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A  Proof of Lemma 1

Proof. We denote by zj, ;(0) an element of Py ; such that
f(xiiz(é)) > fit,i —9.
By the weakly Lipschitz property, it then follows that for all y € Py, ;,
f =fly) < f*—f(:c%(&))—!—max{f*—f(m}i,i(é)), Z(m}‘m@), y) } < Ah,i+5+max{Ah,i—|—5, diam Ph,i} .

Letting § — 0 and substituting the bounds on the suboptimality and on the diameter of P}, ; concludes the
proof. O

B Proof of Lemma 2

Proof. We consider a given round ¢ € {1,...,n}. If (H,I;) € C(h,i), then this is because the child of
(k,i3) on the path to (h,7) had a better B-value than its brother (k + 1,45, ). Since by definition, B—
values can only decrease on a path, this entails that By, ;(t) = B1,5;,, (t). This is turns implies, again by
definition of the B-values, that Up,;(t) > B+1,i;,, (t). Thus,
{(Ht,ft) c C(h,l)} C {Uh’i(t) > Bk+1,i:+l (t)} C {Uh’i(ﬁ) > f*}U{BkJrl-,iZJrl(t) < f*} .
But, once again by definition of B—values,
{Brsviz,, () < f*} HUprrz,, () < F3U{Bryaiz,(6) < 7},

and the argument can be iterated. Since at round ¢ not more than ¢ nodes have been played (including the

suboptimal (h, 7)), we know that (¢, ;) and its descendants have U—values and B—values equal to +00. We
thus have proved the inclusion

{(Ht,lt) S C(h,l)} C {Uh,,'(t) > f*} U ({Bk-‘rLiZJrl (t) < f*} U... U{Bt_17iz«71(t) < f*}) .

The result follows by simply distinguishing whether N}, ;(t) > u (which can only happen if ¢ > u) or
not. O



C Proof of Lemma 3
Proof. Uy ; < f*is not true when node (h, ¢) was never pulled (in this case, by definition, Uy, ;(n) = +00).
We may thus conduct the study in the sequel on the event {N hi(n) > 1}.

Lemma 1 with ¢ = 0 gives that f* — f(z) < v1p" holds for any arm = € P}, ;. Hence,

n

S (F(X) +vip" = £7) L, nyectniy = 0

and therefore,
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—1/Npi(n)2Inn and Np ;(n) > 1}
P {Z(f(Xt) - Yt)H{(Ht,It)GC(h,i)} > 4/ Np,i(n)2Ilnn and Nj, ;(n) > 1} .

t=1
We take care of the last term with a union bound and the Hoeffding-Azuma inequality for martingale dif-
ferences. To do this properly we need to define a sequence of (random) times when arms in C(h, i) were
pulled:

IN

Tj:min{t:Nh’i(t):j}, _721,2,
Note that 1 < T} < T5 < ... and hence it holds that T; > j. With these notation, )~( j = X, is the j—th
arm pulled in a domain corresponding to C(h,4), Y; = Y7, is the corresponding reward, and

P {Z(f(Xt) — Yt)H{(Ht,If,)GC(h,i)} > 1/Nh’i(n) 2Inn and Nh’i(n) > 1}

t=1
Nh L(”

= P Z ) >/ Npi(n)2lnn and N ;(n) > 1

7j=1

ip{ ;) =Yi) = V2ilnn

t=1
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where we used a union bound to get the last inequality.

We now prove that

t
7= Y (#(X) - ;)
j=1
is a martingale difference sequence (with respect to the filtration it generates). This follows, via optional
skipping (see [? ], Theorem 2.3), from the fact that
n
D (FOX) = Yo) a1y ectnin
t=1



is a martingale, with respect to the filtration ; = o(X1,Y1,..., X;,Y};), and that {T; = k} € Fj_1.
Applying the Hoeffding-Azuma inequality (using the bounded ranges), we then get, for each ¢ > 1,

2
t _ N 2 (\/Qtln n)
P (X)) ~¥;) 2 V2tn g exp |~ te | =01,
j=1
which concludes the proof. O

D Proof of Lemma 4

Proof. Remark that for the © mentioned in the statement of the lemma,

2Int
Vot vip" < (Ani+110")/2,

and therefore,

+ " > fhi+Api and Np (t) > u}

)

. . Api—vph

< P ,uh,z'(t) > fh,z + f and Nhﬂ'(t) >u
Ap; —viph
< p{Nh,i(t) (Bins(t) = fi) > h’f””’u and N,.i(t) > u}
t
% A i — VUV h

= P{Z(Ys - fhvi)ﬂ{(Hs,Is)EC(h,i)} > Zhi AP 5 1P and Npi(t) > u}

s=1
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uw and Np;(t) > u}

Now it follows again by the optional skipping argument, the Hoeffding-Azuma inequality, and a union
bound, that

t
A i — UV h
P {Z(Ys = F (X)) 1) ecininy > h’fw uw and Np;(t) > U}

s=1
t 2
2 [ (Api —viph 1
< exp <_8 (W) ) <texp (_2U(A,m- _lehy) <tn

(where we used the stated bound on u to obtain the last inequality). O

E Proof of Theorem 2

We only deal with the case of deterministic strategies. The extension to randomized strategies can be done
using Fubini’s theorem.



Forn € [0, 1/4] and 2* € X, we denote by f, .~ the mapping defined by

fier (z) = max{n — l(z,2*), 0}
for all z € X and by M, .- the environment defined by

M, .+ (z) = Ber (; + foe (:c))

for all z € X. We consider K points z1,...,Tk in X such that the balls B, , with radius 7 centered at
each of the z; are non-overlapping. Note that B, , is the support of f; ,~. In addition, the mean functions
of all the defined environments are 1-Lipschitz and thus are weakly Lipschitz.

We will also need to consider environments on a finite set of arms {1, ..., K + 1}. We construct K different
product-distributions v, s, ..., vk for the arms {1,..., K + 1} as follows. For a given v;, the reward
distribution associated to the i-th arm is v; ; = Ber(1/2) for all ¢ # j and v; ; = Ber(1/2 + 7).

To each (deterministic) strategy ¢ on X, we associate a random strategy 1 on the finite set of arms
{1,..., K + 1} as follows. Let ¢ > 1. Since ¢ is deterministic it associates to each sequence of rewards
{r1,.,me—1} € {0,1}*~! a unique sequence {x1,..,z;} € X! of arms that ¢ would have pull under this
sequence of rewards. With a slight abuse of notation we can write ©(ry, .., 7:—1) = (1, .., +). Now assume
that the historic of ¢ at time ¢ is X1, Ry, ..., X;—1, Ri—1 and let (X7, .., X}) = ¢(R1,.., Ri—1). We then
define ) ,

Y =0k 41 it X/ &U;By, .,

Wy = (1 _ Z(X;,fcj)) (51], + Z(X;,mj)5K+l if X{ c ijm,
where §; is a dirac distribution on j.
We now want to prove that the distributions of the regrets for ¢ under M, ;. and for ¢ under v; are equal

forall j = 1,..., K. On the one hand, the expectations of the best arms are 1/2 + 7 under all these
environments. On the other hand we can prove recursively that for any {rq,..,7:} € {0,1}?,

P(Ry=7m1,..Ri =1) =P(R] =711,.., R, =14).

where Ry,..., R, (respectively R}, ..., R}) is the sequence of rewards obtained by ¢ under M,, ., (respec-
tively ¢ under v;). The result is easy to check for ¢ = 1 and for ¢ > 1 it follows from

P(Ry=7r1,..Re=r:) =P(Re =1|R1 =71,., Re =1¢)P(R1 =71, .., Rt—1 = 7¢-1)
and the same calculation for R;.
As a consequence, the regrets R, (¢) and R,, (1) have the same expectation, that is, forall j = 1,..., K,
E; Ru(p) = E; Ra(¥) 6]
where E; denotes the expectation under M,, ., and E; the one under v;.

But it can be extracted from the proof of the lower bound of [? , Section 6.9] that for all strategies ¢)’, all
n € [0,1/4], and all integers K,

/ ! 1
max, B} Ry (4) > mn (1 -y [41n(4/3) IZ) . )

By the assumption on packing dimension, there exists ¢ > 0 such that K = ¢n~¢ > 2 is a suitable choice.
Substituting this value, we get

max E; R,(¢) = max -

1 41n(4/3)
, > I 9442 [4In(4/3) .
J=1,. K G=1,... E;j Bn(v) 2 1 (2 " n)

4



The left-hand side is smaller than the maximal regret with respect to all weak-Lipschitz environments; the
right-hand side can be optimized over < 1/4 to get the claimed bound, by taking

1 2/(d+2)
n=|(=./—" n-1/(d+2)
4\ 41n(4/3)



