2

t−1
∑

�=0

1

�� + ��

, t = 1, 2, 3, . . . , (10)

whereD andL are some given constants,� is the convexity parameter of the regularization function
Ψ(w), and{��}t�=1 is the input sequence to the RDA method, which is nonnegativeand nonde-
creasing. Notice that we just introduced an extra parameter�0. We require�0 > 0 to avoid blowup
of the first term (when� = 0) in the summation in (10). This parameter does not appear in Algo-
rithm 1, instead, it is solely for the convenience of convergence analysis. In fact, whenever�1 > 0,
we can set�0 = �1, so that the term(�0 − �1)ℎ(w2) vanishes. We also note thatw2 is determined
at the end of the stept = 1, soΔ1 is well defined. Finally, for any given constantD > 0, we define

ℱD ≜
{

w ∈ domΨ
∣

∣ ℎ(w) ≤ D2
}

.

Theorem 1 Let the sequences{w�}t�=1 and{g�}t�=1 be generated by Algorithm 1. Assume there
is a constantL such that∥gt∥∗ ≤ L for all t ≥ 1, where∥ ⋅ ∥∗ is the dual norm of∥ ⋅ ∥. Then for
anyt ≥ 1 and anyw ∈ ℱD, we have

Rt(w) ≤ Δt. (11)

The proof of this theorem is given in the longer version of this paper [13]. Here we give some direct
consequences based on concrete choices of algorithmic parameters.

If the regularization functionΨ(w) has convexity parameter� = 0, then the sequence{�t}t≥1

defined in (8) together with�0 = �1 lead to

Δt = 

√
tD2 +

L2

2


(

1 +

t−1
∑

�=1

1√
�

)

≤ 

√
tD2 +

L2

2


(

1 +
(

2
√
t− 2

))

≤
(


D2 +
L2




)√
t.

The best
 that minimizes the above bound is
★ = L/D, which leads to

Rt(w) ≤ 2LD
√
t. (12)
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If the regularization functionΨ(w) is strongly convex, i.e., with a convexity parameter� > 0, then
any nonnegative, nondecreasing sequence that is dominatedby ln t will give anO(ln t) regret bound.
We can simply chooseℎ(w) = (1/�)Ψ(w) whenever needed. Here are several possibities:

∙ Positive constant sequences.For simplicity, let�t = � for t ≥ 1 and�0 = �1. In this case,

Δt = �D2 +
L2

2�

t
∑

�=1

1

�
≤ �D2 +

L2

2�
(1 + ln t).

∙ The logrithmic sequence.Let �t = �(1 + ln t) for t ≥ 1, and�0 = �. In this case,

Δt = �(1 + ln t)D2 +
L2

2�

(

1 +

t−1
∑

�=1

1

� + 1 + ln �

)

≤
(

�D2 +
L2

2�

)

(1 + ln t).

∙ The zero sequence�t = 0 for t ≥ 1, with�0 = �. Usingℎ(w) = (1/�)Ψ(w), we have

Δt ≤ Ψ(w2) +
L2

2�

(

1 +

t
∑

�=1

1

�

)

≤ L2

2�
(6 + ln t),

where we usedΨ(w2) ≤ 2L2/�, as proved in [13]. This bound does not depend onD.

When Algorithm 1 is used to solve regularized stochastic learning problems, we have the following:

Theorem 2 Assume there exists an optimal solutionw★ to the problem (1) that satisfiesℎ(w★) ≤ D2

for someD > 0, and there is anL > 0 such thatE ∥g∥2∗ ≤ L2 for all g ∈ ∂f(w, z) andw ∈ domΨ.
Then for anyt ≥ 1, we have

E�(w̄t)− �(w★) ≤ Δt

t
, where w̄t =

1

t

t
∑

�=1

w� .

The proof of Theorem 2 is given in [13]. Further analysis for the cases� = 0 and� > 0 are the
same as before. We only need to divide every regret bound byt to obtain the convergence rate.

4 Related work

There have been several recent work that address online algorithms for regularized learning prob-
lems, especially withℓ1-regularization; see, e.g., [14, 15, 16, 5, 17]. In particular, a forward-
backward splitting method (FOBOS) is studied in [17] for solving the same problems we consider.
In an online setting, each iteration of the FOBOS method can be written as

wt+1 = argmin
w

{

1

2
∥w − (wt − �tgt)∥2 + �tΨ(w)

}

, (13)

where�t is set to beO(1/
√
t) if Ψ(w) has convexity parameter� = 0, andO(1/t) if � > 0. The

RDA method and FOBOS use very different weights on the regularization termΨ(w): RDA in (6)
uses the originalΨ(w) without any scaling, while FOBOS scalesΨ(w) by a diminishing stepsize�t.

The difference is more clear in the special case ofℓ1-regularization, i.e., whenΨ(w) = �∥w∥1. For
this purpose, we consider theTruncated Gradient(TG) method proposed in [5]. The TG method
truncates the solutions obtained by the standard SGD methodwith an integer periodK ≥ 1. More
specifically, each component ofwt is updated as

w
(i)
t+1 =

{

trnc
(

w
(i)
t − �tg

(i)
t , �TG

t , �
)

if mod(t,K) = 0,

w
(i)
t − �tg

(i)
t otherwise.

(14)

where�TG
t = �t�K, the function mod(t,K) means the remainder on division oft byK, and

trnc(!, �TG
t , �) =

⎧

⎨

⎩

0 if ∣!∣ ≤ �TG
t ,

! − �TG
t sign(!) if �TG

t < ∣!∣ ≤ �,
! if ∣!∣ > �.

WhenK = 1 and � = +∞, the TG method is the same as the FOBOS method (13). Now
comparing the truncation thresholds�TG

t and�RDA
t used in (9): with�t = O(1/

√
t), we have

�TG
t = O(1/

√
t)�RDA

t . Therefore, the RDA method can generate much more sparse solutions.
This is confirmed by our computational experiments in Section 5.
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� = 0.01 � = 0.03 � = 0.1 � = 0.3 � = 1 � = 3 � = 10

SGD

TG

RDA

IPM

SGD

TG

RDA

wT

wT

wT

w★

w̄T

w̄T

w̄T

Figure 1: Sparsity patterns of the weightwT and the average weight̄wT for classifying the digits6
and7 when varying the regularization parameter� from 0.01 to 10. The background gray represents
the value zero, bright spots represent positive values and dark spots represent negative values.

5 Computational experiments

We provide computational experiments for theℓ1-RDA method using the MNIST dataset of hand-
written digits [18]. Each image from the dataset is represented by a28 × 28 gray-scale pixel-map,
for a total of 784 features. Each of the 10 digits has roughly 6,000 training examples and 1,000
testing examples. No preprocessing of the data is employed.

We useℓ1-regularized logistic regression to do binary classification on each of the 45 pairs of dig-
its. In the experiments, we compare theℓ1-RDA method (9) with the SGD method (2) and the
TG/FOBOS method (14) with� = ∞. These three online algorithms have similar convergence rate
and the same order of computational complexity per iteration. We also compare them with the batch
optimization approach, using an efficient interior-point method (IPM) developed by [19].

Each pair of digits have about 12,000 training examples and 2,000 testing examples. We use online
algorithms to go through the (randomly permuted) data only once, therefore the algorithms stop
at T = 12,000. We vary the regularization parameter� from 0.01 to 10. As a reference, the
maximum� for the batch optimization case [19] is mostly in the range of30−50 (beyond which the
optimal weights are all zeros). In theℓ1-RDA method (9), we use
 = 5,000, and set� = 0 for basic
regularization, or� = 0.005 (effectively
� = 25) for enhanced regularization effect. The tradeoffs
in choosing these parameters are further investigated in [13]. For the SGD and TG methods, we use a
constant stepsize� = (1/
)

√

2/T . When
 = L/D, which gives the best convergence bound (12)
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Figure 2: Number of non-zeros (NNZs) inw(t) for the three online algorithms (classifying 6 and 7).

for the RDA method, the corresponding� = (D/L)
√

2/T also gives the best convergence rate for
the SGD method (e.g., [20]). In the TG method, the truncationperiod is set toK = 1 for basic
regularization, orK = 10 for enhanced regularization effect, as suggested in [5].

Figure 1 shows the sparsity patterns of the solutionswT andw̄T for classifying the digits 6 and 7.
Both the TG and RDA methods were run with parameters for enhancedℓ1-regularization:K = 10
for TG and
� = 25 for RDA. The sparsity patterns obtained by the RDA method aremost close to
the batch optimization results solved by IPM, especially for larger�.

Figure 2 plots the number of non-zeros (NNZs) inw(t) for different online algorithms. Only the
RDA method and TG withK = 1 give explicit zero weights at every step. In order to count the
NNZs in all other cases, we set a small threshold for roundingthe weights to zero. Considering that
the magnitudes of the largest weights in Figure 1 are mostly on the order of10−3, we set10−5 as
the threshold and verified that rounding elements less than10−5 to zero does not affect the testing
errors. Note that we do not truncate the weights for RDA and TGwith K = 1 further, even if
some of their components are below10−5. It can be seen that the RDA method maintains a much
more sparsew(t) than the other two online algorithms. While the TG method generate more sparse
solutions than the SGD method when� is large, the NNZs inw(t) oscillates with a very big range.
In contrast, the RDA method demonstrate a much more smooth variation in the NNZs.

Figure 3 illustrates the tradeoffs between sparsity and testing error rates for classifying 6 and 7.
Since the performance of the online algorithms vary when thetraining data are given in different
permutations, we run them on 100 randomly permuted sequences of the same training set, and
plot the means and standard deviations shown as error bars. For the SGD and TG methods, the
testing error rates ofwT vary a lot for different random sequences. In contrast, the RDA method
demonstrates very robust performance (small standard deviations) forwT , even though the theorems
only give performance bound for the averaged weightw̄T . Note thatw̄T obtained by SGD and TG
have much smaller error rates than those of RDA and batch optimization, especially for larger�.
The explanation is that these lower error rates are obtainedwith much more nonzero features.

Figure 4 shows summary of classification results for all the 45 pairs of digits. For clarity of presenta-
tion, here we only plot results of theℓ1-RDA method and batch optimization using IPM. (The NNZs
obtained by SGD and TG are mostly above the limit of the vertical axes, which is set at 200). We
see that, overall, the solutions obtained by theℓ1-RDA method demonstrate very similar tradeoffs
between sparsity and testing error rates as rendered by the batch optimization solutions.
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Figure 4: Binary classification for all 45 pairs of digits. The images in the lower-left triangular area
show sparsity patterns ofwT with � = 1, obtained by theℓ1-RDA with 
� = 25. The plots in
the upper-right triangular area show tradeoffs between sparsity and testing error rates, by varying�
from 0.1 to 10. The solid circles and solid squares show error rates and NNZs inwT , respectively,
using IPM for batch optimization. The hollow circles and hollow squares show error rates and
NNZs ofwT , respectively, using theℓ1-RDA method. The vertical bars centered at hollow circles
and squares show standard deviations by running on 100 random permutations of the training data.
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