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Abstract

We develop a statistical framework for the simultaneous, unsupervised segmenta-
tion and discovery of visual object categories from image databases. Examining
a large set of manually segmented scenes, we show that object frequencies and
segment sizes both follow power law distributions, which are well modeled by the
Pitman–Yor (PY) process. This nonparametric prior distribution leads to learning
algorithms which discover an unknown set of objects, and segmentation methods
which automatically adapt their resolution to each image. Generalizing previ-
ous applications of PY processes, we use Gaussian processes to discover spatially
contiguous segments which respect image boundaries. Using a novel family of
variational approximations, our approach produces segmentations which compare
favorably to state-of-the-art methods, while simultaneously discovering categories
shared among natural scenes.

1 Introduction

Images of natural environments contain a rich diversity of spatial structure at both coarse and fine
scales. We would like to build systems which can automatically discover the visual categories
(e.g., foliage, mountains, buildings, oceans) which compose such scenes. Because the “objects”
of interest lack rigid forms, they are poorly suited to traditional, fixed aspect detectors. In simple
cases, topic models can be used to cluster local textural elements, coarsely representing categories
via a bag of visual features [1, 2]. However, spatial structure plays a crucial role in general scene
interpretation [3], particularly when few labeled training examples are available.

One approach to modeling additional spatial dependence begins by precomputing one, or several,
segmentations of each input image [4–6]. However, low-level grouping cues are often ambiguous,
and fixed partitions may improperly split or merge objects. Markov random fields (MRFs) have
been used to segment images into one of several known object classes [7, 8], but these approaches
require manual segmentations to train category-specific appearance models. In this paper, we instead
develop a statistical framework for the unsupervised discovery and segmentation of visual object
categories. We approach this problem by considering sets of images depicting related natural scenes
(see Fig. 1(a)). Using color and texture cues, our method simultaneously groups dense features
into spatially coherent segments, and refines these partitions using shared appearance models. This
extends the cosegmentation framework [9], which matches two views of a single object instance, to
simultaneously segment multiple object categories across a large image database. Some recent work
has pursued similar goals [6, 10], but robust object discovery remains an open challenge.

Our models are based on the Pitman–Yor (PY) process [11], a nonparametric Bayesian prior on
infinite partitions. This generalization of the Dirichlet process (DP) leads to heavier-tailed, power
law distributions for the frequencies of observed objects or topics. Using a large database of manual
scene segmentations, Sec. 2 demonstrates that PY priors closely match the true distributions of
natural segment sizes, and frequencies with which object categories are observed. Generalizing
the hierarchical DP [12], Sec. 3 then describes a hierarchical Pitman–Yor (HPY) mixture model
which shares “bag of features” appearance models among related scenes. Importantly, this approach
coherently models uncertainty in the number of object categories and instances.
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Figure 1: Validation of stick-breaking priors for the statistics of human segmentations of the forest (top) and
insidecity (bottom) scene categories. We compare observed frequencies (black) to those predicted by Pitman–
Yor process (PY, red circles) and Dirichlet process (DP, green squares) models. For each model, we also display
95% confidence intervals (dashed). (a) Example human segmentations, where each segment has a text label
such as sky, tree trunk, car, or person walking. The full segmented database is available from LabelMe [14].
(b) Frequency with which different semantic text labels, sorted from most to least frequent on a log-log scale,
are associated with segments. (c) Number of segments occupying varying proportions of the image area, on a
log-log scale. (d) Counts of segments of size at least 5,000 pixels in 256 × 256 images of natural scenes.

As described in Sec. 4, we use thresholded Gaussian processes to link assignments of features to
regions, and thereby produce smooth, coherent segments. Simulations show that our use of contin-
uous latent variables captures long-range dependencies neglected by MRFs, including intervening
contour cues derived from image boundaries [13]. Furthermore, our formulation naturally leads
to an efficient variational learning algorithm, which automatically searches over segmentations of
varying resolution. Sec. 5 concludes by demonstrating accurate segmentation of complex images,
and discovery of appearance patterns shared across natural scenes.

2 Statistics of Natural Scene Categories

To better understand the statistical relationships underlying natural scenes, we analyze manual seg-
mentations of Oliva and Torralba’s eight categories [3]. A non-expert user partitioned each image
into a variable number of polygonal segments corresponding to distinctive objects or scene elements
(see Fig. 1(a)). Each segment has a semantic text label, allowing study of object co-occurrence fre-
quencies across related scenes. There are over 29,000 segments in the collection of 2,688 images.1

2.1 Stick Breaking and Pitman–Yor Processes

The relative frequencies of different object categories, as well as the image areas they occupy, can be
statistically modeled via distributions on potentially infinite partitions. Let ϕ = (ϕ1, ϕ2, ϕ3, . . .),∑

∞

k=1
ϕk = 1, denote the probability mass associated with each subset. In nonparametric Bayesian

statistics, prior models for partitions are often defined via a stick-breaking construction:

ϕk = wk

k−1∏

ℓ=1

(1 − wℓ) = wk

(
1 −

k−1∑

ℓ=1

ϕℓ

)
wk ∼ Beta(1 − γa, γb + kγa) (1)

This Pitman–Yor (PY) process [11], denoted by ϕ ∼ GEM(γa, γb), is defined by two hyperparam-
eters satisfying 0 ≤ γa < 1, γb > −γa. When γa = 0, we recover a Dirichlet process (DP) with
concentration parameter γb. This construction induces a distribution on ϕ such that subsets with
more mass ϕk typically have smaller indexes k. When γa > 0, E[wk] decreases with k, and the
resulting partition frequencies follow heavier-tailed, power law distributions.

While the sequences of beta variables underlying PY processes lead to infinite partitions, only a
random, finite subset of sizeKε =

∣∣{k | ϕk > ε}
∣∣ will have probability greater than any threshold ε.

Implicitly, nonparametric models thus also place priors on the number of latent classes or objects.

1See LabelMe [14]: http://labelme.csail.mit.edu/browseLabelMe/spatial envelope 256x256 static 8outdoorcategories.html



2.2 Object Label Frequencies

Pitman–Yor processes have been previously used to model the well-known power law behavior of
text sequences [15, 16]. Intuitively, the labels assigned to segments in the natural scene database
have similar properties: some (like sky, trees, and building) occur frequently, while others (rainbow,
lichen, scaffolding, obelisk, etc.) are more rare. Fig. 1(b) plots the observed frequencies with which
unique text labels, sorted from most to least frequent, occur in two scene categories. The overlaid
quantiles correspond to the best fitting DP and PY processes, with parameters (γ̂a, γ̂b) estimated
via maximum likelihood. When γ̂a > 0, log E[ϕ̃k | γ̂] ≈ −γ̂−1

a log(k) + ∆(γ̂a, γ̂b) for large k [11],
producing power law behavior which accurately predicts observed object frequencies. In contrast,
the closest fitting DP model (γ̂a = 0) significantly underestimates the number of rare labels.

We have quantitatively assessed the accuracy of these models using bootstrap significance tests [17].
The PY process provides a good fit for all categories, while there is significant evidence against the
DP in most cases. By varying PY hyperparameters, we also capture interesting differences among
scene types: urban, man-made environments have many more unique objects than natural ones.

2.3 Segment Counts and Size Distributions

We have also used the natural scene database to quantitatively validate PY priors for image parti-
tions [17]. For natural environments, the DP and PY processes both provide accurate fits. However,
some urban environments have many more small objects, producing power law area distributions
(see Fig. 1(c)) better captured by PY processes. As illustrated in Fig. 1(d), PY priors also model
uncertainty in the number of segments at various resolutions.

While power laws are often used simply as a descriptive summary of observed statistics, PY pro-
cesses provide a consistent generative model which we use to develop effective segmentation algo-
rithms. We do not claim that PY processes are the only valid prior for image areas; for example,
log-normal distributions have similar properties, and may also provide a good model [18]. How-
ever, PY priors lead to efficient variational inference algorithms, avoiding the costly MCMC search
required by other segmentation methods with region size priors [18, 19].

3 A Hierarchical Model for Bags of Image Features

We now develop hierarchical Pitman–Yor (HPY) process models for visual scenes. We first describe
a “bag of features” model [1, 2] capturing prior knowledge about region counts and sizes, and then
extend it to model spatially coherent shapes in Sec. 4. Our baseline bag of features model directly
generalizes the stick-breaking representation of the hierarchical DP developed by Teh et al. [12].
N-gram language models based on HPY processes [15, 16] have somewhat different forms.

3.1 Hierarchical Pitman–Yor Processes

Each image is first divided into roughly 1,000 superpixels [18] using a variant of the normalized
cuts spectral clustering algorithm [13]. We describe the texture of each superpixel via a local texton
histogram [20], using band-pass filter responses quantized to Wt = 128 bins. Similarly, a color
histogram is computed by quantizing the HSV color space into Wc = 120 bins. Superpixel i in
image j is then represented by histograms xji = (xt

ji, x
c
ji) indicating its texture xt

ji and color xc
ji.

Figure 2 contains a directed graphical model summarizing our HPY model for collections of lo-
cal image features. Each of the potentially infinite set of global object categories occurs with fre-
quency ϕk, where ϕ ∼ GEM(γa, γb) as motivated in Sec. 2.2. Each category k also has an asso-
ciated appearance model θk = (θt

k, θc
k), where θt

k and θc
k parameterize multinomial distributions on

the Wt texture and Wc color bins, respectively. These parameters are regularized by Dirichlet priors
θt

k ∼ Dir(ρt), θc
k ∼ Dir(ρc), with hyperparameters chosen to encourage sparse distributions.

Consider a dataset containing J images of related scenes, each of which is allocated an infinite set
of potential segments or regions. As in Sec. 2.3, region t occupies a random proportion πjt of the
area in image j, where πj ∼ GEM(αa, αb). Each region is also associated with a particular global
object category kjt ∼ ϕ. For each superpixel i, we then independently select a region tji ∼ πj , and
sample features using parameters determined by that segment’s global object category:

p
(
xt

ji, x
c
ji | tji,kj ,θ

)
= Mult

(
xt

ji | θt
zji

)
·Mult

(
xc

ji | θc
zji

)
zji , kjtji

(2)

As in other adaptations of topic models to visual data [8], we assume that different feature channels
vary independently within individual object categories and segments.
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Figure 2: Stick-breaking representation of a hierarchical Pitman–Yor (HPY) model for J groups of features.
Left: Directed graphical model in which global category frequenciesϕ ∼ GEM(γ) are constructed from stick-
breaking proportions wk ∼ Beta(1 − γa, γb + kγa), as in Eq. (1). Similarly, vjt ∼ Beta(1 − αa, αb + tαa)
define region areas πj ∼ GEM(α) for image j. Each of the Nj features xji is independently sampled as in
Eq. (2). Upper right: Beta distributions from which stick proportions wk are sampled for three different PY
processes: k = 1 (blue), k = 10 (red), k = 20 (green). Lower right: Corresponding distributions on thresholds
for an equivalent generative model employing zero mean, unit variance Gaussians (dashed black). See Sec. 4.1.

3.2 Variational Learning for HPY Mixture Models

To allow efficient learning of HPY model parameters from large image databases, we have devel-
oped a mean field variational method which combines and extends previous approaches for DP
mixtures [21, 22] and finite topic models. Using the stick-breaking representation of Fig. 2, and a
factorized variational posterior, we optimize the following lower bound on the marginal likelihood:

log p(x | α, γ, ρ) ≥ H(q) + Eq[log p(x,k, t,v,w,θ | α, γ, ρ)] (3)

q(k, t,v,w,θ) =

[
K∏

k=1

q(wk | ωk)q(θk | ηk)

]
·

J∏

j=1

[
T∏

t=1

q(vjt | νjt)q(kjt | κjt)

]
Nj∏

i=1

q(tji | τji)

Here, H(q) is the entropy. We truncate the variational posterior [21] by setting q(vjT = 1) = 1 for
each image or group, and q(wK = 1) = 1 for the shared global clusters. Multinomial assignments
q(kjt | κjt), q(tji | τji), and beta stick proportions q(wk | ωk), q(vjt | νjt), then have closed form
update equations. To avoid bias, we sort the current sets of image segments, and global categories,
in order of decreasing aggregate assignment probability after each iteration [22].

4 Segmentation with Spatially Dependent Pitman–Yor Processes

We now generalize the HPY image segmentation model of Fig. 2 to capture spatial dependencies.
For simplicity, we consider a single-image model in which features xi are assigned to regions by
indicator variables zi, and each segment k has its own appearance parameters θk (see Fig. 3). As in
Sec. 3.1, however, this model is easily extended to share appearance parameters among images.

4.1 Coupling Assignments using Thresholded Gaussian Processes

Consider a generative model which partitions data into two clusters via assignments zi ∈ {0, 1}
sampled such that P[zi = 1] = v. One representation of this sampling process first generates a
Gaussian auxiliary variable ui ∼ N (0, 1), and then chooses zi according to the following rule:

zi =

{
1 if ui < Φ−1(v)

0 otherwise
Φ(u) ,

1√
2π

∫ u

−∞

e−s2/2 ds (4)

Here, Φ(u) is the standard normal cumulative distribution function (CDF). Since Φ(ui) is uniformly

distributed on [0, 1], we immediately have P[zi = 1] = P
[
ui < Φ−1(v)

]
= P[Φ(ui) < v] = v.

We adapt this idea to PY processes using the stick-breaking representation of Eq. (1). In particu-
lar, we note that if zi ∼ π where πk = vk

∏k−1

ℓ=1
(1 − vℓ), a simple induction argument shows that

vk = P[zi = k | zi 6= k − 1, . . . , 1]. The stick-breaking proportion vk is thus the conditional prob-
ability of choosing cluster k, given that clusters with indexes ℓ < k have been rejected. Combining
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Figure 3: A nonparametric Bayesian approach to image segmentation in which thresholded Gaussian processes
generate spatially dependent Pitman–Yor processes. Left: Directed graphical model in which expected segment
areas π ∼ GEM(α) are constructed from stick-breaking proportions vk ∼ Beta(1 − αa, αb + kαa). Zero
mean Gaussian processes (uki ∼ N (0, 1)) are cut by thresholds Φ−1(vk) to produce segment assignments
zi, and thereby features xi. Right: Three randomly sampled image partitions (columns), where assignments
(bottom, color-coded) are determined by the first of the ordered Gaussian processes uk to cross Φ−1(vk).

this insight with Eq. (4), we can generate samples zi ∼ π as follows:

zi = min
{
k | uki < Φ−1(vk)

}
where uki ∼ N (0, 1) and uki ⊥ uℓi, k 6= ℓ (5)

As illustrated in Fig. 3, each cluster k is now associated with a zero meanGaussian process (GP) uk,
and assignments are determined by the sequence of thresholds in Eq. (5). If the GPs have identity
covariance functions, we recover the basic HPY model of Sec. 3.1. More general covariances can
be used to encode the prior probability that each feature pair occupies the same segment. Intuitively,
the ordering of segments underlying this dependent PY model is analogous to layered appearance
models [23], in which foreground layers occlude those that are farther from the camera.

To retain the power law prior on segment sizes justified in Sec. 2.3, we transform priors on stick
proportions vk ∼ Beta(1 − αa, αb + kαa) into corresponding random thresholds:

p(v̄k | α) = N (v̄k | 0, 1) · Beta(Φ(v̄k) | 1 − αa, αb + kαa) v̄k , Φ−1(vk) (6)

Fig. 2 illustrates the threshold distributions corresponding to several different PY stick-breaking
priors. As the number of features N becomes large relative to the GP covariance length-scale, the
proportion assigned to segment k approaches πk, where π ∼ GEM(αa, αb) as desired.

4.2 Variational Learning for Dependent PY Processes

Substantial innovations are required to extend the variational method of Sec. 3.2 to the Gaussian pro-
cesses underlying our dependent PY processes. Complications arise due to the threshold assignment
process of Eq. (5), which is “stronger” than the likelihoods typically used in probit models for GP
classification, as well as the non-standard threshold prior of Eq. (6). In the simplest case, we place
factorized Gaussian variational posteriors on thresholds q(v̄k) = N (v̄k | νk, δk) and assignment
surfaces q(uki) = N (uki | µki, λki), and exploit the following key identities:

Pq[uki < v̄k] = Φ

(
νk − µki√
δk + λki

)
Eq[log Φ(v̄k)] ≤ log Eq[Φ(v̄k)] = log Φ

(
νk√

1 + δk

)
(7)

The first expression leads to closed form updates for Dirichlet appearance parameters q(θk | ηk),
while the second evaluates the beta normalization constants in Eq. (6). We then jointly optimize
each layer’s threshold q(v̄k) and assignment surface q(uk), fixing all other layers, via backtracking
conjugate gradient (CG) with line search. For details and further refinements, see [17].



Figure 4: Five samples from each of four prior models for image partitions (color coded). Top Left: Nearest
neighbor Potts MRF with K = 10 states. Top Right: Potts MRF with potentials biased by DP samples [28].
Bottom Left: Softmax model in which spatially varying assignment probabilities are coupled by logistically
transformed GPs [25–27]. Bottom Right: PY process assignments coupled by thresholded GPs (as in Fig. 3).

4.3 Related Work

Recently, Duan et. al. [24] proposed a generalized spatial Dirichlet processwhich links assignments
via thresholded GPs, as in Sec. 4.1. However, their focus is on modeling spatial random effects
for prediction tasks, as opposed to the segmentation tasks which motivate our generalization to PY
processes. Unlike our HPY extension, they do not consider approaches to sharing parameters among
related groups or images. Moreover, their basic Gibbs sampler takes 12 hours on a toy dataset with
2,000 observations; our variational method jointly segments 200 scenes in comparable time.

Several authors have independently proposed a spatial model based on pointwise, multinomial logis-
tic transformations of K latent GPs [25–27]. This produces a field of smoothly varying multinomial
distributions π̌i, from which segment assignments are independently sampled as zi ∼ π̌i. As shown
in Fig. 4, this softmax construction produces noisy, less spatially coherent partitions. Moreover, its
bias towards partitions with K segments of similar size is a poor fit for natural scenes.

A previous nonparametric image segmentation method defined its prior as a normalized product
of a DP sample π ∼ GEM(0, α) and a nearest neighbor MRF with Potts potentials [28]. This
construction effectively treats log π as the canonical, rather than moment, parameters of the MRF,
and does not produce partitions whose size distribution matches GEM(0, α). Due to the phase
transition which occurs with increasing potential strength, Potts models assign low probability to
realistic image partitions [29]. Empirically, the DP-Potts product construction seems to have similar
issues (see Fig. 4), although it can still be effective with strongly informative likelihoods [28].

5 Results

Figure 5 shows segmentation results for images from the scene categories considered in Sec. 2.
We compare the bag of features PY model (PY-BOF), dependent PY with distance-based squared
exponential covariance (PY-Dist), and dependent PY with covariance that incorporates intervening
contour cues (PY-Edge) based on the Pb detector [20]. The conditionally specified PY-Edge model

scales the covariance between superpixels i and j by
√

1 − bij , where bij is the largest Pb response
on the straight line connecting them. We convert these local covariance estimates into a globally
consistent, positive definite matrix via an eigendecomposition. For the results in Figs. 5 and 6, we
independently segment each image, without sharing appearance models or supervised training.

We compare our results to the normalized cuts spectral clustering method with varying numbers of
segments (NCut(K)), and a high-quality affinity function based on color, texture, and intervening
contour cues [13]. Our PY models consistently capture variability in the number of true segments,
and detect both large and small regions. In contrast, normalized cuts is implicitly biased towards
regions of equal size, which produces distortions. To quantitatively evaluate results, we measure
overlap with held-out human segments via the Rand index [30]. As summarized in Fig. 6, PY-BOF
performs well for some images with unambiguous features, but PY-Edge is often substantially better.

We have also experimented with our hierarchical PY extension, in which color and texture distribu-
tions are shared between images. As shown in Fig. 7, many of the inferred global visual categories
align reasonably with semantic categories (e.g., sky, foliage, mountains, or buildings).

6 Discussion

We have developed a nonparametric framework for image segmentation which uses thresholded
Gaussian processes to produce spatially coupled Pitman–Yor processes. This approach produces
empirically justified power law priors for region areas and object frequencies, allows visual appear-



Figure 5: Segmentation results for two images (rows) from each of the coast, mountain, and tallbuilding scene
categories. From left to right, columns show LabelMe human segments, image with boundaries inferred by
PY-Edge, and segments for PY-Edge, PY-Dist, PY-BOF, NCut(3), NCut(4), and NCut(6). Best viewed in color.

0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Cuts

P
Y

 G
a
u
s
s
ia

n
 (

E
d
g
e
 C

o
v
a
r)

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

Number of Normalized Cuts Regions

A
v
e

ra
g

e
 R

a
n

d
 I

n
d

e
x

 

 

Normalized Cuts

PY Gaussian (Edge Covar)

PY Gaussian (Distance Covar)

PY Bag of Features

0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Cuts

P
Y

 G
a
u
s
s
ia

n
 (

E
d
g
e
 C

o
v
a
r)

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

Number of Normalized Cuts Regions

A
v
e

ra
g

e
 R

a
n

d
 I

n
d

e
x

 

 

Normalized Cuts

PY Gaussian (Edge Covar)

PY Gaussian (Distance Covar)

PY Bag of Features

(a) (b) (c) (d)

Figure 6: Quantitative comparison of segmentation results to human segments, using the Rand index. (a) Scat-
ter plot of PY-Edge and NCut(4) Rand indexes for 200 mountain images. (b) Average Rand indexes for moun-
tain images. We plot the performance of NCut(K) versus the number of segments K, compared to the variable
resolution segmentations of PY-Edge, PY-Dist, and PY-BOF. (c) Scatter plot of PY-Edge and NCut(6) Rand
indexes for 200 tallbuilding images. (d) Average Rand indexes for tallbuilding images.

ance models to be flexibly shared among natural scenes, and leads to efficient variational inference
algorithms which automatically search over segmentations of varying resolution. We believe this
provides a promising starting point for discovery of shape-based visual appearance models, as well
as weakly supervised nonparametric learning in other, non-visual application domains.
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