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1 Computing Activations maps

Given the time-series for stimulus s(t) (e.g., s=1 if the stimulus/event is present, and s=0 otherwise),
and the BOLD signal intensity time-series vi(t) for voxel i, General Linear Model (GLM)1 is simply
a linear regression vi(t) = βi ∗ ŝ(t) + bi + ε, where ŝ(t) = HRF (t)

⊗
s(t) is the regressor

corresponding to the stimulus convolved with the hemodynamic response function (HRF) in order
to account for delay between the voxel activation and change in the BOLD signal, ε is noise, b is
the baseline (mean intensity) and βi coefficient is the amplitude that serves as an activation score
(note that βi coefficient is simply the correlation between vi and ŝ(t) when both are normalized and
centered prior to fitting the model). Given multiple trials, multiple estimates of βi are obtained and
a statistical test (e.g., t-test) is performed for the mean β̄i against the null-hypothesis that it comes
from Gaussian noise distribution with zero mean and fixed noise σ (the level of noise for BOLD
signal is assumed to be known here).

In case of multiple stimuli, the GLM model uses a vector of regressors ŝ(t) and obtains the vector of
the corresponding coefficients β. For example, in our studies, the following stimuli/events were con-
sidered: ’FrenchNative’, ’Foreign’, and ’Silence’, together with several additional regressors, such
as some low-frequencies trends and the movement parameters (additional 1-only column is added
to account for the mean of the signal, as above - a standard step in linear regression with the un-
normalized data). Once the GLM is fit, we focus on the βi coefficients obtained for the above three
stimuli, and the corresponding three activation maps. Next, we compute several “contrast” maps by
subtracting some maps from the others (hoping that such differences, or contrasts, may provide ad-
ditional information). The following activation “contrast” maps were computed: activation contrast
1: “FrenchNative - Silence”, activation contrast 2: “FrenchNative - Foreign”, activation contrast
3: “Silence - FrenchNative”, activation contrast 4: Foreign - FrenchNative (note that maps 2 and
4 are just negations of the maps 1 and 3, respectively), activation contrast 5: “Foreign - Silence”;
also, the following three contrast maps are simply the difference of the corresponding βi coefficient

1The GLM analysis described here is a standard component of the Statistical Parametric Mapping (SPM)
toolkit (see [1] for more details).
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Figure 1: Classification results comparing GNB, SVM and sparse MRF classifiers on unnormalized (raw)
activation maps vs degree maps.

(activation) and the mean (bi): activation contrast 6: “FrenchNative”, activation contrast 7: “For-
eign”, activation contrast 8: “Silence”. For each of those maps, t-values are computed at each
voxel (with a null-hypothesis corresponding to zero-mean Gaussian). In the analysis presented in
this paper, we use the resulting t-value maps, rather than just the “raw” activation maps (i.e., β
coefficient maps), and to simplify the terminology, just refer to them as “activation” or “activation
contrast” maps.

2 Classification Results with Unnormalized Activation Maps

We observed that normalization was essential for improving the performance of activation maps
when using sparse MRF classifiers; while the raw activation maps perform similarly to normalized
ones in case of GNB and SVM, their performance degrades dramatically (to 40-50% error) when
using MRFs: (compare Figure 1c with the figure 4c in the main paper).

3 Classification Results with Subset of Subject

For completeness sake, we include here our initial results from the submitted version of this paper
in Figure 2, were a subset of 9 schizophrenic subjects (and thus only 2*9+2*11 = 40 samples, and
20 cross-validation fold) was used instead of the full set of 11 subjects; after checking the motion
correction results more carefully in response to the reviewers comments, we realized that the two
schizophrenic subjects excluded originally were actually good-quality data, and therefore included
then in the final set of results. Also, the initial submission included comparison with only one
activation maps - map 8 that performed best while using SVM on the full set of voxels; afterwards,
we ran experiments with all activation maps using voxel selection and included the best-performing
activation maps in all regimes. Note that the results on the subset of data are very similar to the ones
presented in the final version of the paper, with similarly noticeable differences in the performance
of degree maps (only 12% error) and activation maps (over 30%) when using MRFs.

4 Global Topological Features

Various global topological features were extracted: (1) the mean degree, i.e. the number of links
for each node (corresponding to a voxel), averaged over the entire network; (2) the mean geodesic
distance, i.e. the minimal number of links needed to reach any to from any other node, averaged over
the entire network; (3) the mean clustering, i.e. the fraction of triangulations formed by a node with
its first neighbors relative to all possible triangulations, averaged over the entire network; (4) the
giant component, i.e. the size (number of nodes) of the largest connected sub-graph in the network;
(5) the giant component ratio, i.e. the ratio of the giant component to the size of the network; (6)
the total number of links in the network.
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Figure 2: Initial results on a subset including 9 schizophrenic subjects. Classification results comparing (a)
GNB, (b) SVM and (c) sparse MRF on degree versus activation maps; (d) all three classifiers compared on best-
performing features (full degree maps); dashed line shows the stability of variable-selection as % of common
voxels over 20 CV folds.

Feature Mean Mean p-value
normal+alcoholic schizophrenic

geodesic dist. 11.8 22.0 1.5× 10−3

clustering coeff. 0.14 0.07 < 10−4

giant component ratio 0.87 0.48 < 10−5

giant component 26220.2 15698.0 6.5× 10−3

nodes 28416.9 20823.6 2.9× 10−2

degree 28.1 16.7 5.3× 10−2

total links 925573 627114 0.29
mean activation 0.335 0.289 5.5× 10−4

Table 1: Global features.

5 Classification Results with Alcoholic Group

We also considered the task of discriminating between the schizophrenic group versus the aggregate
of the normal group and a second control group formed by patients suffering from alcoholism [2].
The rational to include this additional group was to test for possible non-specific disruptions in the
signal simply due to the brain being in a dysfunctional state. Moreover, a prominent feature of this
group is a higher level of movement inside the scanner, prior to movement corrections; therefore,
the alcoholic group also provides a test for potential movement confounds. Indeed, the classification
results are such that both these hypotheses (i.e. non-specificity and movement artifacts) can be
rejected.

In these experiments were focused on the comparison with activation map 8 that demonstrated best
predictive performance when using SVM on the full set of voxels; while full exploration of all
activation maps in the low-voxel regime was not yet performed with inclusion of alcoholic group, it
is more important to see that the degree maps again demonstrate similarly high predictive power to
the one observed in our main study (schizophrenic vs normal groups).

(a) Results of applying Gaussian Naı̈ve Bayes classification to the degree maps, compared with
the activation map, are shown in Fig. 1a. Full degree maps achieve an error rate of 12% around
300 voxels, whereas contrast maps reach 22% for 3000 voxels. Moreover, the difference in the
error rate for small number of voxels is remarkable, as contrast maps perform nearly at random
level, whereas the degree maps perform consistently below 20% error. (b) Support Vector Machine
classification results are shown in Fig. 1b. In this case, the best error rate (10%) is achieved by
inter-hemispheric maps with around 200 voxels, which is indeed the least for all maps. Contrast
maps, on the other hand, stay above 30% error for most pre-selected voxel sizes, and reach 35%
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for the size corresponding to the least degree map error of 10%. (c) Sparse Markov Random Field
results are shown in Fig. 1c. Given the computational demands of this approach, we only show
results for up to 300 pre-selected voxels. For contrast maps the error rate is consistently above 30%,
although the densest model (0.0001) is significantly better than the sparser ones, which provides
more evidence that, even for contrast maps, synergetic interactions are relevant. The picture is
even sharper for degree maps: these maps are very sensitive to the sparsity parameter, with sparse
models averaging 30% error, and denser ones reaching stable error rates of 12% for 0.001. Taking
together, the comparison between contrast maps and sparser degree maps on the one hand, and on
the other the denser degree maps, indicates that the functional synergy captured by the correlation
networks, and included in the MRF model, provide a very significant signal for the classification
task. This effect supports our hypothesis that schizophrenia implies a functional network disruption
which is not reducible to an activation disruption. (d) The p-values for the comparison between
the schizophrenic group v. normal+alcoholic group, for the various global features, are presented
in Table 1. Observe that the mean activation shows a good statistical power; however, when these
global features are fed into a classifier (Table 2), the corresponding results for mean activation are
quite poor, whereas the topological features display much better accuracy.

Feature (GNB SVM MRF(0.01)
degree (D) 19% 13.8% 15.5%

clustering coeff. (C) 19.0% 29.3% 31.0%
geodesic dist. (G) 34.5% 31.0% 31.0%

mean activation (A) 29.3% 31% 31%
D + A 13.4% 13.8% 15.5%
C + A 17.2% 31% 31.0%
G + A 39.7% 31.0% 31.0%

G +D +C 24.0% 14.0% 19.0%
G+D+C+A 17.2% 13.8% 15.5%

Table 2: Classification errors using global features schizophrenics vs. normal+alcoholics, baseline
error about 31%.
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Figure 3: Results for schizophrenic vs (normal+alchoholic) classification.
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