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Abstract

A score function induced by a generative model of the data can provide a fea-
ture vector of a fixed dimension for each data sample. Data samples themselves
may be of differing lengths (e.g., speech segments, or other sequence data), but
as a score function is based on the properties of the data generation process, it
produces a fixed-length vector in a highly informative space, typically referred to
as a “score space”. Discriminative classifiers have been shown to achieve higher
performance in appropriately chosen score spaces than is achievable by either the
corresponding generative likelihood-based classifiers, or the discriminative clas-
sifiers using standard feature extractors. In this paper, we present a novel score
space that exploits the free energy associated with a generative model. The result-
ing free energy score space (FESS) takes into account latent structure of the data
at various levels, and can be trivially shown to lead to classification performance
that at least matches the performance of the free energy classifier based on the
same generative model, and the same factorization of the posterior. We also show
that in several typical vision and computational biology applications the classifiers
optimized in FESS outperform the corresponding pure generative approaches, as
well as a number of previous approaches to combining discriminating and gener-
ative models.

1 Introduction
The complementary nature of discriminative and generative approaches to machine learning [20] has
motivated lots of research on the ways in which these can be combined [5, 12, 15, 18, 9, 24, 27]. One
recipe for such integration uses “generative score-spaces.” Using the notation of [24], such spaces
can be built from data by considering for each observed sequence x = (x1, . . . , xk, . . . , xK) of
observations xk ∈ <d, k = 1, . . . , K, a family of generative models P = {P (x|θi)} parameterized
by θi.
The observed sequence x is mapped to the fixed-length score vector ϕf

F̂
(x),

ϕf

F̂
(x) = ϕF̂ f({Pi (x|θi))}), (1)

where f is the function of the set of probability densities under the different models, and F̂ is some
operator applied to it. For instance, in case of the Fisher score [9], f is the log likelihood, and the
operator F̂ produces the first order derivatives with respect to parameters, whereas in [24] other
derivatives are also included. Another example is the TOP kernel [27] for which the function f is
the posterior log-odds and F̂ is again the gradient operator.
In these cases, the generative score-space approaches help to distill the relationship between a
model parameter θi and the particular data sample. After the mapping, a score-space metric must
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be defined in order to employ discriminative approaches.

A number of nice properties for these mappings, and especially for Fisher score, can be derived
under the assumption that the test data indeed follows the generative model used for the score
computation. However, the generative score spaces build upon the choice of one (or few) out
of many possible generative models, as well as the parameters fit to a limited amount of data.
In practice, these models can therefore suffer from improper parametrization of the probability
density function, local minima, over-fitting add under-training problems. Consider, for instance,
the situation where the assumed model over high dimensional data is a mixture of n diagonal
Gaussians with a given small and fixed variance, and a uniform prior over the components. The
only free parameters are therefore the Gaussian centers, and let us assume that training data is best
captured with these centers all lying on (or close to) a hypersphere with a radius sufficiently larger
than the Gaussians’ deviation. An especially surprising and inconvenient outlier in this case would
be a test data point that falls close to the center of the hypersphere, as the derivatives of its log
likelihood with respect to these parameters (Gaussian centers) evaluated at the estimate could be
very low when the number of components n in the mixture is large, because the derivatives are
scaled by the uniform posterior 1/n. But, this makes such a test point insufficiently distinguishable
from the test points that actually satisfy the model perfectly by falling directly into one of the
Gaussian centers. If the model parameters are extended to include the prior distribution over mixture
components, then derivatives with respect to these parameters would help disambiguate these points.

In this paper, we propose a novel score space which focuses on how well the data point fits different
parts of the generative model, rather than on derivatives with respect to the model parameters. We
start with the variational free energy as a lower bound on the negative log-likelihood of the data, as
this affords us with two advantages. First of all, the variational free energy can be computed for an
arbitrary structure of the posterior distribution, allowing us to deal with generative models with many
latent variables and complex structure without compromising tractability, as was previously done
for inference in generative models. Second, a variational approximation of the posterior typically
provides an additive decomposition of the free energy, providing many terms that can be used as
features. These terms/features are divided into two categories: the “entropy set” of terms that express
uncertainty in the posterior distribution, and the “cross-entropy set” describing the quality of the fit
of the data to different parts of the model according to the posterior distribution.

We find the resulting score space to be highly informative for discriminative learning. In partic-
ular, we tested our approach on three computational biology problems (promoter recognition, ex-
ons/introns classification, and homology detection), as well as vision problems (scene/object recog-
nition). The results compare favorably with the state-of-the-art from recent literature.

The rest of the paper is organized as follows. The next section describes the proposed framework in
more detail. In Sec. 3, we show that the proposed generative score space leads to better classification
performances than the related generative counterpart. Some simple extensions are described in Sec.
4, and used in the experiments in Sec. 5.

2 FESS: Free Energy Score Space
A generative model defines the distribution P (h, x|θ) =

∏T
t=1 P (h(t), x(t)|θ) over a set of observa-

tions x = {x(t)}T
t=1, each with associated hidden variables h(t), for a given set of model parameters

θ shared across all observations. In addition, to model the posterior distribution P (h|x), we also
define a family of distributions Q from which we need to select a variational distribution Q(h) that
best fits the model and the data. Assuming i.i.d data, the family Q can be simplified to include only
distributions of the form Q(h) =

∏T
t=1 q(h(t)). The free energy [19, 11] is a function of the data,

parameters of the posterior Q(h), and the parameters of the model P , defined as

FQ = KL(Q,P (h|x, θ))− log P (x|θ) =
∑

h

Q(h) log
Q(h)

P (h, x|θ) (2)

The free energy bounds the log likelihood, FQ ≤ − log P (x) and the equality is attained only if
Q is expressive enough to capture the true posterior distribution, as the free energy is minimized
when Q(h) = P (h|x). Constraining Q to belong to a simplified family of distributionsQ, however,
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provides computational advantages for dealing with intractable models P . Examples of distribution
families used for approximation are the fully-factorized mean field form [13], or the structured vari-
ational approximation [7], where some dependencies among the hidden variables are kept.
Minimization of FQ as a proxy for negative log likelihood is usually achieved by alternating opti-
mization of with respect to Q and θ, a special case of which – when Q is fully expressive – is the EM
algorithm. Different choices of Q provide different types of compromise between the accuracy and
computational complexity. For some models, accurate inference of some of the latent variables may
require excessive computation even though the results of the inference can be correctly reinterpreted
by studying the posterior Q from a simpler family and observing the symmetries of the model, or
by reparametrizing the model (see for example [1]). In what follows, we will develop a technique
that uses the parts of the free energy to infer the mapping of the data to a class variable with an
increased accuracy despite possible imperfections of the data fit, whether this imperfection is due to
the approximations and errors in the model or the posterior.

Having obtained an estimate of parameters θ̂ that fit the given i.i.d. data we can rearrange the free
energy (Eq.2) as

FQ =
∑

t

F t
Q, and

F t
Q =

∑

h(t)

q(h(t)|θ̂) · log q(h(t)|θ̂)−
∑

h(t)

q(h(t)|θ̂) · log P (h(t), x(t)|θ̂) (3)

The second term in the equation above is the cross-entropy term and it quantifies how well the data
point fits the model, assuming that hidden variables follow the estimated posterior distribution. This
posterior distribution is fit to minimize the free energy; the first term in 3 is the entropy and quantifies
the uncertainty in this fit.

If Q and P factorize, then each of these two terms further breaks into a sum of individual terms,
each quantifying the aspects of the fit of the data point with respect to different parts of the model.
For example, if the generative model is described by a Bayesian network, the joint distribution can
be written as P (v(t) =

∏
n P (v(t)

n |PAn), where v(t) = {x(t), h(t)} denotes the set of all variables
(hidden or visible) and PAn are the parents of the n− th of these variables, i.e., v

(t)
n .

The cross-entropy term in the equation above further decomposes into
∑

[v
(t)
1 ]

q(v
(t)
1 ∪ PA1|θ̂) · log P (v

(t)
1 |PA1, θ̂) + · · ·+

∑

[v
(t)
N

]

q(v
(t)
N ∪ PAN |θ̂) · log P (v

(t)
N |PAN , θ̂) (4)

For each discrete hidden variable v
(t)
n , the appropriate terms above can be further broken down into

individual terms in the summation over the Dn possible configurations of the variable, e.g.,

q(v(t)
n = 1,∪ PAn|θ̂)·log P (v(t)

n = 1|PAn, θ̂)+· · ·+ q(v(t)
n = Dn,∪ PAn|θ̂)·log P (v(t)

n = Dn|PAn, θ̂)
(5)

In a similar fashion, the entropy term can also be decomposed further into a sum of terms as dictated
by the factorization of the familyQ. Therefore, the free energy for a single sample t can be expressed
as the sum

F t
Q =

∑

i

f t
i,θ̂

(6)

where all the free energy pieces f t
i,θ̂

derive from the finest decomposition (5) or (4).

The terms f t
i,θ̂

describe how the data point fits possible configurations of the hidden variables in
different parts of the model. Such information can be encapsulated in a score space that we call free
energy score space or simply FESS.

For example, in the case of a binary classification problem, given the generative models for the two
classes, we can define as F(Q,θ̂)(x

(t)) the mapping of x(t) to a vector of scores f with respect to a
particular model with its estimated parameters, and a particular choice of the posterior family Q for
each of the classes, and then concatenate the scores. Therefore, using the notation from [24] the free
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energy score operator ϕFESS
F̂

(x(t)) is defined as

ϕFESS
F̂

: x(t) →
[
F(Q1,θ̂1)

(x(t));F(Q2,θ̂2)
(x(t))

]
where F(Qc,θ̂c)

= [. . . , f t
i,θ̂c

, . . . ]T , c = 1, 2
(7)

If the posterior families are fully expressive, then the MAP estimate based on the generative models
for the two classes can be obtained from this mapping by simply summing the appropriate terms to
obtain the log likelihood difference, as the free energy equals the negative log likelihood.

However, the mapping also allows for the parts of the model fit to play uneven roles in classification
after an additional step of discriminative training. In this case the data points do not have to fit either
model well in order to be correctly classified. Furthermore, even in the extreme case where one
model provides a higher likelihood than the other for the data from both classes (e.g., because the
models are not nested, and likelihoods cannot be directly compared), the mapping may still provide
an abstraction from which another step of discriminative training can benefit. The additional step
of training a discriminative model allows for mining the similarities among the data points in terms
of the path through different hidden variables that has to be followed in their generation. These
similarities may be informative even if the generative process is imperfect.

Obviously, (7) can be generalized to include multiple models (or the use of a single model) and/or
multiple posterior approximations, either for two-class or multi-class classification problems.

3 Free energy score space classification dominates the MAP classification
We use here the terminology introduced in [27], under which FESS would be considered a model-
dependent feature extractor, as different generative models lead to different feature vectors [25].
The family of feature extractors ϕF̂ : X → <d maps the input data x ∈ X in a space of fixed
dimension derived from a plug-in estimate λ, in our case the generative model with parameters θ̂
from which the features are extracted.

Given some observations x and the corresponding class labels y ∈ {−1, +1} following the joint
probability P (x, y|θ∗), a generative model can be trained to provide an estimate θ̂ 6= θ∗, where θ∗
are the true parameters. As most kernels (e.g. Fisher and TOP) are commonly used in combination
with linear classifiers such as linear SVMs, [27] proposes as a starting point for evaluating the
performance of a feature extractor the classification error of a linear classifier wT · ϕF̂ (x) + b in
the feature space <d, where w ∈ <d and b ∈ <. Assuming that w and b are chosen by an optimal
learning algorithm on a sufficiently large training dataset, and that the test set follows the same
distribution with parameter θ∗, the classification error R(ϕF̂ ) can be shown to tend to

R(ϕF̂ ) = min
w,b

Ex,yΦ[−y(wT · ϕF̂ (x) + b)] (8)

where Φ[a] is an indicator function which is 1 when a > 0, and 0 otherwise, and Ex,y denotes the
expectation with respect to the true distribution P (x, y|θ∗).
The Fisher kernel (FK) classifier can perform at least as well as its plug-in estimate if the parameters
of a linear classifier are properly determined [9, 27],

R(ϕFK
F̂

) ≤ Ex,tΦ[−y(P (y = +1|x, θ̂)− 1
2
)] = R(λ) (9)

where λ represents the generative model used as plug-in estimate.

This property also trivially holds for our method, where ϕF̂ (x(t)) = ϕFESS
F̂

(x(t)), because the free
energy can be expressed as a linear combination of the elements of ϕ .

In fact, the minimum free energy test (and the maximum likelihood rule whenQ is fully expressive)
can be defined on ϕ derived from the generative models with parameters θ̂+1 for one class and θ̂−1

for another as

ŷ = min
y
{F t

(Q,θ̂+1)
,F t

(Q,θ̂−1)
} = Φ

[
1TF(Q,θ̂+1)

(x(t))− 1TF(Q,θ̂−1)
(x(t))

]
(10)

The extension to a multiclass classification is straightforward. When the family Q is expressive
enough to capture the true posterior distribution, then free energy reduces to negative log likelihood,
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and the free energy test reduces to ML classification. In other cases, likelihood computation is
intractable, and free energy test is used instead of the likelihood ratio test. It is straightforward
to prove that a kernel classifier that works in FESS is asymptotically at least as good as the MAP
labelling based on the generative models for the two classes since generative classification is a
special case of our framework.

Lemma 3.1 For ϕFESS
F̂

(x(t)) derived as above with its first M1 elements being the components of
the free energy for one model, and the remaining M2 for the second, a linear classifier employing
ϕFESS

F̂
will, asymptotically (with enough data), provide classification error which is at least as low

as RQ(λ) achieved using the free energy test above.

R(ϕFESS
F̂

) ≤ Ex,tΦ
[
−y(P (y = +1|x, θ̂)− 1

2
)
]

= RQ(λ)

Proof
R(ϕ

F ESS
F̂

) = min
w,b

Ex,yΦ[−y(w
T · ϕF ESS

F̂
(x) + b)] ≤ Ex,yΦ[−y(w

T · ϕF ESS
F̂

(x) + b)] ∀ w, b

R(ϕ
F ESS
F̂

) ≤ Ex,yΦ[−y(w
T
g · ϕF ESS

F̂
(x) + bg)] for wg = [

M1 times

︷ ︸︸ ︷
+1, · · · , +1,

M2 times

︷ ︸︸ ︷
−1, · · · ,−1]

T
, bg = 0

R(ϕ
F ESS
F̂

) ≤ RQ(λ) (11)

¤

Furthermore, when the family Q is expressive enough to capture the true posterior distribution, the
free energy test is equivalent to maximum likelihood (ML) classification, RQ(λ) = R(λ). The
dominance of the Fisher and Top kernels [9, 27] over their plug-in holds for FESS too, and the same
plug-in (the likelihood under a generative model) may be used when this is tractable. However, if
the computation of the likelihood (and the kernels derived from it) is intractable, then the free energy
test as well as the kernel methods based on FESS that will outperform this test, can both still be used
with an appropriate family of variational distributions Q.

4 Controlling the length of the feature vector
In some generative models, especially sequence models, the number of hidden variables may change
from one data point to the next. In speech processing, for instance, hidden Markov models (HMM)
[23] may have to model utterances x

(t)
1 , . . . , x

(t)
K(t) of different sequence lengths K(t). As each

element in the sequence has an associated hidden variable, the hidden state sequences s
(t)
1 , . . . , s

(t)
K(t)

are also of variable lengths. The parameters θ of this model include the prior state distribution π,
the state transition probability matrix A = a{ij}, and the emission probabilities B = b{iv}. Exact
inference is tractable in HMMs and so we can use the exact posterior (EX) distribution to formulate
the free energy and the free energy minimization is equivalent to the usual Baum-Welch training
algorithm [17] and FEX = − log P (x). The free energy of each sample xt is

F t
EX =

∑

[s]

q(s(t)
1 ) log q(s(t)

1 ) +
∑

[s]

K(t)−1∑

k=1

q(s(t)
k , s

(t)
k+1) log q(s(t)

k , s
(t)
k+1)−

∑

[s]

q(s(t)
1 ) log π

s
(t)
1

−
∑

[s]

K(t)−1∑

k=1

q(s(t)
k , s

(t)
k+1) log a{s(t)

k ,s
(t)
k+1}

−
∑

[s]

K(t)∑

k=1

q(s(t)
k ) log b{s(t)

k ,x
(t)
k } (12)

Depending on how this is broken into terms fi, we could get feature vectors whose dimension de-
pends on the length of the sample K(t). To solve this problem, we first note that a standard approach
to dealing with utterances of different lengths is to normalize the likelihood by the sequence length,
and this approach is also used for defining other score spaces. If, before the application of the score
operator, we simply evaluate the sums over k in the free energy and divide each by K(t), we obtain
a fixed number of terms independent of the sequence length. This results in a length-normalized
score space nFESS, where the granularity of the decomposition of the free energy is dramatically
reduced.
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Figure 1: A) SVM error rates for nFESS and probability product kernels [10] using Markov models
(we reported only their best result) and hidden Markov models as plug-ins. T represents the param-
eters used in the kernel of [10], and K is the order of the Markov chain. The results are arranged
along the x axis by the regularization constant used in SVM training. B) Comparison with results
obtained using FK and TK score spaces. C) Comparison of the five homology detection methods
in Experiment 3. Y axis represents the total number of families for which a given method exceeds a
median RFP score on the X axis.

In general, even for fixed-length data points and arbitrary generative models, we do not need to cre-
ate large feature vectors corresponding to the finest level of granularity described in (5), or for that
matter the slightly coarser level of granularity in (4). Some of the terms in these equations can be
grouped and summed up to ensure for shorter feature vectors, if this is warranted by the application.
The longer the feature vector, the finer is the level of detail with which the generative process for the
data sample is represented, but more data is needed for the training of the discriminative classifier.
Domain knowledge can often be used to reduce the complexity of the representation by summing
appropriate terms without sacrificing the amount of useful information packed in the feature vectors.

Such control of the feature vector length does not negate the previously discussed advantages of the
classification in the free energy score space compared with the straightforward application of free
energy, likelihood, or in case of sequence models, length-normalized likelihood tests.

5 Experiments
We evaluated our approach on four standard datasets and compared its performance with the clas-
sification results provided by the datasets’ creators, those estimated using the plug-in estimate λ,
and those obtained using the Fisher (FK) and TOP (TK) kernel [9, 27] derived from the plug-ins.
Support vector machines (SVMs) with RBF kernel were used as discriminative classifiers in all the
score spaces, as this technique was previously identified as most potent for dealing with variable-
length sequences [25]. As plug-ins, or generative models/likelihoods λ, for the three score spaces
we compare across experiments, we used hidden Markov models (HMMs)[23] in Experiments 1-3
and latent Dirichlet allocation (LDA)[4] in Experiment 4. For each experiment, comparisons are
based on the same validation procedure used in the appropriate original papers that introduced the
datasets. For both FK and FESS, in each experiment we trained a single generative model (HMM
or LDA, depending on the experiment). For all HMM models, the length-normalization with associ-
ated summation over the sequence as described in the previous section was used in the construction
of the free energy score space. The model complexity, e.g., the number of states for the HMM were
chosen by cross-validation on the training set.

Experiment 1: E. coli promoter gene sequences. The first analyzed dataset consists of the E.
coli promoter gene sequences (DNA) with associated imperfect domain theory [26]. The standard
task on this dataset is to recognize promoters in strings of nucleotides (A, G, T, or C). A promoter
is a genetic region which facilitates the transcription of gene located nearby. The input features
are 57 sequential DNA nucleotides. Results, obtained using leave-one-out (LOO) validation, are
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reported in Table 1 and illustrate that FESS represents well the fixed size genetic sequences, leading
to superior performance over other score spaces as well as over the plug-in λHMM .

E.Coli λHMM FESS nFESS FK TK
Accuracy 67,34% 94,33% 85,80% 79,20% 85,30%

Table 1: Promoter classification results.

Experiment 2: Introns/Exons classification in HS3D data set. The HS3D data set 1[10] con-
tains labelled intron and exon sequences of nucleotides. The task here is to distinguish between
the two types of gene sequences that can both vary in length (from dozens of nucleotides to tens of
thousands of nucleotides). For the sake of comparison, we adopted the same experimental setting
of [10]. In Fig.1-A (top right), we reported the results obtained in [10] (overall error rate, OER,
7,5%), the results obtained using the HMM model (λHMM , OER 27,59%) together with the results
obtained by our method (OER 6,12%). In Fig. 1-B (bottom right), we compared our method also
with FK (OER 10,06%) and TK (OER 12,82%) kernels.

Experiment 3: Homology detection in SCOP 1.53. We tested the ability of FESS to classify
protein domains into superfamilies in the Structural Classification of Proteins (SCOP)2 version 1.53.
The sequences in the database were selected from the Astral database, based on the E-value thresh-
old of 10−25 for removing similar sequences from it. In the end, 4352 distinct sequences were
grouped into families and superfamilies. For each family, the protein domains within the family are
considered positive test examples, and the protein domains outside the family, but within the same
superfamily, are taken as positive training examples. The data set yields 54 families containing at
least 10 family members (positive test) and 5 superfamily members outside of the family (positive
train) for a total of 54 One-Vs-All problems. The experimental setup is similar to that used in [8],
except for one important difference: in the current experiments, the positive training sets do not
include additional protein sequences extracted from a large, unlabelled database. Therefore, the
recognition tasks performed here are more difficult than those in [8]. In order to measure the quality
of the ranking, we used the median RFP score [8] which is the fraction of negative test sequences
that score as high as or better than the median-scoring positive sequence. We used SVM decision
values as score. We find that FESS outperforms task-specific algorithms (PSI-Blast [2] and SAM
[14]) as well as the Fisher score (FK,[8]) with statistical significance with p-values of 5.1e-9, 8.3e-7,
1.1e-5, respectively. There is no statistical difference between our results FESS and those based on
FPS [3]. In particular, the poor performance of [8] is explained by the under-training of HMMs [6].
The FESS representation proved to be much less sensitive to the training problems. We repeated
the test using two different choices of Q: the approximate mean field factorization and the exact
posterior (FESS-MF and FESS-EX, respectively, in Fig.1-C). Interestingly, the performance was
also robust with respect to these choices.

Experiment 4: Scene/object recognition. Our final set of experiments used the data from the
Graz dataset3, as well as the dataset proposed in [21]. In both tests, we used Latent Dirichlet allo-
cation (LDA) [4] as the generative model. The free energy for LDA is derived in [4]. To serve as
words in the model, we extracted SIFT features from 16x16 pixel windows computed over a grid
with spacing of 8 pixels. These features were mapped to 175 codewords (W = 175). We varied the
number of topics to explore the effectiveness of different techniques.

Graz dataset has two object classes, bikes (373 images) and persons (460 images), in addition to a
background class (270 images)4. The range of scales and poses at which exemplars are presented
is highly diverse, e.g., a “person” image may show a pedestrian at a certain distance, a side view
of a complete body, or just a closeup of a head. We performed two-class detection (object vs.
background) using an experimental setup consistent with [16, 22]. We generated ROC curves by
thresholding raw SVM output, and report here the ROC equal error rate averaged over ten runs. The
results are shown in Table 2. The standard deviation of the classification rate is quite high as the
images in the database have very different complexities, and the performance for any single run is

1www.sci.unisannio.it/docenti/rampone
2http://scop.mrc-lmb.cam.ac.uk/scop/
3http://www.emt.tugraz.at/ pinz/data/GRAZ 02/
4The car class is ignored as in [16]
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Graz dataset FESS - Z=15 FESS - Z=30 FESS - Z=45 [16] [22]
Bikes 86,1% (1,8) 86,5% (2,0) 89,1% (2,3) 86,3% (2,5) 86,5%
People 83,1% (3,1) 82,9% (2,8) 84,4% (2,0) 82,3% (3,1) 80,8%
Scenes dataset λLDA FESS FK [21] [16]
Natural 63,93% 95,21% 90,10% 89,00% 84,51%
Artificial 67,21% 94,38% 90,32% 89,00% 89,43%

Table 2: Classification rates for object/scene recognition tasks. The deviation is shown in brackets.
Our approach tends to be robust to the choice of the number Z of topics, and so in scene recognition
experiments, we report only the result for Z=40.

highly dependent on the composition of the training set.
We also tested our approach on the scene recognition task using the datasets of [21], composed of
two (Natural and Artificial scenes) datasets, each with 4 different classes. The results are reported in
Table 2 where for the first time we employed Fisher-LDA in a vision application. Although this new
technique outperformed state of the art, once again, FESS outperforms both this result and other
state-of-the-art discriminative methods [21, 16].

6 Conclusions
In this paper, we present a novel generative score space, FESS, exploiting variational free energy
terms as features. The additive free energy terms arise naturally as a consequence of the factorization
of the model P and the posterior Q. We show that the use of these terms as features in discriminative
classification leads to more robust results than the use of the Fisher scores, which are based on the
derivatives of the log likelihood of the data with respect to the model parameters. As was previously
observed, we find that the Fisher score space suffers from the so called “wrap-around” problem,
where very different data points may map to the same derivative, an example of which was dis-
cussed in the introduction. The free energy terms, on the other hand, quantify the data fit in different
parts of the model, and seem to be informative even when the model is imperfect. This indicates
that the re-scaling of these terms, which the subsequent discriminative training provides, leads to
improved modelling of the data in some way. Scaling a term in the free energy composition, e.g.,
the term

∑
h q(h) log p(x|h), by a constant w is equivalent to raising the appropriate conditional

distribution to the power w. This is indeed reminiscent of some previous approaches to correcting
generative modelling problems. In speech applications, for example, it is a standard practice to raise
the observation likelihood in HMMs to a power less than 1, before inference is performed on the
test sample, as the acoustic signal would otherwise overwhelm the hidden process modelling the
language constraints [28]. This problem arises from the approximations in the acoustic model. For
instance, a high-dimensional acoustic observation is often modelled as following a diagonal Gaus-
sian distribution, thus assuming independent noise in the elements of the signal, even though the
true acoustics of speech is far more constrained. This results in over-accounting for the variation in
the observed acoustic signal, and to correct for this in practice, the log probability of the observation
given the hidden variable is scaled down. The technique described here proposes a way to automati-
cally infer the best scaling, but it also goes a step further in allowing for such corrections at all levels
of the model hierarchy, and even for specific configurations of hidden variables. Furthermore, the
use of kernel methods provides for nonlinear corrections, as well. This extremely simple technique
was shown here to work remarkably well, outperforming previous score space approaches as well
as the state of the art in multiple applications.
It is possible to extend the ideas here to other types of model/data energy. For example, the free
energy approximated in different ways is used in [1] to construct various inference algorithms for
a single scene parsing task. It may also be effective, for example, to use the terms in the Bethe
free energy linked to different belief propagation messages to construct the feature vectors. Finally,
although we find that FESS outperforms the previously studied score spaces that depend on the
derivatives, i.e. where F̂ is a derivative with respect to θ, the use of this derivative in (7) is, of
course, possible. This allows for the construction of kernels similar to FK and TK, but derived
from intractable generative models as we show in Experiment 4 (FK in Table 2) on latent Dirichlet
allocation.
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