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Abstract

To estimate the changing structure of a varying-coefficient varying-structure
(VCVS) model remains an important and open problem in dynamic system mod-
elling, which includes learning trajectories of stock prices, or uncovering the
topology of an evolving gene network. In this paper, we investigate sparsistent
learning of a sub-family of this model — piecewise constant VCVS models. We
analyze two main issues in this problem: inferring time points where structural
changes occur and estimating model structure (i.e., model selection) on each of
the constant segments. We propose a two-stage adaptive procedure, which first
identifies jump points of structural changes and then identifies relevant covariates
to a response on each of the segments. We provide an asymptotic analysis of
the procedure, showing that with the increasing sample size, number of structural
changes, and number of variables, the true model can be consistently selected. We
demonstrate the performance of the method on synthetic data and apply it to the
brain computer interface dataset. We also consider how this applies to structure
estimation of time-varying probabilistic graphical models.

1 Introduction
Consider the following regression model:

Yi = X
′
iβ(ti) + ǫi, i = 1, . . . , n, (1)

where the design variablesXi ∈ R
p are i.i.d. zero mean random variables sampled at some con-

ditions indexed byi = 1, . . . , n, such as the prices of a set of stocks at timei, or the signals from
some sensors deployed at locationi; the noiseǫ1, . . . , ǫn arei.i.d. Gaussian variables with variance
σ2 independent of the design variables; andβ(ti) = (β1(ti), . . . , βp(ti))

′
: [0, 1] 7→ R

p is a vector
of unknown coefficient functions. Since the coefficient vector is a function of the conditions rather
than a constant, such a model is called avarying-coefficient model[12]. Varying-coefficient models
are a non-parametric extension to the linear regression models, which unlike other non-parametric
models, assume that there is a linear relationship (generalizable to log-linear relationship) between
the feature variables and the output variable, albeit a changing one. The model given in Eq. (1) has
the flexibility of a non-parametric model and the interpretability of an ordinary linear regression.

Varying-coefficient models were popularized in the work of [9] and [16]. Since then, they have been
applied to a variety of domains, including multidimensional regression, longitudinal and functional
data analysis, and modeling problems in econometrics and finance, to model and predict time- or
space- varying response to multidimensional inputs (seee.g.[12] for an overview.) One can easily
imagine a more general form of such a model applicable to these domains, where both the coefficient
value and the model structure change with values of other variables. We refer to this class of models
as varying-coefficient varying-structure (VCVS) models. The more challenging problem of structure
recovery (or model selection) under VCVS has started to catch attention very recently [1, 24].
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Figure 1: (a) Illustration of an VCVS as varying functions of time. The interval[0, 1] is partitioned into
{0, 0.25, 0.4, 0.7, 1}, which defines blocks on which the coefficient functions are constant. At different blocks
only covariates with non-zero coefficient affect the response,e.g.on the intervalB2 = (0.25, 0.4) covariates
X2 andXp do not affect response. (b) Schematic representation of the covariates affecting the response during
the second block in panel (a), which is reminiscent of neighborhood selection in graph structure learning. (c)
and (d) Application of VCVS for graph structure estimation (see Section 7) of non-piecewise constant evolving
graphs. Coefficients defining neighborhoods of different nodes can change on different partitions.

In this paper, we analyze VCVS as functions of time, and the main goal is to estimate thedynamic
structureandjump pointsof the unknown vector functionβ(t). To be more specific, we consider the
case where the functionβ(t) is time-varying, but piecewise constant (see Fig. 1),i.e., there exists
a partitionT = {T1 = 0 < T2 < . . . < TB = 1}, 1 < B ≤ n, of the time interval (scaled to)
[0, 1], such thatβ(t) = γj , t ∈ [Tj−1, Tj) for some constant vectorsγj ∈ R

p, j = 1, . . . , B. We
refer to pointsT1, . . . , TB as jump points. Furthermore, we assume that at each time pointti only
a few covariates affect the response,i.e., the vectorβ(ti) is sparse. A good estimation procedure
would be able to identify the correct partition of the interval[0, 1] so that within each segment the
coefficient function is constant. In addition, the procedure can identify active coefficients and their
values within each segment,i.e., the time-varying structure of the model. This estimation problem
is particularly important in applications where one needs to uncover dynamic relational information
or model structures from time series data. For example, one may want to infer at chosen time points
the (changing) set of stocks that are predictive of a particular stock one has been holding from a
time series of all stock prices; or to understand the evolving circuitry of gene regulation at different
growth stages of an organism that determines the activity of a target gene based on other regulative
genes, based on time series of microarray data. Another important problem is to identify structural
changes in fields such as signal processing, EEG segmentation and analysis of seismic signals. In
all these problems, the goal is not to estimate the optimum value ofβ(t) for predictingY , but to
consistently uncover the zero and non-zero patterns inβ(t) at time points of interest that reveal the
changing structure of the model. In this paper, we provide a new algorithm to achieve this goal, and
a theoretical analysis that proves the asymptotic consistency of our algorithm.

Our problem is remotely related to, but very different from, earlier works on linear regression models
with structural changes [4], and the problem of change-point detection (e.g.[19]), which can also
be analyzed in the framework of varying-coefficient models. A number of existing methods are
available to identify only one structural change in the data; in order to identify multiple changes
these methods can be applied sequentially on smaller intervals that are assumed to harbor only one
change [14]. Another common approach is to assume that there areK changes and use Dynamic
Programming to estimate them [4]. In this paper, we propose and analyze a penalized least squares
approach, which automatically adapts to the unknown number of structural changes present in the
data and performs the variable selection on each of the constant regions.

2 Preliminaries

For a varying-coefficient regression model described in Eq. (1) with structural changes, a reason-
able estimator of the time-varying structure can be obtained by minimizing the so-called TESLA
(temporally smoothedL1-regularized regression) loss proposed in [1]: (for simplicity we suppress
the sample-size notationn in the regularization constantsλn = {λn

1 , λn
2}, but it should be clear that

their values depend onn)

β̂(t1;λ), . . . , β̂(tn;λ) = arg min
β

n
∑

i=1

(Yi − X
′
iβ(ti))

2
+ 2λ1

n
∑

i=1

||β(ti)||1 + 2λ2

p
∑

k=1

||βk||TV , (2)

where ||·||1 denotes theℓ1 norm, and ||·||TV denotes a total variation norm:||βk||TV =
∑n

i=2 |βk(ti) − βk(ti−1)|. From the analysis of [20], it is known that each component function
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βk can be chosen as a piecewise constant and right continuous function,i.e.,βk is a spline function,
with potential jump points at observation timesti, i = 1, . . . , n. In this particular case, the total
variation penalty defined above allows us to conceptualizeβk as a vector inRn, whose components
βk,i ≡ βk(ti) correspond to function values atti, i = 1, . . . , n, but not as a function[0, 1] 7→ R. We
continue to use the vector representation through the rest of the paper as it will simplify the notation.

The estimation problem defined in Eq. (2) has a few appealing properties. The objective function on
the right-hand-side is convex and there exists a solutionβ̂, which can be found efficiently using a
standard convex optimization package. Furthermore, the penalty terms in Eq. (2) are constructed in
a way to perform model selection. Observe thatℓ1 penalty encourages sparsity of the signal at each
time point and enables a selection over the relevant coefficients; whereas the total variation penalty
is used to partition the interval[0, 1] so thatβ̂k is constant within each segment. However, there are
also some drawbacks of the procedure, as shown in Lemma 1 below.

Let’s start with some notational clarifications. LetX denote the design matrix, input observation
Xi at time i corresponds to thei-th row in X. For simplicity, we assume throughout the paper
thatX are normalized to have unit length columns,i.e., each dimension has unit Euclidean norm.
Let Bj , j = 1, . . . , B, denote the set of time points that fall into the interval[Tj−1, Tj); when the
meaning is clear from the context, we also useBj as a shorthand of this interval. For example,XBj

andYBj
represent the submatrix ofX and subvector ofY , respectively, that include elements only

corresponding to time points within intervalBj . For a given solution̂β to Eq. (2), there exists a
block partitionT̂ = {T̂1, . . . , T̂B̂} of [0, 1] (possibly a trivial one) and unique vectorsγ̂j ∈ R

p, j =

1, . . . , B̂, such that̂βk,i = γ̂j,k for ti ∈ B̂j . The set of relevant covariates during invervalBj , i.e., the
support of vectorγj , is denoted asSBj

= {k | γj,k 6= 0}. Likewise we definêSB̂j
over γ̂j .

By construction, no consecutive vectorsγ̂j and γ̂j+1 are identical. Note that both the number of
partitionsB̂ = |T̂ |, and the elements in the partition̂T , are random quantities. The following
lemma characterizes the vectorsγ̂j using the subgradient equation of Eq. (2).

Lemma 1 Let γ̂j and B̂j , j = 1, . . . , B̂ be vectors and segments obtained from a minimizer of
Eq. (2). Then eacĥγj can be found as a solution to the subgradient equation:

X
′
B̂j

XB̂j
γ̂j − X

′
B̂j

YB̂j
+ λ1|B̂j |ŝ(1)

j + λ2ŝ
(TV)
j = 0, (3)

where
ŝ
(1)
j ∈ ∂ ||γ̂j ||1 = sign(γj), (4)

by conventionsign(0) ∈ [−1, 1], andŝ
(TV)
j ∈ R

p such that

ŝ
(TV)
1,k =

{

−1 if γ̂2,k − γ̂1,k > 0
1 if γ̂2,k − γ̂1,k < 0

, ŝ
(TV)

B̂,k
=

{

1 if γ̂B̂,k − γ̂B̂−1,k > 0
−1 if γ̂B̂,k − γ̂B̂−1,k < 0

(5)

and, for1 < j < B̂,

ŝ
(TV)
j,k =

{

2 if γ̂j+1,k − γ̂j,k > 0, γ̂j,k − γ̂j−1,k < 0
−2 if γ̂j+1,k − γ̂j,k < 0, γ̂j,k − γ̂j−1,k > 0

0 if (γ̂j,k − γ̂j−1,k)(γ̂j+1,k − γ̂j,k) = 1.
(6)

Lemma 1 does not provide a practical way to estimateβ̂TV, but it does characterize a solution.
From Eq. (3) we can see that the coefficients in each of the estimated blocks are biased by two terms
coming from theℓ1 and||·||TV penalties. The larger the estimated segments, the smaller the relative
influence of the bias from the total variation, while the magnitude of the bias introduced by theℓ1
penalty is uniform across different segments. The additional bias coming from the total variation
penalty was also noted in the problem of signal denoising [23]. In the next section, we introduce a
two step procedure which alleviate this effect.

3 A two-step procedure for estimating time-varying structures

In this section, we propose a new algorithm for estimating the time-varying structure of the varying-
coefficient model in Eq. (1), which does not suffer from the bias introduced by minimizing the
objective in Eq. (2). The algorithm is a two-step procedure summarized as follows:
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1. Estimate the block partition̂T , on which the coefficient vector is constant within each
block. This can be obtained by minimizing the following objective:

n
∑

i=1

(Yi − X
′
iβ(ti))

2
+ 2λ2

p
∑

k=1

||βk||TV , (7)

which we refer to as atemporal difference(TD) regression for reasons that will be clear
shortly. We will employ a TD-transformation to Eq. (7) and turn it into anℓ1-regularized
regression problem, and solve it using the randomized Lasso. Details of the algorithm and
how to extractT̂ from the TD-estimate will be given shortly.

2. For each block of the partition,̂Bj , 1 ≤ j ≤ B̂, estimateγ̂j by minimizing the Lasso
objective within the block:

γ̂j = argmin
γ∈Rp

∑

ti∈B̂j

(Yi − X
′
iγ)2 + 2λ1 ||γ||1 . (8)

We name this procedure TDB-Lasso (or TDBL), after the two steps (TD randomized Lasso, and
Lasso within Blocks) given above. The advantage of the TDB-Lasso compared to a minimizer of
Eq. (2) comes from decoupling the interactions between theℓ1 andTV penalties (note that the two
procedures result in different estimates). Now we discuss step 1 in detail; step 2 is straightforward
using a standard Lasso toolbox.

To obtain a consistent estimate ofT̂ from the TD-regression in Eq. (7), we can transform Eq. (7)
into an equivalentℓ1 penalized regression problem, which allows us to cast theT̂ estimation
problem as a feature selection problem. Letβ†

k,i denote thetemporal differencebetween the re-
gression coefficients corresponding to the same covariatek at successive time pointsti−1 and
ti: β†

k,i ≡ βk(ti) − βk(ti−1), k = 1, . . . , p, i = 1, . . . , n with βk(t0) = 0, by conven-
tion. It can be shown that the model in Eq. (1) can be expressed asY † = X

†β† + ǫ†, where
Y † ∈ R

n is a transformed vector of the TDs of responses,i.e., each elementY †
i ≡ Yi − Yi−1;

X
† = (X†

1, . . . ,X
†
p) ∈ R

n×np is the transformed design matrix with lower triangular matrices

X
†
k ∈ R

n×n corresponding to TD features computed from the covariates;ǫ† ∈ R
n is the trans-

formed TD-error vector; andβ† ∈ R
np is a vector obtained by stacking TD-coefficient vectorsβ†

k.
(See Appendix for more details of the transformation.) Note that the elements of the vectorǫ† are
not i.i.d. any more. Using the transformation above, the estimation problem defined on objective
Eq. (7) can be expressed in the following matrix form:

β̂† = argmin
β∈Rnp

∣

∣

∣

∣Y † − X
†β†
∣

∣

∣

∣

2

2
+ 2λ2

∣

∣

∣

∣β†
∣

∣

∣

∣

1
. (9)

This transformation was proposed in [8] in the context of one-dimensional signal denoising, how-
ever, we are interested in the estimation of jump points in the context of time-varying coefficient
model.

The estimator defined in Eq. (9) is not robust with respect to small perturbations of data,i.e., small
changes of variablesXi or Yi would result in a different̂T . To deal with the problem of robustness,
we employed thestability selectionprocedure of [22] (see also the bootstrap Lasso [2], however,
we have decided to use the stability selection because of the weaker assumptions). The stability
selection approach to estimating the jump-points is comprised of two main components: i) simulat-
ing multiple datasets using bootstrap, and ii) using the randomized Lasso outlined in Algorithm 1
(see also Appendix) to solve (9). While the bootstrap step improves the robustness of the estimator,
the randomized Lasso weakens the conditions under which the estimatorβ̂† selects exactly the true
features.

Let {β̂†
b , Ĵ

†
b }M

b=1 represent the set of estimates and their supports (i.e., index of non-zero elements)
obtained by minimizing (9) for each of theM bootstrapped datasets. We obtain a stable estimate of
the support by selecting variables that appear in multiple supports

Ĵ τ = {k |
∑M

b=1 1I{k ∈ Ĵ †
b }

M
≥ τ}, (10)

which is then used to obtain the block partition estimateT̂ . The parameterτ is a tuning parameter
that controls the number of falsely identified jump points.
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Algorithm 1 Randomized Lasso
Input: Dataset{Xi, Yi}

n
i=1 Xi ∈ R

p, penalty parameterλ, weakness parameterα ∈ (0, 1]

Output: Estimateβ̂ ∈ R
p, supportŜ

1: Choose randomlyp weights{Wk}
p

k=1
from interval[α, 1]

2: β̂ = argminβ∈Rp

Pn

i=1
(Yi − Xiβ)2 + 2λ

Pp

k=1

|βk|
Wk

3: Ŝ = {k | β̂k 6= 0}

4 Theoretical analysis

We provide a theoretical analysis of TDB-Lasso, and show that under certain conditions both the
jump points and structure of VCVS can be consistently estimated. Proofs are deferred to Appendix.

4.1 Estimating jump points

We first address the issue of estimating jump points by analyzing the transformed TD-regression
problem Eq. (9) and its feature selection properties. The feature selection usingℓ1 penalization has
been analyzed intensively over the past few years and we can adapt some of the existing results to
the problem at hand. To prove that all the jump points are included inĴ τ , we first state asparse
eigenvalue conditionon the design (e.g.[6]). The minimal and maximal sparse eigenvalue, for
matrixX ∈ R

n×p, are defined as

ϕmin(k,X) := inf
a∈Rp,||a||

0
≤k

||Xa||2
||a||2

, ϕmax(k,X) := sup
a∈Rp,||a||

0
≤k

||Xa||2
||a||2

, k ≤ p. (11)

Note that in Eq. (11) eigenvalues are computed over submatrices of sizek (i.e., due to the constraint
ona by the||·||0 norm). We can now express the sparse eigenvalues condition on the design.

A1: LetJ † be the true support ofβ† andJ = |J †|. There exist someC > 1 andκ ≥ 10 such that

ϕmax(CJ2,X†)

ϕ
3/2
min(CJ2,X†)

<
√

C/κ. (12)

This condition guarantees a correlation structure between TD-transformed covariates that allows for
detection of the jump points. Comparing to theirrepresentible condition[30, 21, 27], necessary for
the ordinary Lasso to perform feature selection, condition A1 is much weaker [22] and is sufficient
for the randomized Lasso to select the relevant feature with high probability (see also [26]).

Theorem 1 Let A1 be satisfied; and let the weaknessα be given asα2 = νϕmin(CJ2,X†)/(CJ2),
for anyν ∈ (7/κ, 1/

√
2). If the minimum size of the jump is bounded away from zero as

min
k∈J †

|β†
k| ≥ 0.3(CJ)3/2λmin, (13)

whereλmin = 2σ†(
√

CJ + 1)
√

log np
n and σ†2 ≥ V ar(Y †

i ), for np > 10 andJ ≥ 7, there exists

someδ = δJ ∈ (0, 1) such that for allτ ≥ 1 − δ, the collection of the estimated jump pointŝJ τ

satisfies,
P(Ĵ τ = J †) ≥ 1 − 5/np. (14)

Remark: Note that Theorem 1 gives conditions under which we can recover every jump point in
every covariates. In particular, there are no assumptions on the number of covariates that change
values at a jump point. Assuming that multiple covariates change their values at a jump point, we
could further relax the condition on the minimal size of a jump given in Eq. (13). It was also pointed
to us that the framework of [18] may be a more natural way to estimate jump points.

4.2 Identifying correct covariates

Now we address the issue of selecting the relevant features for every estimated segment. Under
the conditions of Theorem 1, correct jump points will be detected with probability arbitrarily close
to 1. That means under the assumption A1, we can run the regular Lasso on each of the estimated
segments to select the relevant features therein. We will assume that the mutual coherence condition
[10] holds for each segmentBj . LetΣj = 1

|Bj |

∑

i∈Bj
X

′
iXi, with σj

kl = (Σj)k,l.
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A2: We assume there is a constant0 < d ≤ 1 such that

P

(

max
k∈SBj

,l 6=k

{

|σj
kl| ≤

d
∣

∣SBj

∣

∣

})

= 1. (15)

The assumption A2 is a mild version of the mutual coherence condition used in [7], which is neces-
sary for identification of the relevant covariates in each segment. Letγ̂j , k = 1, . . . , B̂n denote the
Lasso estimates for each segment obtained by minimizing (8).

Theorem 2 Let A2 be satisfied. Also, assume that the conditions of Theorem 1 are satisfied. Let
K = max1≤j≤B ||γj ||0 be the upper bound on the number of features in segments and letL be
an upper bound on elements ofX. Let ρ = min1≤j≤B |Bj | denote the number of samples in the
smallest segment. Then for a sequenceδ = δn → 0,

λ1 ≥ 4Lσ

√

ln 2Kp
δ

ρ
∨ 8L

ln 4Kp
δ

ρ
and min

1≤j≤B
min

k∈SBj

|γj,k| ≥ 2λ1,

we have
lim

n→∞
P(B̂ = B) = 1, (16)

lim
n→∞

max
1≤j≤B

P(||γ̂j − γj ||1 = 0) = 1, (17)

lim
n→∞

min
1≤j≤B

P(ŜBj
= SBj

) = 1. (18)

Theorem 2 states that asymptotically, the two stage procedure estimates the correct model,i.e., it
selects the correct jump points and for each segment between two jump points it is able to select the
correct covariates. Furthermore, we can conclude that the procedure is consistent.

5 Practical considerations

As in standard Lasso, the regularization parameters in TDB-Lasso need to be tuned appropriately
to attain correct structural recovery. The TD regression procedure requires three parameters: the
penalty parameterλ2, cut-off parameterτ , and weakness parameterα. From our empirical experi-
ence, the recovered set of jump pointsT̂ vary very little with respect to these parameters in a wide
range. The result of Theorem 1 is valid as long asλ2 is larger thanλmin given in the statement
of the theorem. Theorem 1 in [22] gives a way to select the cutoffτ while controlling the number
of falsely included jump points. Note that this relieves users from carefully choosing the range of
parameterλ2, which is challenging. The weakness parameter can be chosen in quite a large interval
(see Appendix on the randomized Lasso) and we report our results using the valuesα = 0.6.

In the second step of the algorithm, the ordinary Lasso minimizes Eq. (8) on each estimated segment
to select relevant variables, which requires a choice of the penalty parameterλ1. We do so by
minimizing the BIC criterion [25].

In practice, one cannot verify assumptions A1 and A2 on real datasets. In cases where the assump-
tions are violated, the resulting set of estimated jump points is larger than the true setT , e.g. the
points close to the true jump points get included into the resulting estimateT̂ . We propose to use
anad hocheuristic to refine the initially selected set of jump points. A commonly used procedure
for estimation of linear regression models with structural changes [3] is a dynamic programming
method that considers a possible structural change at every locationti, i = 1, . . . , n, with a compu-
tational complexity ofO(n2) (see also [15]). We modify this method to consider jump points only
in the estimated set̂T and thus considerably reducing the computational complexity toO(|T̂ |2),
since|T̂ | ≪ n. The algorithm effectively chooses a subsetT̃ ⊆ T̂ of sizeB̂ that minimizes the BIC
objective.

6 Experiments on Synthetic Data

We compared the TDB-Lasso on synthetic data with commonly used methods for estimating VCVS
models. The synthetic data was generated as follows. We varied the sample size fromn = 100
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Figure 2:Comparison results of different estimation procedures on a synthetic dataset.

to 500 time points, and fixed the number of covariates is fixed top = 20. The block partition
was generated randomly and consists of ten blocks with minimum length set to 10 time points. In
each of the block, only 5 covariates out of 20 affected the response. Their values were uniformly at
random drawn from[−1,−0.1]∪[0.1, 1]. With this configuration, a dataset was created by randomly
drawingXi ∼ N(0, Ip), ǫi ∼ N(0, 1.52) and computingYi = Xiβ(ti) + ǫi for i = 1, . . . , n. For
each sample size, we independently generated 100 datasets and report results averaged over them.

A simple local regression method [13], which is commonly used for estimation in varying coefficient
models, was used as the simplest baseline for comparing the relative performance of estimation. Our
first competitor is an extension of the baseline, which uses the following estimator [28]:

min
β∈Rp×n

n
∑

i′=1

n
∑

i=1

(Yi − X
′
iβi′)

2Kh(ti′ − ti) +

p
∑

j=1

λj

√

√

√

√

n
∑

i′=1

β2
i′,j , (19)

whereKh(·) = 1
hK(·/h) is the kernel function. We will call this method “Kernelℓ1/ℓ2”. Another

competitor uses theℓ1 penalized local regression independently at each time point, which leads to
the following estimator ofβ(t),

min
β∈Rp

n
∑

i=1

(Yi − X
′
iβ)2Kh(ti − t) +

p
∑

j=1

λj |βj |. (20)

We call this method “Kernelℓ1”. The difference between the two methods is that “Kernelℓ1/ℓ2”
biases certain covariates toward zero at every time point, based on global information; whereas
“Kernel ℓ1” biases covariates toward zero only based on local information. The final competitor is
chosen to be the minimizer of Eq. (2) [1], which we call “ℓ1 + TV”. The bandwidth parameter for
“Kernel ℓ1” and “Kernel ℓ1/ℓ2” is chosen using a generalized cross validation of a non-penalized
estimator. The penalty parametersλj are chosen according to the BIC criterion [28]. For the “ℓ1 +
TV” method, we optimize the BIC criterion over a two-dimensional grid of values forλ1 andλ2.

We report the relative estimation error,REE = 100×
Pn

i=1

Pp

j=1
|β̂i,j−β∗

i,j |
P

n
i=1

Pp

j=1
|β̃i,j−β∗

i,j
|
, whereβ̃ is the baseline

local linear estimator, as a measure of estimation accuracy. To asses the performance of the model
selection, we report precision, recall and their harmonic meanF1 measure when estimating the
relevant covariates at each time point and the percentage of correctly identified irrelevant covariates.

From the experimental results, summarized in Fig. 2, we can see that the TDB-Lasso succeeds in
recovering the true model as the sample size increases. It also estimates the coefficient values with
better accuracy than the other methods. It worth noting that the “Kernel +ℓ1” performs better than
the “Kernel +ℓ1/ℓ2” approach, which is due to the violation of the assumptions made in [28]. The
“ℓ1 + TV” performs better than the local linear regression approaches, however, the method gets
very slow for the larger values of the sample size and it requires selecting two tuning parameters,
which makes it quite difficult to use. We conjecture that the “ℓ1 +TV” and TDB-Lasso have similar
asymptotic properties with respect to model selection, however, from our numerical experiments we
can see that for finite sample data, the TDB-Lasso performs better.

7 Application to Time-varying Graph Structure Estimation

An interesting application of the TDB-Lasso is in structural estimation of time-varying undirected
graphical models [1, 17]. A graph structure estimation can be posed as a neighborhood selection
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problem, in which neighbors of each node are estimated independently. Neighborhood selection
in the time-varying Gaussian graphical models (GGM) is equivalent to model selection in VCVS,
where value of one node is regressed to the rest of nodes. The regression problem for each node
can be solved using the TDB-Lasso. Graphs estimated in this way will have neighborhoods of each
node that are constant on a partition, but the graph as a whole changes more flexibly (Fig. 1b-d).

t=1.00s
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t=2.00s t=3.00s

Figure 3: Brain interactions for the subject ’aa’
when presented with visual cues of the class 1

The graph structure estimation using the TDB-
Lasso is demonstrated on a real dataset of elec-
troencephalogram (EEG) measurements. We use
the brain computer interface (BCI) dataset IVa
from [11] in which the EEG data is collected from
5 subjects, who were given visual cues based on
which they were required to imagine right hand
or right foot for 3.5s. The measurement was per-
formed when the visual cues were presented on the
screen (280 times), intermitted by periods of random length in which the subject could relax. We
use the down-sampled data at 100Hz. Fig. 3 gives a visualization of the brain interactions over the
time of the experiment for the subject ’aa’ while presented with visual cues for the class 1 (right
hand). Estimated graphs of interactions between different parts of the brain for other subjects and
classes are given in Appendix due to the space limit.

We also want to study whether the estimated time-varying network are discriminative features for
classifying the type of imaginations in the EEG signal. For this purpose, we perform unsupervised
clustering of EEG signals using the time-varying networks and study whether the grouping corre-
spond to the true grouping according to imagination label. We estimate a time-varying GGM using
the TDB-Lasso for each visual cue and cluster the graphs using the spectral K-means clustering [29]
(using a linear kernel on the coefficients to measure similarity). Each cluster is labeled according to
the majority of points it contains. Finally, each cue if classified based on labels of the time-points
that it contains. Table 1 summarizes the classification accuracy for each subject based onK = 4
clusters (Kwas chosen as a cutoff point, when there was little decrease in K-means objective). We
compare this approach to a case when GGMs with a static structure are estimated [5]. Note that
the supervised classifiers with special EEG features are able to achieve much higher classification
accuracy, however, our approach does not use any labeled data and can be seen as an exploratory
step. We also used TDB-Lasso for estimating the time-varying gene networks from microarray data
time series data, but due to space limit, results will be reported later in a biological paper.

Table 1:Classification accuracies based on learned brain interactions.
Subject aa al av aw ay

TDB-Lasso 0.69 0.80 0.59 0.67 0.83
Static 0.58 0.63 0.54 0.57 0.61

8 Discussion

We have developed the TDB-Lasso procedure, a novel approach for model selection and variable es-
timation in the varying-coefficient varying-structure models with piecewise constant functions. The
VCVS models form a flexible nonparametric class of models that retain interpretability of parametric
models. Due to their flexibility, important classical problems, such as linear regression with struc-
tural changes and change point detection, and some more recent problems, like structure estimation
of varying graphical models, can be modeled within this class of models. The TDB-Lasso compares
favorably to other commonly used [28] or latest [1] techniques for estimation in this class of models,
which was demonstrated on the synthetic data. The model selection properties of the TDB-Lasso,
demonstrated on the synthetic data, are also supported by the theoretical analysis. Furthermore, we
demonstrate a way of applying the TDB-Lasso for graph estimation on a real dataset.

Application of the TDB-Lasso procedure goes beyond the linear varying coefficient regression mod-
els. A direct extension is to generalized varying-coefficient modelsg(m(Xi, ti)) = X

′
iβ(ti), i =

1, . . . , n, whereg(·) is a given link function andm(Xi, ti) = E[Y |X = Xi, t = ti] is the con-
ditional mean. Estimation in generalized varying-coefficient models proceeds by changing the
squared loss in Eq. (7) and Eq. (8) to a different appropriate loss function. The generalized varying-
coefficient models can be used to estimate the time-varying structure of discrete Markov Random
Fields, again by performing the neighborhood selection.
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[15] Zäıd Harchaoui and Ćeline Levy-Leduc. Catching change-points with lasso. In J.C. Platt, D. Koller,
Y. Singer, and S. Roweis, editors,Advances in Neural Information Processing Systems 20, pages 617–
624. MIT Press, Cambridge, MA, 2008.

[16] Trevor Hastie and Robert Tibshirani. Varying-coefficient models.Journal of the Royal Statistical Society.
Series B (Methodological), 55(4):757–796, 1993.

[17] Mladen Kolar, Le Song, and Eric Xing. Estimating time-varying networks. InarXiv:0812.5087, 2008.
[18] Marc Lavielle and Eric Moulines. Least-squares estimation of an unknown number of shifts in a time

series.Journal of Time Series Analysis, 21(1):33–59, 2000.
[19] E. Lebarbier. Detecting multiple change-points in the mean of gaussian process by model selection.Signal

Process., 85(4):717–736, 2005.
[20] E. Mammen and S. van de Geer. Locally adaptive regression splines.Ann. of Stat., 25(1):387–413, 1997.
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