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Abstract

We consider regularized stochastic learning and onlingrigdtion problems,
where the objective function is the sum of two convex ternme is the loss func-
tion of the learning task, and the other is a simple regudéion term such as
£1-norm for promoting sparsity. We develop a hew online aloni theregular-
ized dual averagingRDA) method, that can explicitly exploit the regularizati
structure in an online setting. In particular, at each ttera the learning variables
are adjusted by solving a simple optimization problem thablves the running
average of all past subgradients of the loss functions aadvtiole regulariza-
tion term, not just its subgradient. Computational experita show that the RDA
method can be very effective for sparse online learning Withegularization.

1 Introduction

In machine learning, online algorithms operate by repediyi drawing random examples, one at a
time, and adjusting the learning variables using simpleutations that are usually based on the
single example only. The low computational complexity (peration) of online algorithms is often
associated with their slow convergence and low accuracylvirg the underlying optimization
problems. As argued in [1, 2], the combined low complexity &ow accuracy, together with other
tradeoffs in statistical learning theory, still make oeladgorithms a favorite choice for solving large-
scale learning problems. Nevertheless, traditional enéifgorithms, such as stochastic gradient
descent (SGD), has limited capability of exploiting prablstructure in solvingegularizedearning
problems. As a result, their low accuracy often makes it hardbtain the desired regularization
effects, e.g., sparsity undéy-regularization. In this paper, we develop a new online @tigm, the
regularized dual averagin¢RDA) method, that can explicitly exploit the regularizatistructure in
an online setting. We first describe the two types of probladdressed by the RDA method.

1.1 Regularized stochastic learning
The regularized stochastic learning problems we consideofathe following form:
minimize {gb(w) L2E.f(w,z)+ \I/(w)} Q)

wherew € R™ is the optimization variable (calledeightsin many learning problems}, = (z, y)
is an input-output pair drawn from an (unknown) underlyitggribution, f (w, z) is the loss function
of usingw andz to predicty, and¥ (w) is a regularization term. We assurfi@w, z) is convex inw
for eachz, and¥ (w) is a closed convex function. Examples of the loss funcfiom, z) include:

e Least-squarest € R",y € R, andf(w, (z,y)) = (y — w'xz)%.
e Hingelossiz € R,y € {+1, -1}, andf(w, (z,y)) = max{0,1 — y(wz)}.
e Logistic regressionz € R", y€ {+1, -1}, andf(w, (z,y)) =log (1+ exp(—y(w'z))).



Examples of the regularization tenin(w) include:

o (y-regularization:¥(w) = Allwl/; with A > 0. With ¢;-regularization, we hope to get a
relatively sparse solution, i.e., with many entriesobeing zeroes.

e /y-regularization¥ (w) = (o /2)||w||3, for somes > 0.

e Convex constraints¥ (w) is theindicator functionof a closed convex sét, i.e., ¥ (w) = 0
if w € C and+oo otherwise.

In this paper, we focus oonline algorithmshat process samples sequentially as they become avail-
able. Suppose at timg we have the most up-to-date weight. Whenever, is available, we can
evaluate the losg(w, z;), and a subgradiemt € Jf(w;, z:) (hered f(w, z) denotes the subdiffer-
ential of f with respect tav). Then we compute the new weigtt. ; based on these information.
For solving the problem (1), the standatdchastic gradient descef8GD) method takes the form

Wiy = w — oy (g + &) 2

whereq; is an appropriate stepsize, afids a subgradient o atw;. The SGD method has been
very popular in the machine learning community due to itsatélfty of scaling with large data sets
and good generalization performance observed in praatige, (3, 4]).

Nevertheless, a main drawback of the SGD method is its ladapébility in exploiting problem

structure, especially faregularizedlearning problems. As a result, their low accuracy (comgare
with interior-point method for batch optimization) ofterakes it hard to obtain the desired regu-
larization effect. An important example and motivation fois paper i;-regularized stochastic

learning, wherel (w) = A||w||;. Even with relatively bigh, the SGD method (2) usually does not
generate sparse solutions because only in very rare casé®atnumbers add up to zero. Various
methods for rounding or truncating the solutions are predas generate sparse solutions (e.g., [5]).

Inspired by recently developed first-order methods forrojziing composite functions [6, 7, 8], the
regularized dual averagingRDA) method we develop exploits the full regularizatiorusture at
each online iteration. In other words, at each iteratioa |éarning variables are adjusted by solving
a simple optimization problem that involves the whole raegahtion term, not just its subgradients.
For many practical learning problems, we actually are ablénd a closed-form solution for the
auxiliary optimization problem at each iteration. This me¢hat the computational complexity per
iteration isO(n), the same as the SGD method. Moreover, the RDA method cawtrghe optimal
solution of (1) with the optimal rat&(1/+/1). If the the regularization functiof (w) is strongly
convex, we have the better ratéln ¢/t) by setting appropriate parameters in the algorithm.

1.2 Regularized online optimization

In online optimization(e.g., [9]), we make a sequence of decisign fort = 1,2,3,.... At each
time ¢, a previously unknown cost functiofy is revealed, and we encounter a Ig56w;). We
assume that the functionfs are convex for alt > 1. The goal of an online algorithm is to ensure
that the total cost up to each time 3' _, f;(w;), is not much larger thamin,, ', fi(w),
the smallest total cost of any fixed decisienfrom hindsight. The difference between these two
cost is called theegretof the online algorithm. Applications of online optimizari include online
prediction of time series and sequential investment (4.@])[

In regularized online optimization, we add to each cost fiamca convex regularization func-
tion U'(w). For any fixed decision variabte, consider theegret

Ry(w) £ (fr(wr) + U(w,)) = Y (f-(w) + ¥(w)). ®3)

T=1 T=1

The RDA method we develop can also be used to solve the abguiarized online optimization
problem, and it has a®(+/t) regret bound. Again, if the regularization tenn(w) is strongly
convex, the regret bound 8(Int). However, the main advantage of the RDA method, compared
with other online algorithms, is its explicit regularizati effect at each iteration.



Algorithm 1 Regularized dual averaging (RDA) method
input:
e a strongly convex functioh(w) with modulusl ondom?, andw, € R™, such that

wo = argmin h(w) € Argmin ¥(w). (4)

e a pre-determined nonnegative and nondecreasing seqdefare > 1.
initialize: w, = wg, go = 0.
fort=1,2,3,...do

1. Given the functiory;, compute a subgradiept € 0 f; (w;).
2. Update the average subgradignt

t—1 1
gt = — gt—1 + 79 (5)
3. Compute the next iterate; , ;:
wen = orgmin { (g w) + 0(w) + Shw) | ©

end for

2 Regularized dual averaging method

In this section, we present the generic RDA method (Algaritt) for solving regularized stochastic
learning and online optimization problems, and give somecete examples. To unify notation,
we write f(w, z;) as f;(w) for stochastic learning problems. The RDA method uses ailianyx
strongly convex functiof(w). A functionh is calledstrongly convexvith respect to a norrj - || if
there exists a constaat> 0 such that

h(aw + (1 — a)u) < ah(w) + (1 — a)h(u) — %a(l —a)|jw — ul?, @)

for all w,u € domh. The constant is called theconvexity parameterr themodulusof strong
convexity. In equation (4)Arg min,, ¥(w) denotes the convex set of minimizersibf

In Algorithm 1, step 1 is to compute a subgradienf,oitw,, which is standard for all (sub)gradient-
based methods. Step 2 is the online version of computingageegradieng; (dual average). In
step 3, we assume that the functiohsand h aresimple meaning that the minimization problem
in (6) can be solved with litter effort, especially if we arel@to find a closed-form solution for
we11. This assumption seems to be restrictive. But the follovergmples show that this indeed is
the case for many important learning problems in practice.

If the regularization function?’ (w) has convexity parameter = 0 (i.e., it is not strongly convex),
we can choose a parameter- 0 and use the sequence

Be=~Vt, t=1,2,3,... (8)

to obtain anO(1/+/t) convergence rate for stochastic learning, oCd®/t) regret bound for online
optimization. The formal convergence theorems are giveSeittions 3. Here are some examples:

e Nesterov’s dual averaging methotet ¥(w) be the indicator function of a close convex
setC. This recovers the method of [11}y,;1 = argmin,ec {(Gi, w) + (v/VE)h(w)}.

e /1-regularization: ¥ (w) = A|lw||; for some\ > 0. In this case, letvy = 0 and
1
hw) = 5llwl + plwlh,
wherep > 0 is asparsity enhancingarameter. The solution to (6) can be found as
0 if ’gt(i)

(4)
w, ), = _ )
bt _\f (gf) — )\f{DA sign(gt(”))) otherwise,

< /\E{DA’

whereARPA = X\ + p/+/t. Notice that the truncating threshold is at least as large as
This is the main difference of our method from related wode Section 4.



If the regularization function (w) has convexity parameter > 0, we can use any nonnegative,

nondecreasing sequenég; };>1 that is dominated byn ¢, to obtain anO(Int/+/t) convergence
rate for stochastic learning, or @In ¢) regret bound for online optimization (see Section 3). For
simplicity, in the following examples, we ugg = 0 for all ¢ > 1, and we do not neeb(w).

o Mixed /¢, /¢3-regularization.Let U(w) = A|w||; + (o/2)||w||3 with A, ¢ > 0. Then

o 0 if 'gt“)‘ <
w — 1 ) ] 1=1,...,n.
il - (gt(l) — )\Sign(ggl))) otherwise,

Of course, setting = 0 gives the algorithm for puré-regularization.

e Kullback-Leibler (KL) divergence regularizationt (w) = o Dkr(w||p), wherew lies in
the standard simpley,is a given probability distribution, and

n 0
. w
D (wllp) £ Y w®n ( ) '
=1

0

Note thatDx1,(w||p) is strongly convex with respect thw||; with modulusi (e.g., [12]).

In this case,
i 1 ; 1 ¢
with = g e (‘095 )> |

Zt+1

whereZ,; is a normalization parameter such t@le wt(21 =1.

3 Regret boundsand convergencerates

We first give bounds on the regr&} (w) defined in (3), when the RDA method is used for solving
regularized online optimization problem. To simplify niidas, we define the following sequence:

2l 1
Ar 2 (Bo— B)h(wy) + B D> + =Y ———, t=1,23,..., (10)

2 = oT + B

whereD andL are some given constantsis the convexity parameter of the regularization function
U(w), and{B,}L_, is the input sequence to the RDA method, which is nonnegatienonde-
creasing. Notice that we just introduced an extra paranigteWe require3, > 0 to avoid blowup

of the first term (when- = 0) in the summation in (10). This parameter does not appeatgn-A
rithm 1, instead, it is solely for the convenience of coneaige analysis. In fact, whenever > 0,

we can sefl, = /31, so that the terniSy — 51)h(w2) vanishes. We also note that is determined

at the end of the step= 1, soA; is well defined. Finally, for any given constabt > 0, we define

Fp = {w € dom¥ | h(w) < DQ}.
Theorem 1 Let the sequenceu, }:_; and{g.}._, be generated by Algorithm 1. Assume there
is a constantL such that||g.||. < L forall ¢ > 1, where|| - || is the dual norm of| - ||. Then for

anyt > 1 and anyw € Fp, we have
Ry(w) < Ay (1)

The proof of this theorem is given in the longer version of théper [13]. Here we give some direct
consequences based on concrete choices of algorithmicpsees.

If the regularization function?(w) has convexity parameter = 0, then the sequencg’?; };>1
defined in (8) together witB, = 3, lead to

2

L2 =1 L2 L
_ 2 < 2, = — < 24 = .
Ay = yW'itD?* + > (1+T§_1 ﬁ) < yVtD?* + % (1+ (2\/1? 2)) < (’yD + S ) Vit

The besty that minimizes the above boundj$ = L/D, which leads to
Ry(w) < 2LDVt. (12)



If the regularization functioW’ (w) is strongly convex, i.e., with a convexity parameter- 0, then
any nonnegative, nondecreasing sequence that is domimatedwill give an O(In ¢) regret bound.
We can simply choosk(w) = (1/0)¥(w) whenever needed. Here are several possibities:

e Positive constant sequencé@r simplicity, lets; = o fort > 1 andgy, = ;. In this case,
21 L2
Ay =0D*+ =) = <oD?+ =—(1+1nt).
=7 +2U;T_U —|—20(+nt)

e The logrithmic sequencéet 8; = o(1 + Int) fort > 1, andSy = o. In this case,

, L2 — 1 , L2
Ar=0c(1l+nt)D*+ — |1 E —— | < oD+ — | (1 +1In¥).
¢ =o(l+1nt) Jr2(7 +T:17+1+ln7' _<J +20>( +int)

e The zero sequengg = 0 for ¢t > 1, with 5y = o. Usingh(w) = (1/0)¥(w), we have

L2 1) 12
where we used (wy) < 2L? /0, as proved in [13]. This bound does not dependon
When Algorithm 1 is used to solve regularized stochastimiegrproblems, we have the following:

Theorem 2 Assume there exists an optimal solutiohto the problem (1) that satisfiégw*) < D?
for someD > 0, and there is arl. > 0 such thatE ||g||2 < L%forall g € 0f(w, z) andw € domV.
Then for anyt > 1, we have
t
1
where  w; = 7 ZwT.

T=1

_ N A
E o(w) — ¢(w”) < =,
The proof of Theorem 2 is given in [13]. Further analysis foe tases = 0 ando > 0 are the
same as before. We only need to divide every regret bouniddgbtain the convergence rate.

4 Related work

There have been several recent work that address onlingthtgs for regularized learning prob-
lems, especially witl/;-regularization; see, e.g., [14, 15, 16, 5, 17]. In paracub forward-
backward splitting method (FOBOS) is studied in [17] fondiny the same problems we consider.
In an online setting, each iteration of the FOBOS method eawiitten as

. 1
e = arganin {3 = (= g + ar(w) | (19

whereq; is set to beO(1/+/t) if ¥(w) has convexity parameter = 0, andO(1/t) if & > 0. The
RDA method and FOBOS use very different weights on the regalton term¥(w): RDA in (6)
uses the original (w) without any scaling, while FOBOS scal&$w) by a diminishing stepsize;.

The difference is more clear in the special casé afegularization, i.e., whe® (w) = A||w||;. For
this purpose, we consider tAeuncated Gradien{TG) method proposed in [5]. The TG method
truncates the solutions obtained by the standard SGD mettibdin integer period< > 1. More
specifically, each component of, is updated as

() trnc (w,@ — g, ATG, 9) if mod(¢, K) = 0,
Wiy =

wgi) - oztggi) otherwise.

(14)

whereAT¢ = o\ K, the function mo¢¥, K') means the remainder on division#fy K, and

0 if jw| < ATG,
trnc(w, \f¢,0) = { w — ATC sign(w) |; |)\tT|G <9|w| <9,
w T (w| > 0.

When K = 1 andf = +oo, the TG method is the same as the FOBOS method (13). Now
comparing the truncation threshold$© and ARPA used in (9): witha; = O(1/v/t), we have
AMC = O(1/vt)ARPA | Therefore, the RDA method can generate much more sparsgossl.
This is confirmed by our computational experiments in Sechio
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Figure 1: Sparsity patterns of the weight and the average weight; for classifying the digit$
and7 when varying the regularization parameidrom 0.01 to 10. The background gray represents
the value zero, bright spots represent positive values ardspots represent negative values.

5 Computational experiments

We provide computational experiments for theRDA method using the MNIST dataset of hand-
written digits [18]. Each image from the dataset is represgby a28 x 28 gray-scale pixel-map,
for a total of 784 features. Each of the 10 digits has roughDp® training examples and 1,000
testing examples. No preprocessing of the data is employed.

We usel;-regularized logistic regression to do binary classifamatn each of the 45 pairs of dig-
its. In the experiments, we compare theRDA method (9) with the SGD method (2) and the
TG/FOBOS method (14) with = co. These three online algorithms have similar convergenee ra
and the same order of computational complexity per itematde also compare them with the batch
optimization approach, using an efficient interior-poirdgthod (IPM) developed by [19].

Each pair of digits have about 12,000 training examples ad@(2testing examples. We use online
algorithms to go through the (randomly permuted) data omigeo therefore the algorithms stop
at T = 12,000. We vary the regularization parameterfrom 0.01 to 10. As a reference, the
maximum for the batch optimization case [19] is mostly in the rang8f 50 (beyond which the
optimal weights are all zeros). In tlie-RDA method (9), we use = 5,000, and sep = 0 for basic
regularization, op = 0.005 (effectively~yp = 25) for enhanced regularization effect. The tradeoffs
in choosing these parameters are further investigate®in For the SGD and TG methods, we use a

constant stepsize = (1/)\/2/T. Wheny = L/D, which gives the best convergence bound (12)
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Figure 2: Number of non-zeros (NNZs)in(¢) for the three online algorithms (classifying 6 and 7).

for the RDA method, the corresponding= (D/L)+/2/T also gives the best convergence rate for
the SGD method (e.g., [20]). In the TG method, the truncagieriod is set taX = 1 for basic
regularization, o = 10 for enhanced regularization effect, as suggested in [5].

Figure 1 shows the sparsity patterns of the solutiopsandw for classifying the digits 6 and 7.
Both the TG and RDA methods were run with parameters for evdw) -regularization:K = 10
for TG andvp = 25 for RDA. The sparsity patterns obtained by the RDA methodaost close to
the batch optimization results solved by IPM, especialhidoger\.

Figure 2 plots the number of non-zeros (NNZs)uifit) for different online algorithms. Only the
RDA method and TG withk' = 1 give explicit zero weights at every step. In order to couset th
NNZs in all other cases, we set a small threshold for rountliegveights to zero. Considering that
the magnitudes of the largest weights in Figure 1 are mostlhe order ofl0—3, we setl0~° as

the threshold and verified that rounding elements less than to zero does not affect the testing
errors. Note that we do not truncate the weights for RDA andviitea K = 1 further, even if
some of their components are belaw 5. It can be seen that the RDA method maintains a much
more sparse(t) than the other two online algorithms. While the TG method getieemore sparse
solutions than the SGD method wharis large, the NNZs inu(t) oscillates with a very big range.

In contrast, the RDA method demonstrate a much more smoatiea in the NNZs.

Figure 3 illustrates the tradeoffs between sparsity anthgegrror rates for classifying 6 and 7.
Since the performance of the online algorithms vary whentrifi@ing data are given in different
permutations, we run them on 100 randomly permuted seqaerfcthe same training set, and
plot the means and standard deviations shown as error barsth& SGD and TG methods, the
testing error rates o) vary a lot for different random sequences. In contrast, tBé Rethod
demonstrates very robust performance (small standardtitavs) forw,, even though the theorems
only give performance bound for the averaged weight Note thatw; obtained by SGD and TG
have much smaller error rates than those of RDA and batcimigatiion, especially for largex.
The explanation is that these lower error rates are obtaifidnuch more nonzero features.

Figure 4 shows summary of classification results for all thedirs of digits. For clarity of presenta-
tion, here we only plot results of tife-RDA method and batch optimization using IPM. (The NNZs
obtained by SGD and TG are mostly above the limit of the vartixes, which is set at 200). We
see that, overall, the solutions obtained by £hdRDA method demonstrate very similar tradeoffs
between sparsity and testing error rates as rendered bytble bptimization solutions.
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Figure 4: Binary classification for all 45 pairs of digits. 8images in the lower-left triangular area
show sparsity patterns efi; with A = 1, obtained by th&;-RDA with vp = 25. The plots in
the upper-right triangular area show tradeoffs betweersgpand testing error rates, by varying
from 0.1 to 10. The solid circles and solid squares show error rates andsNN# -, respectively,
using IPM for batch optimization. The hollow circles and lbal squares show error rates and
NNZs of wr, respectively, using thé -RDA method. The vertical bars centered at hollow circles
and squares show standard deviations by running on 100mapdanutations of the training data.
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