A Proof of Lemma 4

Proof. Proof of Lemma 4 Let ¢ € C be an optimal decision tree, i.e., a size ¢ decision tree that
maximizes correlation for Uy, i.e., cor(c) = cor(C). The Fourier representation of c is,

c= 3 S)xs(a), @)

SCln]

where [n] denotes {1,2,...,n}, ¢(S) € [—1,1], and parity classifier xs(z) = [];cg 2[i] where
x[i] is the ith coordinate of x. Kushilevitz and Mansour show that if ¢ has at most ¢ leaves then
>_scn |6(S)] < t. Now,

cor(C) =cor(c) = E [e(z)y] = Z ¢(S) cor(xs)
(z,y)~Uy SC[n]

Hence, maxgc[y | cor(xs)| > cor(C)/t (otherwise the quantity displayed above on the left would
be less than g (,,; [¢(S)] cor(C)/t < cor(C), a contradiction). For any 7 > 0, the KM algorithm
with poly(n, 1/7,log(1/0)) queries and runtime outputs estimates of the correlations cor () (these
are exactly the estimated Fourier coefficients f (S)) for each S that are accurate to within an additive
7, with probability > 1 — § (there is a sparse polynomial-sized approximation using the fact that at
most 1/72 sets S can have | cor(xs)| > 7). Hence, if we take the set S for which KM estimates
| cor(xs)| to be largest, it will have an correlation within 27 of that of the best S. Hence, setting
T = ¢o/2 suffices for the Lemma. Note that if cor(xs) < 0, one simply outputs the classifier

—Xs- O

B Proof of Theorem 3

We first prove Lemma 5.

Proof of Lemma 5. Let ¢ : {—1,1}" — {—1,1}, and let ¢4 be the degree-d truncated Fourier
approximation of ¢, which is the best degree-d approximation to ¢ under the uniform distribution
over x € {—1,1}". It is well-known that, in terms of the Fourier approximation equation 4, c¢; =

ZS:|S|§d e(8)xs(z).

Klivans, O’Donnell, and Servedio [25] have shown that, for any 0 < € < %, d= 5—9, andany n > 1
and any halfspace ¢(z) = sign(w -  — 6),

E, [(elo) — cala))?] <

In particular, let ¢ be the best halfspace approximation to f, i.e., one with maximum correlation, and
let ¢4 be its degree-d truncation. Then,

cor(cq,Uy) = cor(c,Uy) — cor(c — cq,Uy) = cor(C,Uys) — . y]ﬁ?,Nuf[(c(:v) —cq(z))y]

Now, by Cauchy-Schwartz,
E [<c<w>—ccz<x>>y}s¢ E [(c(e) - ca@)?] E [Pl<vel

(z,y)~Uy (@, y)~Uy (@, y)~Uy

Hence, cor(cq) > cor(C) — v/e. Now,

cor(ca) = ) éS)cor(xs) < Y [é(S)] max |cor(xs)|

S:158|<d
5:5/<d 5:1S5/<d

Finally, 3. 5/<416(5)| < nd (since each &(S) € [—1, 1] and there are < n¢ of them), hence there
must be some set S of size < d for which |cor(xs)| > (cor(C) — v/€)/n?. Substituting ¢ = €2

proves the lemma. O

Theorem 3 now follows easily from the above lemma and our boosting theorem.
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Proof of Theorem 3. Consider the weak learner simply finds the degree-d term, x s(x) with |S| < d,
with greatest empirical correlation % Yot xs(@i)y; onadataset (x1,41),- ., (Tm,Ym). Standard
Chernoff-Hoeffding bounds guarantee that, for m > poly(log(1/4),n?), with probability > 1 —
0, the empirical correlation of each of the < nt different Xs’s will be within €/4 of their true
correlation. O]

11



