
1 Methods

1.1 Probabilistic Model of Visual-Speller BCIs

We derive a generative model of the BCI speller system and then use this model to guide the gen-
eration and selection of codebooks which are optimal in terms of information-theoretic and psy-
chophysiological criteria. We assume an N -letter alphabet Γ and an N -letter by L-bit codebook C.
The basic demodulation and decoding procedure consists of finding the letter T̂ among the possible
letters t ∈ Γ showing the largest probability Pr (t|X) of being the target letter T , given C and the
measured brain signals X = [x1, . . . , xL], i.e.,

T̂ = argmax
t∈Γ

Pr (t|X) = argmax
t∈Γ

Pr (X|t) Pr (t)

Pr (X)
, (1)

where the second equality follows from Bayes’ rule. A simple approach to decoding is to treat the
individual binary epochs, with binary labels c = (Ct1 . . . CtL), as independent. This allows us to
factor Pr (X|t) into per-epoch probabilities Pr (xj |c) to give

Pr (t|X) =
Pr (t)

Pr (X)

L
∏

j=1

Pr (xj |c) =
Pr (t)

Pr (X)

L
∏

j=1

Pr (Ctj |xj) Pr (xj)

Pr (Ctj)
= ft(X) , (2)

where the second equality again follows from Bayes’ rule.

This form of Bayesian decoding [3] forms the basis for our decoding scheme. We train a probabilistic
discriminative classifier, in particular a linear logistic regression (LR) classifier [1, pp82-85], to
estimate Pr (Ctj |xj) = pj in (2) for j = 1 . . . L. As a result, we can obtain estimates of the
probability Pr (t|X) that a particular letter t corresponds to the user-selected codeword. Note that
for decoding purposes the terms Pr (X) and Pr (xj) can be ignored as they are independent of
t. Furthermore, the product

∏

j Pr (Ctj) depends only on the positive-class prior of the binary
classifier, Pr (+). In fact, it is easy to show that during decoding this term cancels out the effect
of the binary prior, which may therefore be set arbitrarily without affecting the decisions made by
our decoder. The simplest thing to do is to train classifiers with Pr (+) = 0.5, in which case the
denominator term is constant for all t.

1.1.1 Modelling demodulation and decoding errors

We used a simple model of subjects’ responses in each epoch in order to estimate the probability of
making a prediction error with the above decoding method. The predicted letter T̂ is the letter with
maximal estimated Pr (t|X) = ft(X). The probability that we mistakenly predict some other target
W when the true target is T is Pr (fT (X) < fW (X)|T ) = Pr (log fT (X) < log fW (X)|T ) =

Pr
(

log fT (X)
fW (X) < 0|T

)

. Thus the probability of error is simply the probability that the estimated

log likelihood ratio of the two letters, given that T was actually transmitted, is less than 0. Using (2)
to substitute for f(.)(X) we obtain

log
fT (X)

fW (X)
= log

Pr (T )

Pr (W )
+

L
∑

j=1

log
Pr (xj |CTj)

Pr (xj |CWj)
= log

Pr (T )

Pr (W )
+

L
∑

j=1

(CTj − CWj) log
Pr (xj |+)

Pr (xj |−)
,

(3)
where the last equality follows from expanding the 4 possible combinations of values for CTj and
CWj . Note, all the values in (3) are implicitly conditioned on the true transmitted letter being T . We
will use the superscript notation x|T to flag quantities for which this dependence must be modelled.

Let zj
|T denote the terms over which we sum in (3). zj

|T is simply the logged likelihood ratio as
estimated by the classifier. In general this ratio is difficult to estimate. However, if (as is used in
the derivation of the linear LR classifier) we assume that the positive and negative classes are drawn
from equal covariance Gaussian distributions, then the zj

|T will also have a Gaussian distribution.

The mean µj
|T and standard deviation σj

|T of zj
|T depend on the true letter T , making it difficult

to estimate them for new codewords in general. In constructing a model of µj
|T and σj

|T based
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on the two competition data-sets, we find that this Gaussianity assumption is well satisfied if we
only condition on the current bit Ctj and the time elapsed since the last target stimulus. Thus we
hypothesize that it is possible to learn µ(c, TPT) and σ(c, TPT) on one set of codebooks and use
them to predict the error rate on new ones.

Being a sum of Gaussians, (3) is also Gaussian distributed, with mean bW
|T =

log Pr (T ) /Pr (W ) +
∑

j (CTj − CWj)µj
|T and variance (sW

|T )2 =
∑

j (Ctj − Cij)
2(σj

|T )2.

Thus, the probability of confusing the true transmitted letter T with letter W is φ(bW
|T /sW

|T ),
where φ is the cumulative Gaussian function. The probability of confusing T with any other letter is
Pr (

∨

W fT (X) < fW (X)|T ) which, due to the common conditioning variable in all the zj
|T , can

be evaluated as an N -dimensional cumulative Gaussian. For this, we use the numerical algorithm
MVNDST of [2].

We use this function in two ways. Firstly, we use it to compute the codebook loss L(C) given
a complete codebook C. This is the sum of error probabilities, weighted by the probability
of transmission of each letter, L(C) =

∑

T Pr (T ) Pr (
∧

i fT (X) < fW (X)|T ). Secondly, we
use the pairwise probability of confusing 2 codewords L2(u, v) = [Pr (fu(X) < fv(X)|u) +
Pr (fv(X) < fu(X)|v)]/2 as a heuristic to guide the selection candidate codewords to add to a
partially filled codebook.

1.1.2 Codebook Optimization

In order to explore the relative influence of the information theoretic and psychophysiological ef-
fects, two optimized codebooks were constructed; one with maximal minimal Hamming distance
(denoted D10), and one which minimized the codebook loss (denoted D8opt).

In general, finding an such optimal codebook is a hard combinatorial optimization problem, where
we must choose N codewords each from a potential space of 2L possibilities. We approximately
solve this problem using a branch-and-bound search strategy with a heuristic to decide greedily
which codeword to add next to the current solution. Unfortunately, the heuristics alone were not
powerful enough to generate good solutions in reasonable time. Therefore, additional pruning cri-
teria, based on Hamming distance and the mean TTI were used to reduce the set of candidate code-
words considered at each branch point. Although the use of heuristics and pruning rules means that
each candidate codebook was not constructed based purely on maximization of the stated objective,
in both cases the final selection among candidates was performed purely according to the maximum
value of the respective objective functions. For simplicity we assumed a flat prior over letters (see
last paragraph of discussion).

The two “optimized” codes were generated as follows:

• D10 was a 24-bit code with the largest minimum Hamming distance we could achieve
(dmin = 10) using the search method. The heuristic for codeword selection was the mini-
mum distance to previously selected codewords, and the criteria for selection were (first)
dmin and (second, to select among a large number of dmin = 10 candidates) the lowest
number of consecutive targets.

• D8opt was a 24-bit code optimized according to our model. The heuristic for greedy se-
lection of a new candidate codeword u was the pairwise codebook loss L2(u, v) summed
across each previously selected codebook entry v. The final selection criterion was our
overall codebook loss function L().

We should note that, since this experimental study was performed, we have discovered that dmin = 12
is possible for this problem, using a Hadamard code. This would have been preferable to D10for
use as an experimental examination of the extreme worry-about-Hamming-distance-and-not-at-all-
about-TTI end of the tradeoff.
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