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Abstract

To estimate the changing structure of a varying-coefficient varying-structure
(VCVS) model remains an important and open problem in dynamic system mod-
elling, which includes learning trajectories of stock prices, or uncovering the
topology of an evolving gene network. In this paper, we investigate sparsistent
learning of a sub-family of this model — piecewise constant VCVS models. We
analyze two main issues in this problem: inferring time points where structural
changes occur and estimating model structure (i.e., model selection) on each of
the constant segments. We propose a two-stage adaptive procedure, which first
identifies jump points of structural changes and then identifies relevant covariates
to a response on each of the segments. We provide an asymptotic analysis of
the procedure, showing that with the increasing sample size, number of structural
changes, and number of variables, the true model can be consistently selected. We
demonstrate the performance of the method on synthetic data and apply it to the
brain computer interface dataset. We also consider how this applies to structure
estimation of time-varying probabilistic graphical models.

1 Introduction

Consider the following regression model:

}/;:X;ﬁ(tl)-f-q, Z:]-vvnv (1)
where the design variablé§; € R? arei.i.d. zero mean random variables sampled at some con-
ditions indexed by = 1,...,n, such as the prices of a set of stocks at timer the signals from
some sensors deployed at locatipthe noise:, . . ., ¢, arei.i.d. Gaussian variables with variance
o? independent of the design variables; ahd;) = (51(t:), - .., 3,(t;))" : [0,1] — R? is a vector
of unknown coefficient functions. Since the coefficient vector is a function of the conditions rather
than a constant, such a model is calladhaying-coefficient mod¢l2]. Varying-coefficient models
are a non-parametric extension to the linear regression models, which unlike other non-parametric
models, assume that there is a linear relationship (generalizable to log-linear relationship) between
the feature variables and the output variable, albeit a changing one. The model given in Eq. (1) has
the flexibility of a non-parametric model and the interpretability of an ordinary linear regression.

Varying-coefficient models were popularized in the work of [9] and [16]. Since then, they have been
applied to a variety of domains, including multidimensional regression, longitudinal and functional
data analysis, and modeling problems in econometrics and finance, to model and predict time- or
space- varying response to multidimensional inputs ésgg12] for an overview.) One can easily
imagine a more general form of such a model applicable to these domains, where both the coefficient
value and the model structure change with values of other variables. We refer to this class of models
as varying-coefficient varying-structure (VCVS) models. The more challenging problem of structure
recovery (or model selection) under VCVS has started to catch attention very recently [1, 24].
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Figure 1: (a) lllustration of an VCVS as varying functions of time. The inter{@l1] is partitioned into
{0,0.25,0.4,0.7, 1}, which defines blocks on which the coefficient functions are constant. At different blocks
only covariates with non-zero coefficient affect the respoagepon the intervalB3, = (0.25,0.4) covariates

X5 and X, do not affect response. (b) Schematic representation of the covariates affecting the response during
the second block in panel (a), which is reminiscent of neighborhood selection in graph structure learning. (c)
and (d) Application of VCVS for graph structure estimation (see Section 7) of non-piecewise constant evolving
graphs. Coefficients defining neighborhoods of different nodes can change on different partitions.

In this paper, we analyze VCVS as functions of time, and the main goal is to estimatgnidwaic
structureandjump pointsof the unknown vector functiofi(t). To be more specific, we consider the
case where the functiofi(t) is time-varying, but piecewise constant (see Fig.i.k), there exists
apartiton7 = {T; =0 < Ty, < ... < Tp = 1}, 1 < B < n, of the time interval (scaled to)

[0,1], such that3(t) = v;, t € [T;—1,T}) for some constant vectorg € R?, j =1,...,B. We

refer to pointsTy, ..., T as jump points Furthermore, we assume that at each time fpanty

a few covariates affect the response,, the vector3(t;) is sparse. A good estimation procedure
would be able to identify the correct partition of the inter{all] so that within each segment the
coefficient function is constant. In addition, the procedure can identify active coefficients and their
values within each segmeint., the time-varying structure of the model. This estimation problem

is particularly important in applications where one needs to uncover dynamic relational information
or model structures from time series data. For example, one may want to infer at chosen time points
the (changing) set of stocks that are predictive of a particular stock one has been holding from a
time series of all stock prices; or to understand the evolving circuitry of gene regulation at different
growth stages of an organism that determines the activity of a target gene based on other regulative
genes, based on time series of microarray data. Another important problem is to identify structural
changes in fields such as signal processing, EEG segmentation and analysis of seismic signals. In
all these problems, the goal is not to estimate the optimum valy#toffor predictingY’, but to
consistently uncover the zero and non-zero pattergdpat time points of interest that reveal the
changing structure of the model. In this paper, we provide a new algorithm to achieve this goal, and
a theoretical analysis that proves the asymptotic consistency of our algorithm.

Our problem is remotely related to, but very different from, earlier works on linear regression models
with structural changes [4], and the problem of change-point detection18]y. which can also

be analyzed in the framework of varying-coefficient models. A number of existing methods are
available to identify only one structural change in the data; in order to identify multiple changes
these methods can be applied sequentially on smaller intervals that are assumed to harbor only one
change [14]. Another common approach is to assume that thed®& atenges and use Dynamic
Programming to estimate them [4]. In this paper, we propose and analyze a penalized least squares
approach, which automatically adapts to the unknown number of structural changes present in the
data and performs the variable selection on each of the constant regions.

2 Preliminaries

For a varying-coefficient regression model described in Eq. (1) with structural changes, a reason-
able estimator of the time-varying structure can be obtained by minimizing the so-called TESLA
(temporally smoothed.;-regularized regression) loss proposed in [1]: (for simplicity we suppress
the sample-size notationin the regularization constani$ = {7, A} }, but it should be clear that

their values depend o)

P
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where ||-||; denotes the/; norm, and||-||, denotes a total variation normj|G||ty =
S o 1Bk(t:) — Br(ti—1)|- From the analysis of [20], it is known that each component function



Bk can be chosen as a piecewise constant and right continuous fungiof, is a spline function,

with potential jump points at observation timgs « = 1,...,n. In this particular case, the total
variation penalty defined above allows us to conceptudlizas a vector irR™, whose components

Br.i = Br(t;) correspond to function valuesiti = 1, ..., n, but not as a functiofd, 1] — R. We
continue to use the vector representation through the rest of the paper as it will simplify the notation.

The estimation problem defined in Eq. (2) has a few appealing properties. The objective function on
the right-hand-side is convex and there exists a solytiowhich can be found efficiently using a
standard convex optimization package. Furthermore, the penalty terms in Eg. (2) are constructed in
a way to perform model selection. Observe thapenalty encourages sparsity of the signal at each
time point and enables a selection over the relevant coefficients; whereas the total variation penalty
is used to partition the intervé, 1] so that3;, is constant within each segment. However, there are
also some drawbacks of the procedure, as shown in Lemma 1 below.

Let’s start with some notational clarifications. L¥tdenote the design matrix, input observation
X; at timei corresponds to théth row in X. For simplicity, we assume throughout the paper
that X are normalized to have unit length columns,, each dimension has unit Euclidean norm.
LetB;,j =1,...,B, denote the set of time points that fall into the interff@&l_,, T;); when the
meaning is clear from the context, we also iiseas a shorthand of this interval. For examﬂ(q;
andYjp, represent the submatrix & and subvector of’, respectively, that include elements onIy

corresponding to time points within interval;. For a given solutiond to Eqg. (2), there exists a
block partition = {T1,...,T;} of [0, 1] (possibly a trivial one) and unique vecterse R?, j =
1,...,B,suchthay ; = 4; for t; € B;. The set of relevant covariates during inver#al i.e., the
support of vectory;, is denoted as, = {k | 7,1 # 0}. Likewise we defineé‘éj overy;.

By construction, no consecutive vectdysand;,; are identical. Note that both the number of

partitions B = \T|, and the elements in the partitiéh, are random quantities. The following
lemma characterizes the vectdrsusing the subgradient equation of Eq. (2).

Lemmal Let4; and I’S‘j, j = 1,...,B be vectors and segments obtained from a minimizer of
Eq.(2). Then each; can be found as a solution to the subgradient equation:
~ 5 1A ~(TV
X} X 4 — Xpg Vg, + M|B;18 + 203 =0, ©)
where (1)
$; 0 € 01135ll, = sign(y;), 4)
by conventiosign(0) € [—1, 1], ands<TV € R? such that
sV _ [ -1 ek =41k >0 sov [ Mg =T >0 g
51,k 1 If’?z,k—’%’}c <0 ’ B,k -1 Ifﬁ/B’,k_ﬁ/B’fl,k <0

and, forl < j < B,

V) _ 2 A0 =Yk > 0,958 — -1k <O
Sik = =2 Y — Yk < 0,956 — V- 1k>0 (6)

0 if (Fje — Yi—1.6) Vit 1,6 — Fjk) = 1.
Lemma 1 does not provide a practical way to estimat&, but it does characterize a solution.
From Eq. (3) we can see that the coefficients in each of the estimated blocks are biased by two terms
coming from the/; and||-||,, penalties. The larger the estimated segments, the smaller the relative
influence of the bias from the total variation, while the magnitude of the bias introduced By the
penalty is uniform across different segments. The additional bias coming from the total variation
penalty was also noted in the problem of signal denoising [23]. In the next section, we introduce a
two step procedure which alleviate this effect.

3 Atwo-step procedure for estimating time-varying structures

In this section, we propose a new algorithm for estimating the time-varying structure of the varying-
coefficient model in Eq. (1), which does not suffer from the bias introduced by minimizing the
objective in Eq. (2). The algorithm is a two-step procedure summarized as follows:



1. Estimate the block partitioi’, on which the coefficient vector is constant within each
block. This can be obtained by minimizing the following objective:
n p
> (¥ = XiB(t)* + 222 Y 1Bullry )
=1 k=1

which we refer to as gemporal differenc€TD) regression for reasons that will be clear
shortly. We will employ a TD-transformation to Eq. (7) and turn it intofarregularized
regression problem, and solve it using the randomized Lasso. Details of the algorithm and

how to extract/” from the TD-estimate will be given shortly.

2. For each block of the partitior;,1 < j < B, estimatey; by minimizing the Lasso
objective within the block:

5y = argmin 3 (¥; — X}7)? + 2 [l ®

We name this procedure TDB-Lasso (or TDBL), after the two steps (TD randomized Lasso, and
Lasso within Blocks) given above. The advantage of the TDB-Lasso compared to a minimizer of
Eq. (2) comes from decoupling the interactions betweerftt@dTV penalties (note that the two
procedures result in different estimates). Now we discuss step 1 in detail; step 2 is straightforward
using a standard Lasso toolbox.

To obtain a consistent estimate Bffrom the TD-regression in Eq. (7), we can transform Eq. (7)
into an equivalent/; penalized regression problem, which allows us to castZhestimation
problem as a feature selection problem. ]B%g denote thaemporal differencéetween the re-
gression coefficients corresponding to the same covakiadé successive time points_, and

tii Bl = Br(t) — Be(tic), k = L,....p, i = 1,....n with Bi(t)) = 0, by conven-
tion. It can be shown that the model in Eq. (1) can be expressédias X'3T + ¢, where

YT € R” is a transformed vector of the TDs of responses, each elemerﬁt’;T =Y, -Y,_q;

Xt = (XI, ..., XI) € R™" is the transformed design matrix with lower triangular matrices
XL € R™*™ corresponding to TD features computed from the covariafes R” is the trans-
formed TD-error vector; and! € R"” is a vector obtained by stacking TD-coefficient vect@ks

(See Appendix for more details of the transformation.) Note that the elements of the a/eater
noti.i.d. any more. Using the transformation above, the estimation problem defined on objective
Eqg. (7) can be expressed in the following matrix form:

N . 2
ﬁT:argmmHYT—XTﬁTH2—|—2)\2HﬁTH1. 9)
BER™P
This transformation was proposed in [8] in the context of one-dimensional signal denoising, how-
ever, we are interested in the estimation of jump points in the context of time-varying coefficient
model.

The estimator defined in Eq. (9) is not robust with respect to small perturbations of.datsmall
changes of variableX,; or Y; would resultin a differen?". To deal with the problem of robustness,

we employed thestability selectiorprocedure of [22] (see also the bootstrap Lasso [2], however,
we have decided to use the stability selection because of the weaker assumptions). The stability
selection approach to estimating the jump-points is comprised of two main components: i) simulat-
ing multiple datasets using bootstrap, and ii) using the randomized Lasso outlined in Algorithm 1
(see also Appendix) to solve (9). While the bootstrap step improves the robustness of the estimator,
the randomized Lasso weakens the conditions under which the estifiiatelects exactly the true
features.

Let {BZ, j;}f)il represent the set of estimates and their supports (i.e., index of hon-zero elements)
obtained by minimizing (9) for each of the bootstrapped datasets. We obtain a stable estimate of
the support by selecting variables that appear in multiple supports

M 5t
j‘r:{k‘ Zb:lllz{wk e‘7b}

> 7} (10)

which is then used to obtain the block partition estintateThe parameter is a tuning parameter
that controls the number of falsely identified jump points.
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Algorithm 1 Randomized Lasso

Input: Dataset{XiA ,Yi}ie, X, € RP, penalty parametex, weakness parametere (0, 1]
Output: Estimateg € RP, supportS

1: Choose randomly weights{},_, from interval[c, 1]

2: 3= argmingep, iy (Vi — Xiff)? + 23 30, el

3 S ={k|pr #0}

4 Theoretical analysis

We provide a theoretical analysis of TDB-Lasso, and show that under certain conditions both the
jump points and structure of VCVS can be consistently estimated. Proofs are deferred to Appendix.

4.1 Estimating jump points

We first address the issue of estimating jump points by analyzing the transformed TD-regression
problem Eq. (9) and its feature selection properties. The feature selectior/ygiagalization has

been analyzed intensively over the past few years and we can adapt some of the existing results to
the problem at hand. To prove that all the jump points are includefiminwe first state aparse
eigenvalue conditioron the design (e.d6]). The minimal and maximal sparse eigenvalue, for
matrix X € R"*P, are defined as

. || Xall, || Xall,
Omin(k, X) := inf , © k,X) := sup
winlho X) = e Tl BRI e Tl

Note that in Eq. (11) eigenvalues are computed over submatrices d@f §ieg due to the constraint
ona by the||-||, norm). We can now express the sparse eigenvalues condition on the design.

, k<p (11)

Al: Let 7T be the true support gff andJ = | 7T|. There exist somé& > 1 andx > 10 such that
max CJ2’ XT
Pmax ( ) .

VC/k. (12)
Corin(C.J2,X1)
This condition guarantees a correlation structure between TD-transformed covariates that allows for
detection of the jump points. Comparing to fhepresentible conditionf30, 21, 27], necessary for

the ordinary Lasso to perform feature selection, condition Al is much weaker [22] and is sufficient
for the randomized Lasso to select the relevant feature with high probability (see also [26]).

Theorem 1 Let Al be satisfied; and let the weaknesse given asy? = vy, (CJ2, X1)/(CJ?),
for anyv € (7/k,1/+/2). If the minimum size of the jump is bounded away from zero as

min |5]| > 0.3(CJ)%? A, (13)
keJt

whereAi, = 20t (vVCJ + 1)4/1°%6"2 and ot > Var(Y), fornp > 10 and.J > 7, there exists

somed = d; € (0,1) such that for allr > 1 — ¢, the collection of the estimated jump poits
satisfies,

P(J" =77 >1-5/np. (14)

Remark: Note that Theorem 1 gives conditions under which we can recover every jump point in
every covariates. In particular, there are no assumptions on the number of covariates that change
values at a jump point. Assuming that multiple covariates change their values at a jump point, we
could further relax the condition on the minimal size of a jump given in Eq. (13). It was also pointed

to us that the framework of [18] may be a more natural way to estimate jump points.

4.2 ldentifying correct covariates

Now we address the issue of selecting the relevant features for every estimated segment. Under
the conditions of Theorem 1, correct jump points will be detected with probability arbitrarily close

to 1. That means under the assumption Al, we can run the regular Lasso on each of the estimated
segments to select the relevant features therein. We will assume that the mutual coherence condition

[10] holds for each segmel;. Let &7 = @ Zie,@j XX, with oil = (2)k.
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A2: We assume there is a constant d < 1 such that

Il < = —
P (ke;g;?ﬁ;ék {Iokl| — |SB]'| }) L (15)

The assumption A2 is a mild version of the mutual coherence condition used in [7], which is neces-

sary for identification of the relevant covariates in each segmentyLet = 1, ..., B,, denote the
Lasso estimates for each segment obtained by minimizing (8).

Theorem 2 Let A2 be satisfied. Also, assume that the conditions of Theorem 1 are satisfied. Let
K = max;<;<p||v;||, be the upper bound on the number of features in segments ariddet

an upper bound on elementsXf Letp = min;<;<p |B,| denote the number of samples in the
smallest segment. Then for a sequeheed,, — 0,

In 2P In 4P
A\ >4Lo o 8L 0 and min_ min |y, x| > 2A4,
P p 1<j<BkeSs,

we have R
lim P(B=B) =1, (16)
Jim | max P14 —ll, =0) =1, 17)
lim min P(S5, = Si,) = 1. (18)

n—o01<j<B

Theorem 2 states that asymptotically, the two stage procedure estimates the correci.epdel,
selects the correct jump points and for each segment between two jump points it is able to select the
correct covariates. Furthermore, we can conclude that the procedure is consistent.

5 Practical considerations

As in standard Lasso, the regularization parameters in TDB-Lasso need to be tuned appropriately
to attain correct structural recovery. The TD regression procedure requires three parameters: the
penalty parametex,, cut-off parameter, and weakness parameter From our empirical experi-

ence, the recovered set of jump poifits/ary very little with respect to these parameters in a wide
range. The result of Theorem 1 is valid as long\ass larger than\,,;, given in the statement

of the theorem. Theorem 1 in [22] gives a way to select the cutafhile controlling the number

of falsely included jump points. Note that this relieves users from carefully choosing the range of
parameten,, which is challenging. The weakness parameter can be chosen in quite a large interval
(see Appendix on the randomized Lasso) and we report our results using thewalu@s.

In the second step of the algorithm, the ordinary Lasso minimizes Eq. (8) on each estimated segment
to select relevant variables, which requires a choice of the penalty parametaie do so by
minimizing the BIC criterion [25].

In practice, one cannot verify assumptions Al and A2 on real datasets. In cases where the assump-
tions are violated, the resulting set of estimated jump points is larger than the trlieesgt the

points close to the true jump points get included into the resulting estifnai&e propose to use

anad hocheuristic to refine the initially selected set of jump points. A commonly used procedure
for estimation of linear regression models with structural changes [3] is a dynamic programming
method that considers a possible structural change at every lo¢atios 1, . . ., n, with a compu-

tational complexity of0(n?) (see also [15]). We modify this method to consider jump points only

in the estimated sef and thus considerably reducing the computational complexit#d|?),

since|7| < n. The algorithm effectively chooses a sub®et 7 of size B that minimizes the BIC
objective.

6 Experiments on Synthetic Data

We compared the TDB-Lasso on synthetic data with commonly used methods for estimating VCVS
models. The synthetic data was generated as follows. We varied the sample size o0
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Figure 2:Comparison results of different estimation procedures on a synthetic dataset.

to 500 time points, and fixed the number of covariates is fixeghte= 20. The block partition

was generated randomly and consists of ten blocks with minimum length set to 10 time points. In
each of the block, only 5 covariates out of 20 affected the response. Their values were uniformly at
random drawn froni—1, —0.1]U[0.1, 1]. With this configuration, a dataset was created by randomly
drawingX; ~ N(0,1,),e; ~ N(0,1.5%) and computing’; = X;3(t;) +¢; fori = 1,...,n. For

each sample size, we independently generated 100 datasets and report results averaged over them.

A simple local regression method [13], which is commonly used for estimation in varying coefficient
models, was used as the simplest baseline for comparing the relative performance of estimation. Our
first competitor is an extension of the baseline, which uses the following estimator [28]:

n n p n
min Z Z(Y? — XB ) Kty — t;) + Z Aj Z 51'2/,]-7 (19)
j=1 i'=1

AeRexn i'=11i=1
whereK},(-) = + K(-/h) is the kernel function. We will call this method “Kernél/¢,". Another
competitor uses th& penalized local regression independently at each time point, which leads to
the following estimator ofs(¢),

n p
: 2
o D05 - XKt =0+ 3 AilByl (20)
1= J=
We call this method “Kernef;”. The difference between the two methods is that “Kerfigls”
biases certain covariates toward zero at every time point, based on global information; whereas
“Kernel ¢," biases covariates toward zero only based on local information. The final competitor is
chosen to be the minimizer of Eq. (2) [1], which we calj “¢ TV”. The bandwidth parameter for
“Kernel ¢;” and “Kernel ¢, /¢5” is chosen using a generalized cross validation of a non-penalized
estimator. The penalty parametersare chosen according to the BIC criterion [28]. For the4#/
TV” method, we optimize the BIC criterion over a two-dimensional grid of values fand .
- L _ S F 4 1Bi =8 5 .
We report the relative estimation err®@EE = 100 x S S B A |,whereﬁ is the baseline
i=1 j=11P%,3 74 ;
local linear estimator, as a measure of estimation accur:;cy. To asses the performance of the model
selection, we report precision, recall and their harmonic mEameasure when estimating the
relevant covariates at each time point and the percentage of correctly identified irrelevant covariates.

From the experimental results, summarized in Fig. 2, we can see that the TDB-Lasso succeeds in
recovering the true model as the sample size increases. It also estimates the coefficient values with
better accuracy than the other methods. It worth noting that the “Kergl performs better than

the “Kernel +¢; /¢>” approach, which is due to the violation of the assumptions made in [28]. The

“¢1 4+ TV” performs better than the local linear regression approaches, however, the method gets
very slow for the larger values of the sample size and it requires selecting two tuning parameters,
which makes it quite difficult to use. We conjecture that thet/I'V” and TDB-Lasso have similar
asymptotic properties with respect to model selection, however, from our numerical experiments we
can see that for finite sample data, the TDB-Lasso performs better.

7 Application to Time-varying Graph Structure Estimation

An interesting application of the TDB-Lasso is in structural estimation of time-varying undirected
graphical models [1, 17]. A graph structure estimation can be posed as a neighborhood selection



problem, in which neighbors of each node are estimated imakgpely. Neighborhood selection

in the time-varying Gaussian graphical models (GGM) is equivalent to model selection in VCVS,
where value of one node is regressed to the rest of nodes. The regression problem for each node
can be solved using the TDB-Lasso. Graphs estimated in this way will have neighborhoods of each
node that are constant on a partition, but the graph as a whole changes more flexibly (Fig. 1b-d).

The graph structure estimation using the TDB-  t=1.00s t=2.00s t=3.00s
Lasso is demonstrated on a real dataset of elecg| 1-:'—'\(;: _ - . 1_;-’;;.. .
troencephalogram (EEG) measurements. We usE Z@V AN

A

from [11] in which the EEG data is collected from 2

5 subjects, who were given visual cues based on
which they were required to imagine right han&igure 3: Brain interactions for the subject 'aa’

or right foot for 3.5s. The measurement was pewhen presented with visual cues of the class 1

formed when the visual cues were presented on the

screen (280 times), intermitted by periods of random length in which the subject could relax. We
use the down-sampled data at 100Hz. Fig. 3 gives a visualization of the brain interactions over the
time of the experiment for the subject 'aa’ while presented with visual cues for the class 1 (right
hand). Estimated graphs of interactions between different parts of the brain for other subjects and
classes are given in Appendix due to the space limit.

the brain computer interface (BCIl) dataset IVag Iig
% \

We also want to study whether the estimated time-varying network are discriminative features for
classifying the type of imaginations in the EEG signal. For this purpose, we perform unsupervised
clustering of EEG signals using the time-varying networks and study whether the grouping corre-
spond to the true grouping according to imagination label. We estimate a time-varying GGM using
the TDB-Lasso for each visual cue and cluster the graphs using the spectral K-means clustering [29]
(using a linear kernel on the coefficients to measure similarity). Each cluster is labeled according to
the majority of points it contains. Finally, each cue if classified based on labels of the time-points
that it contains. Table 1 summarizes the classification accuracy for each subject bdseg dn
clusters (Kwas chosen as a cutoff point, when there was little decrease in K-means objective). We
compare this approach to a case when GGMs with a static structure are estimated [5]. Note that
the supervised classifiers with special EEG features are able to achieve much higher classification
accuracy, however, our approach does not use any labeled data and can be seen as an exploratory
step. We also used TDB-Lasso for estimating the time-varying gene networks from microarray data
time series data, but due to space limit, results will be reported later in a biological paper.

Table 1:Classification accuracies based on learned brain interactions.
Subject aa al av aw ay
TDB-Lasso || 0.69 | 0.80 | 0.59 | 0.67 | 0.83

Static 0.58 | 0.63| 0.54 | 057 | 0.61

8 Discussion

We have developed the TDB-Lasso procedure, a novel approach for model selection and variable es-
timation in the varying-coefficient varying-structure models with piecewise constant functions. The
VCVS models form a flexible nonparametric class of models that retain interpretability of parametric
models. Due to their flexibility, important classical problems, such as linear regression with struc-
tural changes and change point detection, and some more recent problems, like structure estimation
of varying graphical models, can be modeled within this class of models. The TDB-Lasso compares
favorably to other commonly used [28] or latest [1] techniques for estimation in this class of models,
which was demonstrated on the synthetic data. The model selection properties of the TDB-Lasso,
demonstrated on the synthetic data, are also supported by the theoretical analysis. Furthermore, we
demonstrate a way of applying the TDB-Lasso for graph estimation on a real dataset.

Application of the TDB-Lasso procedure goes beyond the linear varying coefficient regression mod-
els. A direct extension is to generalized varying-coefficient modets( X, t;)) = X.0(t;), i =
1,...,n, whereg(-) is a given link function andn(X,,t;) = E[Y|X = X;,t = t;] is the con-
ditional mean. Estimation in generalized varying-coefficient models proceeds by changing the
squared loss in Eq. (7) and Eq. (8) to a different appropriate loss function. The generalized varying-
coefficient models can be used to estimate the time-varying structure of discrete Markov Random
Fields, again by performing the neighborhood selection.
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