
Measuring Invariances in Deep Networks

Ian J. Goodfellow, Quoc V. Le, Andrew M. Saxe, Honglak Lee, Andrew Y. Ng
Computer Science Department

Stanford University
Stanford, CA 94305

{ia3n,quocle,asaxe,hllee,ang}@cs.stanford.edu

Abstract

For many pattern recognition tasks, the ideal input feature would be invariant to
multiple confounding properties (such as illumination and viewing angle, in com-
puter vision applications). Recently, deep architectures trained in an unsupervised
manner have been proposed as an automatic method for extracting useful features.
However, it is difficult to evaluate the learned features by any means other than
using them in a classifier. In this paper, we propose a number of empirical tests
that directly measure the degree to which these learned features are invariant to
different input transformations. We find that stacked autoencoders learn modestly
increasingly invariant features with depth when trained on natural images. We find
that convolutional deep belief networks learn substantially more invariant features
in each layer. These results further justify the use of “deep” vs. “shallower” repre-
sentations, but suggest that mechanisms beyond merely stacking one autoencoder
on top of another may be important for achieving invariance. Our evaluation met-
rics can also be used to evaluate future work in deep learning, and thus help the
development of future algorithms.

1 Introduction
Invariance to abstract input variables is a highly desirable property of features for many detection
and classification tasks, such as object recognition. The concept of invariance implies a selectivity
for complex, high level features of the input and yet a robustness to irrelevant input transformations.
This tension between selectivity and robustness makes learning invariant features nontrivial. In the
case of object recognition, an invariant feature should respond only to one stimulus despite changes
in translation, rotation, complex illumination, scale, perspective, and other properties. In this paper,
we propose to use a suite of “invariance tests” that directly measure the invariance properties of
features; this gives us a measure of the quality of features learned in an unsupervised manner by a
deep learning algorithm.

Our work also seeks to address the question: why are deep learning algorithms useful? Bengio and
LeCun gave a theoretical answer to this question, in which they showed that a deep architecture is
necessary to represent many functions compactly [1]. A second answer can also be found in such
work as [2, 3, 4, 5], which shows that such architectures lead to useful representations for classi-
fication. In this paper, we give another, empirical, answer to this question: namely, we show that
with increasing depth, the representations learned can also enjoy an increased degree of invariance.
Our observations lend credence to the common view of invariances to minor shifts, rotations and
deformations being learned in the lower layers, and being combined in the higher layers to form
progressively more invariant features.

In computer vision, one can view object recognition performance as a measure of the invariance of
the underlying features. While such an end-to-end system performance measure has many benefits,
it can also be expensive to compute and does not give much insight into how to directly improve
representations in each layer of deep architectures. Moreover, it cannot identify specific invariances

1

that a feature may possess. The test suite presented in this paper provides an alternative that can
identify the robustness of deep architectures to specific types of variations. For example, using
videos of natural scenes, our invariance tests measure the degree to which the learned representations
are invariant to 2-D (in-plane) rotations, 3-D (out-of-plane) rotations, and translations. Additionally,
such video tests have the potential to examine changes in other variables such as illumination. We
demonstrate that using videos gives similar results to the more traditional method of measuring
responses to sinusoidal gratings; however, the natural video approach enables us to test invariance
to a wide range of transformations while the grating test only allows changes in stimulus position,
orientation, and frequency.

Our proposed invariance measure is broadly applicable to evaluating many deep learning algorithms
for many tasks, but the present paper will focus on two different algorithms applied to computer
vision. First, we examine the invariances of stacked autoencoder networks [2]. These networks
were shown by Larochelle et al. [3] to learn useful features for a range of vision tasks; this suggests
that their learned features are significantly invariant to the transformations present in those tasks.
Unlike the artificial data used in [3], however, our work uses natural images and natural video
sequences, and examines more complex variations such as out-of-plane changes in viewing angle.
We find that when trained under these conditions, stacked autoencoders learn increasingly invariant
features with depth, but the effect of depth is small compared to other factors such as regularization.
Next, we show that convolutional deep belief networks (CDBNs) [5], which are hand-designed to be
invariant to certain local image translations, do enjoy dramatically increasing invariance with depth.
This suggests that there is a benefit to using deep architectures, but that mechanisms besides simple
stacking of autoencoders are important for gaining increasing invariance.

2 Related work

Deep architectures have shown significant promise as a technique for automatically learning fea-
tures for recognition systems. Deep architectures consist of multiple layers of simple computational
elements. By combining the output of lower layers in higher layers, deep networks can represent
progressively more complex features of the input. Hinton et al. introduced the deep belief network,
in which each layer consists of a restricted Boltzmann machine [4]. Bengio et al. built a deep net-
work using an autoencoder neural network in each layer [2, 3, 6]. Ranzato et al. and Lee et al.
explored the use of sparsity regularization in autoencoding energy-based models [7, 8] and sparse
convolutional DBNs with probabilistic max-pooling [5] respectively. These networks, when trained
subsequently in a discriminative fashion, have achieved excellent performance on handwritten digit
recognition tasks. Further, Lee et al. and Raina et al. show that deep networks are able to learn
good features for classification tasks even when trained on data that does not include examples of
the classes to be recognized [5, 9].

Some work in deep architectures draws inspiration from the biology of sensory systems. The human
visual system follows a similar hierarchical structure, with higher levels representing more complex
features [10]. Lee et al., for example, compared the response properties of the second layer of a
sparse deep belief network to V2, the second stage of the visual hierarchy [11]. One important prop-
erty of the visual system is a progressive increase in the invariance of neural responses in higher
layers. For example, in V1, complex cells are invariant to small translations of their inputs. Higher
in the hierarchy in the medial temporal lobe, Quiroga et al. have identified neurons that respond with
high selectivity to, for instance, images of the actress Halle Berry [12]. These neurons are remark-
ably invariant to transformations of the image, responding equally well to images from different
perspectives, at different scales, and even responding to the text “Halle Berry.” While we do not
know exactly the class of all stimuli such neurons respond to (if tested on a larger set of images, they
may well turn out to respond also to other stimuli than Halle Berry related ones), they nonetheless
show impressive selectivity and robustness to input transformations.

Computational models such as the neocognitron [13], HMAX model [14], and Convolutional Net-
work [15] achieve invariance by alternating layers of feature detectors with local pooling and sub-
sampling of the feature maps. This approach has been used to endow deep networks with some
degree of translation invariance [8, 5]. However, it is not clear how to explicitly imbue models with
more complicated invariances using this fixed architecture. Additionally, while deep architectures
provide a task-independent method of learning features, convolutional and max-pooling techniques
are somewhat specialized to visual and audio processing.

2

3 Network architecture and optimization
We train all of our networks on natural images collected separately (and in geographically different
areas) from the videos used in the invariance tests. Specifically, the training set comprises a set of
still images taken in outdoor environments free from artificial objects, and was not designed to relate
in any way to the invariance tests.

3.1 Stacked autoencoder
The majority of our tests focus on the stacked autoencoder of Bengio et al. [2], which is a deep
network consisting of an autoencoding neural network in each layer. In the single-layer case, in
response to an input patternx ∈ R

n, the activation of each neuron,hi, i = 1, · · · ,m is computed as

h(x) = tanh(W1x + b1) ,

whereh(x) ∈ R
m is the vector of neuron activations,W1 ∈ R

m×n is a weight matrix,b1 ∈ R
m is a

bias vector, and tanh is the hyperbolic tangent applied componentwise. The network output is then
computed as

x̂ = tanh(W2h(x) + b2) ,

wherex̂ ∈ R
n is a vector of output values,W2 ∈ R

n×m is a weight matrix, andb2 ∈ R
n is a bias

vector. Given a set ofp input patternsx(i), i = 1, · · · , p, the weight matricesW1 andW2 are adapted

using backpropagation [16, 17, 18] to minimize the reconstruction error
∑p

i=1

∥

∥x(i) − x̂(i)
∥

∥

2
.

Following [2], we successively train up layers of the network in a greedy layerwise fashion. The
first layer receives a14 × 14 patch of an image as input. After it achieves acceptable levels of
reconstruction error, a second layer is added, then a third, and so on.

In some of our experiments, we use the method of [11], and constrain the expected activation of the
hidden units to be sparse. We never constrainW1 = WT

2 , although we found this to approximately
hold in practice.

3.2 Convolutional Deep Belief Network
We also test a CDBN [5] that was trained using two hidden layers. Each layer includes a collection
of “convolution” units as well as a collection of “max-pooling” units. Each convolution unit has
a receptive field size of 10x10 pixels, and each max-pooling unit implements a probabilistic max-
like operation over four (i.e., 2x2) neighboring convolution units, giving each max-pooling unit an
overall receptive field size of 11x11 pixels in the first layer and 31x31 pixels in the second layer.
The model is regularized in a way that the average hidden unit activation is sparse. We also use a
small amount ofL2 weight decay.

Because the convolution units share weights and because their outputs are combined in the max-
pooling units, the CDBN is explicitly designed to be invariant to small amounts of image translation.

4 Invariance measure
An ideal feature for pattern recognition should be both robust and selective. We interpret the hidden
units as feature detectors that should respond strongly when the feature they represent is present in
the input, and otherwise respond weakly when it is absent. An invariant neuron, then, is one that
maintains a high response to its feature despite certain transformations of its input. For example,
a face selective neuron might respond strongly whenever a face is present in the image; if it is
invariant, it might continue to respond strongly even as the image rotates.

Building on this intuition, we consider hidden unit responses above a certain threshold to befiring,
that is, to indicate the presence of some feature in the input. We adjust this threshold to ensure that
the neuron is selective, and not simply always active. In particular we choose a separate threshold
for each hidden unit such that all units fire at the same rate when presented with random stimuli.
After identifying an input that causes the neuron to fire, we can test the robustness of the unit by
calculating its firing rate in response to a set of transformed versions of that input.

More formally, a hidden uniti is said to fire whensihi(x) > ti, whereti is a threshold chosen
by our test for that hidden unit andsi ∈ {−1, 1} gives the sign of that hidden unit’s values. The
sign termsi is necessary because, in general, hidden units are as likely to use low values as to
use high values to indicate the presence of the feature that they detect. We therefore choosesi to
maximize the invariance score. For hidden units that are regularized to be sparse, we assume that
si = 1, since their mean activity has been regularized to be low. We define the indicator function

3

fi(x) = 1{sihi(x) > ti}, i.e., it is equal to one if the neuron fires in response to inputx, and zero
otherwise.

A transformation functionτ(x, γ) transforms a stimulusx into a new, related stimulus, where the
degree of transformation is parametrized byγ ∈ R. (One could also imagine a more complex
transformation parametrized byγ ∈ R

n.) In order for a functionτ to be useful with our invariance
measure,|γ| should relate to the semantic dissimilarity betweenx andτ(x, γ). For example,γ might
be the number of degrees by whichx is rotated.

A local trajectory T (x) is a set of stimuli that are semantically similar to some reference stimulus
x, that is

T (x) = {τ(x, γ) | γ ∈ Γ}

whereΓ is a set of transformation amounts of limited size, for example, all rotations of less than 15
degrees.

The global firing rate is the firing rate of a hidden unit when applied to stimuli drawn randomly
from a distributionP (x):

G(i) = E[fi(x)],

whereP (x) is a distribution over the possible inputsx defined for each implementation of the test.

Using these definitions, we can measure the robustness of a hidden unit as follows. We define the
setZ as a set of inputs that activatehi near maximally. Thelocal firing rate is the firing rate of a
hidden unit when it is applied to local trajectories surrounding inputsz ∈ Z that maximally activate
the hidden unit,

L(i) =
1

|Z|

∑

z∈Z

1

|T (z)|

∑

x∈T (z)

fi(x),

i.e.,L(i) is the proportion of transformed inputs that the neuron fires in response to, and hence is a
measure of the robustness of the neuron’s response to the transformationτ .

Our invariance score for a hidden unithi is given by

S(i) =
L(i)

G(i)
.

The numerator is a measure of the hidden unit’s robustness to transformationτ near the unit’s opti-
mal inputs, and the denominator ensures that the neuron is selective and not simply always active.

In our tests, we tried to select the thresholdti for each hidden unit so that it fires one percent of the
time in response to random inputs, that is,G(i) = 0.01. For hidden units that frequently repeat the
same activation value (up to machine precision), it is sometimes not possible to chooseti such that
G(i) = 0.01 exactly. In such cases, we choose the smallest value oft(i) such thatG(i) > 0.01.

Each of the tests presented in the paper is implemented by providing a different definition ofP (x),
τ(x, γ), andΓ.

S(i) gives the invariance score for a single hidden unit. The invariance scoreInvp(N) of a network
N is given by the mean ofS(i) over the top-scoring proportionp of hidden units in the deepest layer
of N . We discard the(1 − p) worst hidden units because different subpopulations of units may be
invariant to different transformations. Reporting the mean of all unit scores would strongly penalize
networks that discover several hidden units that are invariant to transformationτ but do not devote
more than proportionp of their hidden units to such a task.

Finally, note that while we use this metric to measure invariances in the visual features learned
by deep networks, it could be applied to virtually any kind of feature in virtually any application
domain.

5 Grating test
Our first invariance test is based on the response of neurons to synthetic images. Following such au-
thors as Berkes et al.[19], we systematically vary the parameters used to generate images of gratings.
We use as input an imageI of a grating, with image pixel intensities given by

I(x, y) = b + a sin (ω(x cos(θ) + y sin(θ) − φ)) ,

4

whereω is the spatial frequency,θ is the orientation of the grating, andφ is the phase. To imple-
ment our invariance measure, we defineP (x) as a distribution over grating images. We measure
invariance to translation by definingτ(x, γ) to changeφ by γ. We measure invariance to rotation by
definingτ(x, γ) to changeω by γ.1

6 Natural video test
While the grating-based invariance test allows us to systematically vary the parameters used to
generate the images, it shares the difficulty faced by a number of other methods for quantifying
invariance that are based on synthetic (or nearly synthetic) data [19, 20, 21]: it is difficult to generate
data that systematically varies a large variety of image parameters.

Our second suite of invariance tests uses natural video data. Using this method, we will measure
the degree to which various learned features are invariant to a wide range of more complex image
parameters. This will allow us to perform quantitative comparisons of representations at each layer
of a deep network. We also verify that the results using this technique align closely with those
obtained with the grating-based invariance tests.

6.1 Data collection
Our dataset consists of natural videos containing common image transformations such as transla-
tions, 2-D (in-plane) rotations, and 3-D (out-of-plane) rotations. In contrast to labeled datasets like
the NORB dataset [21] where the viewpoint changes in large increments between successive images,
our videos are taken at sixty frames per second, and thus are suitable for measuring more modest
invariances, as would be expected in lower layers of a deep architecture. After collection, the images
are reduced in size to 320 by 180 pixels and whitened by applying a band pass filter. Finally, we
adjust the constrast of the whitened images with a scaling constant that varies smoothly over time
and attempts to make each image use as much of the dynamic range of the image format as possible.
Each video sequence contains at least one hundred frames. Some video sequences contain motion
that is only represented well near the center of the image; for example, 3-D (out-of-plane) rotation
about an object in the center of the field of view. In these cases we cropped the videos tightly in
order to focus on the relevant transformation.

6.2 Invariance calculation
To implement our invariance measure using natural images, we defineP (x) as a uniform distribution
over image patches contained in the test videos, andτ(x, γ) to be the image patch at the same
image location asx but occurringγ video frames later in time. We defineΓ = {−5, . . . , 5}. To
measure invariance to different types of transformation, we simply use videos that involve each type
of transformation. This obviates the need to define a complexτ capable of synthetically performing
operations such as 3-D rotation.

7 Results
7.1 Stacked autoencoders
7.1.1 Relationship between grating test and natural video test
Sinusoidal gratings are already used as a common reference stimulus. To validate our approach
of using natural videos, we show that videos involving translation give similar test results to the
phase variation grating test. Fig. 1 plots the invariance score for each of 378 one layer autoencoders
regularized with a range of sparsity and weight decay parameters (shown in Fig. 3). We were not able
to find as close of a correspondence between the grating orientation test and natural videos involving
2-D (in-plane) rotation. Our 2-D rotations were captured by hand-rotating a video camera in natural
environments, which introduces small amounts of other types of transformations. To verify that
the problem is not that rotation when viewed far from the image center resembles translation, we
compare the invariance test scores for translation and for rotation in Fig. 2. The lack of any clear

1Details: We defineP (x) as a uniform distribution over patches produced by varyingω ∈ {2, 4, 6, 8},
θ ∈ {0, · · · , π} in steps ofπ/20, andφ ∈ {0, · · · , π} in steps ofπ/20. After identifying a grating that
strongly activates the neuron, further local gratingsT (x) are generated by varying one parameter while holding
all other optimal parameters fixed. For the translation test, local trajectoriesT (x) are generated by modifying
φ from the optimal valueφopt to φ = φopt ± {0, · · · , π} in steps ofπ/20, whereφopt is the optimal grating
phase shift. For the rotation test, local trajectoriesT (x) are generated by modifyingθ from the optimal value
θopt to θ = θopt ± {0, · · · , π} in steps ofπ/40, whereθopt is the optimal grating orientation.

5

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Grating phase test

N
at

ur
al

 tr
an

sl
at

io
n

te
st

Grating and natural video test comparison

Figure 1: Videos involving translation
give similar test results to synthetic
videos of gratings with varying phase.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

Natural translation test

N
at

ur
al

 2
−

D
 r

ot
at

io
n

te
st

Natural 2−D rotation and translation test

Figure 2: We verify that our translation
and 2-D rotation videos do indeed cap-
ture different transformations.

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

−4

−3

−2

−1

0

1

2

0

10

20

30

40

log
10

 Target Mean Activation

Layer 1 Natural Video Test

log
10

 Weight Decay

In
v
a
ri
a
n
c
e
 S

c
o
re

Figure 3: Our invariance measure selects networks that learnedge detectors resembling Gabor func-
tions as the maximally invariant single-layer networks. Unregularized networks that learn high-
frequency weights also receive high scores, but are not able to match the scores of good edge detec-
tors. Degenerate networks in which every hidden unit learns essentially the same function tend to
receive very low scores.

trend makes it obvious that while our 2-D rotation videos do not correspond exactly to rotation, they
are certainly not well-approximated by translation.

7.1.2 Pronounced effect of sparsity and weight decay
We trained several single-layer autoencoders using sparsity regularization with various target mean
activations and amounts of weight decay. For these experiments, we averaged the invariance scores
of all the hidden units to form the network score, i.e., we usedp = 1. Due to the presence of the
sparsity regularization, we assumesi = 1 for all hidden units. We found that sparsity and weight
decay have a large effect on the invariance of a single-layer network. In particular, there is a semi-
circular ridge trading sparsity and weight decay where invariance scores are high. We interpret this
to be the region where the problem is constrained enough that the autoencoder must throw away
some information, but is still able to extract meaningful patterns from its input. These results are
visualized in Fig. 3. We find that a network with no regularization obtains a score of 25.88, and the
best-scoring network receives a score of 32.41.

7.1.3 Modest improvements with depth
To investigate the effect of depth on invariance, we chose to extensively cross-validate several depths
of autoencoders using only weight decay. The majority of successful image classification results in

6

Figure 4: Left to right: weight visualizations from layer 1, layer 2, and layer 3 of the autoencoders;
layer 1 and layer 2 of the CDBN. Autoencoder weight images are taken from the best autoencoder at
each depth. All weight images are contrast normalized independently but plotted on the same spatial
scale. Weight images in deeper layers are formed by making linear combinations of weight images
in shallower layers. This approximates the function computed by each unit as a linear function.

the literature do not use sparsity, and cross-validating only a single parameter frees us to sample the
search space more densely. We trained a total of73 networks with weight decay at each layer set to
a value from{10, 1, 10−1, 10−2, 10−3, 10−5, 0}. For these experiments, we averaged the invariance
scores of the top20% of the hidden units to form the network score, i.e., we usedp = .2, and chose
si for each hidden unit to maximize the invariance score, since there was no sparsity regularization
to impose a sign on the hidden unit values.

After performing this grid search, we trained 100 additional copies of the network with the best
mean invariance score at each depth, holding the weight decay parameters constant and varying
only the random weights used to initialize training. We found that the improvement with depth was
highly significant statistically (see Fig. 5). However, the magnitude of the increase in invariance is
limited compared to the increase that can be gained with the correct sparsity and weight decay.

7.2 Convolutional Deep Belief Networks

1 2 3

16.5

17

17.5

18

18.5

19

19.5

20

20.5

21

Layer

In
va

ria
nc

e
S

co
re

Mean Invariance

1 2 3

31

31.5

32

32.5

33

33.5

34

34.5

35

35.5

Layer

In
va

ria
nc

e
S

co
re

Translation

1 2 3

15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

Layer

In
va

ria
nc

e
S

co
re

2−D Rotation

1 2 3

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

Layer

In
va

ria
nc

e
S

co
re

3−D Rotation

Figure 5: To verify that the improvement in invari-
ance score of the best network at each layer is an
effect of the network architecture rather than the
random initialization of the weights, we retrained
the best network of each depth 100 times. We find
that the increase in the mean is statistically signif-
icant withp < 10−60. Looking at the scores for
individual invariances, we see that the deeper net-
works trade a small amount of translation invari-
ance for a larger amount of 2-D (in-plane) rotation
and 3-D (out-of-plane) rotation invariance. All
plots are on the same scale but with different base-
lines so that the worst invariance score appears at
the same height in each plot.

We also ran our invariance tests on a two layer
CDBN. This provides a measure of the effec-
tiveness of hard-wired techniques for achiev-
ing invariance, including convolution and max-
pooling. The results are summarized in Table
1. These results cannot be compared directly to
the results for autoencoders, because of the dif-
ferent receptive field sizes. The receptive field
sizes in the CDBN are smaller than those in the
autoencoder for the lower layers, but larger than
those in the autoencoder for the higher layers
due to the pooling effect. Note that the great-
est relative improvement comes in the natural
image tests, which presumably require greater
sophistication than the grating tests. The single
test with the greatest relative improvement is
the 3-D (out-of-plane) rotation test. This is the
most complex transformation included in our
tests, and it is where depth provides the greatest
percentagewise increase.

8 Discussion and conclusion
In this paper, we presented a set of tests for
measuring invariances in deep networks. We
defined a general formula for a test metric, and
demonstrated how to implement it using syn-
thetic grating images as well as natural videos
which reveal more types of invariances than
just 2-D (in-plane) rotation, translation and fre-
quency.

At the level of a single hidden unit, our firing
rate invariance measure requires learned fea-
tures to balance high local firing rates with low global firing rates. This concept resembles the
trade-off between precision and recall in a detection problem. As learning algorithms become more

7

Test Layer 1 Layer 2 % change
Grating phase 68.7 95.3 38.2
Grating orientation 52.3 77.8 48.7
Natural translation 15.2 23.0 51.0
Natural 3-D rotation 10.7 19.3 79.5

Table 1: Results of the CDBN invariance tests.

advanced, another appropriate measure of invariance may be a hidden unit’s invariance to object
identity. As an initial step in this direction, we attempted to score hidden units by their mutual
information with categories in the Caltech 101 dataset [22]. We found that none of our networks
gave good results. We suspect that current learning algorithms are not yet sophisticated enough to
learn, from only natural images, individual features that are highly selective for specific Caltech 101
categories, but this ability will become measurable in the future.

At the network level, our measure requires networks to have at least some subpopulation of hidden
units that are invariant to each type of transformation. This is accomplished by using only the
top-scoring proportionp of hidden units when calculating the network score. Such a qualification
is necessary to give high scores to networks that decompose the input into separate variables. For
example, one very useful way of representing a stimulus would be to use some subset of hidden units
to represent its orientation, another subset to represent its position, and another subset to represent
its identity. Even though this would be an extremely powerful feature representation, a value ofp
set too high would result in penalizing some of these subsets for not being invariant.

We also illustrated extensive findings made by applying the invariance test on computer vision tasks.
However, the definition of our metric is sufficiently general that it could easily be used to test, for
example, invariance of auditory features to rate of speech, or invariance of textual features to author
identity.

A surprising finding in our experiments with visual data is that stacked autoencoders yield only
modest improvements in invariance as depth increases. This suggests that while depth is valuable,
mere stacking of shallow architectures may not be sufficient to exploit the full potential of deep
architectures to learn invariant features.

Another interesting finding is that by incorporating sparsity, networks can become more invariant.
This suggests that, in the future, a variety of mechanisms should be explored in order to learn better
features. For example, one promising approach that we are currently investigating is the idea of
learning slow features [19] from temporal data.

We also document that explicit approaches to achieving invariance such as max-pooling and weight-
sharing in CDBNs are currently successful strategies for achieving invariance. This is not suprising
given the fact that invariance is hard-wired into the network, but it validates the fact that our metric
faithfully measures invariances. It is not obvious how to extend these explicit strategies to become
invariant to more intricate transformations like large-angle out-of-plane rotations and complex illu-
mination changes, and we expect that our metrics will be useful in guiding efforts to develop learning
algorithms that automatically discover much more invariant features without relying on hard-wired
strategies.

Acknowledgments This work was supported in part by the National Science Foundation under
grant EFRI-0835878, and in part by the Office of Naval Research under MURI N000140710747.
Andrew Saxe is supported by a Scott A. and Geraldine D. Macomber Stanford Graduate Fellowship.
We would also like to thank the anonymous reviewers for their helpful comments.

References

[1] Y. Bengio and Y. LeCun. Scaling learning algorithms towards ai. In L. Bottou, O. Chapelle,
D. DeCoste, and J. Weston, editors,Large-Scale Kernel Machines. MIT Press, 2007.

8

[2] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep
networks. InNIPS, 2007.

[3] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of
deep architectures on problems with many factors of variation.ICML, pages 473–480, 2007.

[4] G.E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets.Neural
Computation, 18(7):1527–1554, 2006.

[5] H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng. Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations. InICML, 2009.

[6] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for training deep
neural networks.The Journal of Machine Learning Research, pages 1–40, 2009.

[7] M. Ranzato, Y-L. Boureau, and Y. LeCun. Sparse feature learning for deep belief networks. In
NIPS, 2007.

[8] M. Ranzato, F.-J. Huang, Y-L. Boureau, and Y. LeCun. Unsupervised learning of invariant
feature hierarchies with applications to object recognition. InCVPR. IEEE Press, 2007.

[9] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y. Ng. Self-taught
learning: Transfer learning from unlabeled data. InICML ’07: Proceedings of the 24th inter-
national conference on Machine learning, 2007.

[10] D.J. Felleman and D.C. Van Essen. Distributed hierarchical processing in the primate cerebral
cortex.Cerebral Cortex, 1(1):1–47, 1991.

[11] H. Lee, C. Ekanadham, and A.Y. Ng. Sparse deep belief network model for visual area v2. In
NIPS, 2008.

[12] R. Quian Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant visual representation
by single neurons in the human brain.Nature, 435:1102–1107, 2005.

[13] K. Fukushima and S. Miyake. Neocognitron: A new algorithm for pattern recognition tolerant
of deformations and shifts in position.Pattern Recognition, 1982.

[14] M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex.Nature
neuroscience, 2(11):1019–1025, 1999.

[15] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and L.D. Jackel.
Backpropagation applied to handwritten zip code recognition.Neural Computation, 1:541–
551, 1989.

[16] P. Werbos.Beyond regression: New tools for prediction and analysis in the behavioral sci-
ences. PhD thesis, Harvard University, 1974.

[17] Y. LeCun. Une proćedure d’apprentissage pour réseau a seuil asymmetrique (a learning scheme
for asymmetric threshold networks). InProceedings of Cognitiva 85, pages 599–604, Paris,
France, 1985.

[18] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning representations by back-
propagating errors.Nature, 323:533–536, 1986.

[19] P. Berkes and L. Wiskott. Slow feature analysis yields a rich repertoire of complex cell prop-
erties.Journal of Vision, 5(6):579–602, 2005.

[20] L. Wiskott and T. Sejnowski. Slow feature analysis: Unsupervised learning of invariances.
Neural Computation, 14(4):715–770, 2002.

[21] Y. LeCun, F.J. Huang, and L. Bottou. Learning methods for generic object recognition with
invariance to pose and lighting. InCVPR, 2004.

[22] Li Fei-Fei, Rod Fergus, and Pietro Perona. Learning generative visual models from few train-
ing examples: An incremental bayesian approach tested on 101 object categories. page 178,
2004.

9

