
Extra Material

1. Data Preprocessing

1.1. Removing the DC Component with an Orthogonal Projection. The
projector PremDC is computed such that the �rst (for each color channel) compo-
nent of PremDCx corresponds to the DC component(s) of that patch. The transpose
of the matrix

P =


1 0 0 · · ·
1 1 0 · · ·

1 0
. . . · · ·

... 1


has exactly the required property. However, it is not an orthogonal transformation.
Therefore, we decompose P into P = QR where R is upper triangular and Q is an
orthogonal transform. Since P = QR, the �rst column of Q must be a multiple of
the vector with all coe�cients equal to one (due to the upper triangluarity of R).
Therefore, the �rst component of Q>x is a multiple of the DC component. Since Q
is an orthonomal transform, using all but the �rst row of Q> for PremDC projects
out the DC component. In case of color images the same trick is applied to each
channel by making PremDC a block-diagonal matrix with Q> as diagonal elements.

1.2. Rescaling the Data to MakeWhitening an Volume Conserving Trans-

form. Secondly, the data was scaled such that the whitening transform has deter-
minant one, i.e. that the determinant of the globally scaled data is one. This is

done by setting η =
∏
λ

1
2n
i , where λi are the eigenvalues of the covariance matrix

of the training data and n is their dimension. Therefore, the determinant of the
covariance matrix of the data after scaling with 1

η is

1
η2n

∏
λi =

∏
λi(∏

λ
1
2n
i

)2n = 1.

Since the whitening transform consist of D−
1
2U> with UDU> = C (C is the

determinant of the scaled data), the whitening must have determinant one due to

1 = det(C) = det(UDU>) = det(D−
1
2U>)2

Note, that the same scaling factor is used for the training and test set.

2. Measures Of Redundancy

Redundancies can be quanti�ed by a comparison of coding costs. According
to Shannon's channel coding theorem the entropy of a discrete random variable is
an attainable lower bound on the coding cost for error-free encoding [1]. For the
construction of such a code, it is necessary to know the true distribution of the
random variable. If the assumed distribution P̂ (k) used for the construction of an
optimal code is di�erent from the true distribution P (k), the coding cost is given
by the log-loss

EP [− log(P̂ (k))] = −
∑
k

P (k) log P̂ (k) = H[k] +DKL[P (k)||P̂ (k)] .

1
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The Kullback-Leibler divergence quanti�es the additional coding cost caused by
using a model distribution di�erent from the true one. As long as it is positive,
the representation can be still compressed further, which means that there are still
redundancies left.

For continuous random variables, the total amount of bits required for loss-less
encoding is in�nite. However, in analogy to the discrete case, we can use the
Kullback-Leibler divergence of the true distribution to a given model distribution.
The goal of redundancy reduction is to map a random variable Y to a new random
variable Z = f(Y ) such that the distribution of Z is as close to a factorial distri-
bution as possible. Thus we can use the Kullback-Leibler divergence of the true
distribution to the product of its marginals to measure redundancy. This quantity
is known as multi-information

I[ρ(z)] = DKL

[
ρ(z)||

∏n
j=1ρj(zj)

]
=
∫
ρ(z) log

ρ(z)∏n
j=1 ρj(zj)

dz.

Algorithmically, redundancy can be reduced by �nding a representation Z =
f(Y ) such that a factorial model distribution ρ̂(z) =

∏n
j=1 ρ̂j(zj) is as close as

possible to the true distribution ρ(z). Since the multi-information I[ρ(z)] is hard
to estimate, one looks at the di�erence between the multi-informations of Y and
Z = f(Y ), i.e. the quantity

∆I = I[ρ(z)]− I[%(y)]
= DKL

[
ρ(z)||

∏
n
j=1ρ̂j(zj)

]
−DKL

[
%(y)||

∏
n
j=1%̂j(yj)

]
,

where
∏

n
j=1%̂j(yj) is a factorial model distribution for the representation Y . The

following calculation shows that evaluating the redundancy reduction achieved with
a mapping z = f(y) is equivalent to evaluating the di�erence between the log-loss
of two particular model distributions.

Before doing the actual calculation, it is useful to de�ne the di�erent distributions
involved and state some interrelations between them:

(1) ρ(z) and %(y) are the true distributions of the random variables Y and
Z = f(Y ). They are related by

ρ(z)dz = ρ(f(y)) ·
∣∣∣∣det

∂zi
∂yj

∣∣∣∣ dy = %(y)dy

%(y)dy = %(f−1(z)) ·
∣∣∣∣det

∂yi
∂zj

∣∣∣∣ dz = ρ(z)dz ,

where ∂zi
∂yj

denotes the Jacobian for f and ∂yi
∂zj

the Jacobian of f−1. Note

that
∣∣∣det ∂zi∂yj

∣∣∣ =
∣∣∣det ∂yi∂zj

∣∣∣−1

.

(2) ρ̂(z) :=
∏n
j=1ρ̂j(zj), %̂f (y) and

∏
n
j=1%̂j(yj) are the model distributions.∏n

j=1%̂j(yj) is the factorial model for the representation Y . The non-

factorial model distribution %̂f (y) was chosen such that the function f
maps it into a factorial distribution, i.e.∏n

j=1ρ̂j(zj)
choice of f

= ρ̂(z)

= ρ̂f (f(y)) ·
∣∣∣∣det

∂zi
∂yj

∣∣∣∣
= %̂f (y).



3

Now, we can write the di�erence in multi-information as

∆I = I[ρ(z)]− I[%(y)]

= DKL

[
ρ(z)||

∏n
j=1ρ̂j(zj)

]
−DKL

[
%(y)||

∏n
j=1%̂j(yj)

]
= Eρ

[
log

ρ(z)∏n
j=1ρ̂j(zj)

]
− E%

[
log

%(y)∏n
j=1%̂j(yj)

]

= E%

log
ρ(f(y)) ·

∣∣∣det ∂zi∂yj

∣∣∣
%̂f (y)

− E%

[
log

%(y)∏
n
j=1%̂j(yj)

]

= E%

log
ρ(f(y)) ·

∣∣∣det ∂zi∂yj

∣∣∣
%̂f (y)

− log
%(y)∏n

j=1%̂j(yj)



= E%


log

∏n
j=1%̂j(yj)
%̂f (y)

·

=%(y)︷ ︸︸ ︷
ρ(f(y)) ·

∣∣∣∣det
∂zi
∂yj

∣∣∣∣
%(y)


= E%

[
log

∏n
j=1%̂j(yj)
%̂f (y)

]
= E% [− log %̂f (y)]− E%

[
− log

∏n
j=1%̂j(yj)

]
.

Thus, if we have a model density which does not factorize with respect to y
and we have a (possibly nonlinear) mapping z = f(y) such that the transformed
model density with respect to z becomes factorial, we can evaluate the redundancy
reduction achieved with the mapping f simply by estimating the di�erence in the
average log-loss obtained for %̂f (y) and

∏n
j=1%̂j(yj).

In order to get a measure which is less dependent on the number of dimensions
n we de�ne the average log-loss (ALL) to be ALL = 1

nE[− log %̂(y)] for any given
model distribution %̂(y).

In practice, the ALL can estimated by with the empirial mean

1
n

E% [− log %̂f (y)] ≈ 1
n ·m

m∑
i=1

− log %̂f (yi).

3. Lp-Spherically Symmetric Distributions

3.1. De�nitions, Lemmas and Theorems. In this part, we provide the rigorous
de�nitions, lemmas and theorems used in the paper. Most results and proofs are
not new and have been collected from papers and books. Nevertheless, in many
cases we adapted the original statements to our need and provided more detailed
versions of the proofs. The original sources are mentioned at the respective lemmas
and theorems.

De�nition 1. p-Norm
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Let y ∈ Rn be an arbitrary vector. We de�ne

||y||p =

(
n∑
i=1

|yi|p
) 1
p

, p > 0

as the p-norm of y. Note, that only for p > 1, ||y||p is a norm in the strict sense.
However, we will also use the term �p-norm� even if only 0 < p.

De�nition 2. p-Sphere
The unit p-sphere Sn−1

p in n dimensions is the set of points that ful�ll

Sn−1
p := {y ∈ Rn| ||y||p = 1, p > 0}.

Lemma 3. Transformation in Radial and Spherical Coordinates [3]
Let y = (y1, ...yn)> n ≥ 2 be a vector in Rn\{0}. Consider the transformation

y 7→ (r, u1, ..., un−1) =
(
||y||p,

y1

||y||p
, ...,

yn−1

||y||p

)
.

The absolute value of the determinants of the transformation on the upper and

lower halfspaces

Rn+ := {y ∈ Rn| yn ≥ 0}
Rn− := {y ∈ Rn| yn < 0}

are equal and are given by

|detJ | = rn−1

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

.

Proof. The proof is a more detailed version of the proof found in [3].
Let

∆i :=
{

1, ui ≥ 0
−1, ui < 0.

Then we can write |ui| = ∆iui. The above transformation is bijective on each of
the regions Rn+ and Rn−. Let σ = sign(yn), then the inverse is given by

yi = uir , 1 ≤ i ≤ n− 1

yn = σr

(
1−

n−1∑
i=1

|ui|p
) 1
p

= σr

(
1−

n−1∑
i=1

(∆iui)p
) 1
p

.

Note, that the σ = sign(yn) determines the halfspace in which the transformation
is inverted.
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First, we determine the Jacobian J . We start with computing the derivatives

∂yi
∂uj

= δijr, 1 ≤ i, j ≤ n− 1

∂yn
∂uj

= −σr

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

∆p
i u
p−1
i , 1 ≤ j ≤ n− 1

∂yi
∂r

= ui, 1 ≤ i ≤ n− 1

∂yn
∂r

= σ

(
1−

n−1∑
i=1

(∆iui)p
) 1
p

.

Therefore, the Jacobian, is given by

J =


∂y1
∂u1

∂y1
∂un−1

∂y1
∂r

...
. . .

...
...

. . .
...

∂yn
∂u1

∂yn
∂un−1

∂yn
∂r



=


r 0 . . . u1

0 r u2

...
. . .

...

−σr
(

1−
∑n−1
i=1 |ui|p

) 1−p
p

∆p
1u
p−1
1 . . . . . . σ

(
1−

∑n−1
i=1 (∆iui)p

) 1
p

 .

Before actually computing the absolute value of the determinant |detJ |, we can
factor out r from the �rst n − 1 columns. Furthermore, we can factor out σ from
the last row. Since we take the absolute value of detJ and σ = {−1, 1}, we can
remove it completely afterwards. Now we can use Laplace's formula to expand the
determinant along the last column. With this, we get

1
rn−1

|detJ | =
n−1∑
k=1

(−1)n+k · uk · (−1)n−1−k · −∆p
ku

p−1
k ·

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

+(−1)2n

(
1−

n−1∑
i=1

|ui|p
) 1
p

=
n−1∑
k=1

|uk|p
(

1−
n−1∑
i=1

|ui|p
) 1−p

p

+

(
1−

n−1∑
i=1

|ui|p
) 1
p

=

(
1−

n−1∑
i=1

|ui|p
) 1−p

p
(
n−1∑
k=1

|uk|p + 1−
n−1∑
k=1

|uk|p
)

=

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

.

Resolving the result for |detJ | completes the proof. �
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Theorem 4. p-Spherical Uniform Distribution [3]
Let Y = (Y1, ..., Yn)> be a random vector. Let the Yi be i.i.d. distributed with

p.d.f.

%(y) =
p1− 1

p

2Γ
(

1
p

) exp
(
−|y|

p

p

)
, y ∈ R.

Let Ui = Yi
||Y ||p for i = 1, ..., n. Then

∑n
i=1 |Ui|p = 1 and the joint p.d.f of

U1, ..., Un−1 is

qu(u1, ..., un−1) =
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

with −1 < ui < 1, i = 1, ..., n− 1 and
∑n−1
i=1 |ui|p < 1.

Proof. The joint p.d.f. of Y is given by

%(y) =
pn−

n
p

2nΓn
(

1
p

) exp

(
−1
p

n∑
i=1

|yi|p
)

with yi ∈ R and i = 1, ..., n. Applying the transformation

(y1, ..., yn) = (r, u1, ..., un−1)

from Lemma 3 and taking into account that each (u1, ..., un−1) corresponds to
(y1, ..., yn) and (y1, ...,−yn) we obtain

q(u1, ..., un−1, r) = 2 · pn−
n
p

2nΓn
(

1
p

)rn−1 exp
(
−r

p

p

)(
1−

n−1∑
i=1

|ui|p
) 1−p

p

.

By integrating out r, we obtain qu(u1, ..., un):

∫ ∞
0

q(u1, ..., un−1, r)dr =
pn−

n
p

2n−1Γn
(

1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p ∫ ∞
0

rn−1 exp
(
−r

p

p

)
dr.

In order to compute the integral, we use the substitution z = rp

p or r = (zp)
1
p . This

yields dr = (zp)
1
p−1dz and, therefore,∫ ∞

0

rn−1 exp
(
−r

p

p

)
dr =

∫ ∞
0

(zp)
n−1
p exp(−z)(zp)

1−p
p dz

= p
n−p
p

∫ ∞
0

z
n
p−1 exp(−z)dz

= p
n−p
p Γ

(
n

p

)
.
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Hence,

qu(u1, ..., un−1) =
∫ ∞

0

q(u1, ..., un−1, r)dr

=
pn−

n
p

2n−1Γn
(

1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

p
n−p
p Γ

(
n

p

)

=
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

.

�

In order to see, why qu is called uniform on Sn−1
p we must observe that qu of(

1−
∑n−1
i=1 |ui|p

) 1−p
p

which is due to the coordinate transformation and
pn−1Γ(np )
2n−1Γn( 1

p )
which corresponds to twice the surface area of the p-sphere (see Lemma 5). Since
each u corresponds to two y before the coordinate transform (one on the upper
and one on the lower halfsphere), the density of u in y-coordinates corresponds to

1
Sn−1
p

where Sn−1
p =

2nΓ( 1
p )n

pn−1Γ(np ) is the surface area of the unit p-sphere (see Lemma

5).
As we will see in Lemma 7, Y

||Y ||p is independent of ||Y ||p and, therefore, the

speci�c form of the density % does not matter as long as it is p-spherically symmetric.

Lemma 5. Volume and Surface of the p-Sphere
The volume V n−1

p (r) of the p-Sphere with radius r is given by

V n−1
p (r) =

rn2nΓ( 1
p )n

npn−1Γ(np )
.

The surface Sn−1
p (r) is given by

Sn−1
p (r) =

d

dr
V n−1
p (r)

=
rn−12nΓ( 1

p )n

pn−1Γ(np )
.

As a convention, we leave out the argument of V n−1
p (r) and Sn−1

p (r) when de-

noting the volume or the surface of the unit p-sphere, i.e.

V n−1
p := V n−1

p (1)

Sn−1
p := Sn−1

p (1).

Proof. In order to compute the volume of the p-sphere in n-dimension, we must
solve the integral

∫
Sn−1
p

du. Using the volume element transformation from lemma



8

3, we can transform the integral into∫
Sn−1
p

du = 2
∫ r

0

∫
rn−1

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

dr du

= 2
∫ r

0

rn−1dr ·
∫ (

1−
n−1∑
i=1

|ui|p
) 1−p

p

du

=
1
n
rn · 2

∫ (
1−

n−1∑
i=1

|ui|p
) 1−p

p

du.

In theorem 4 we prove that q(u1, ..., un−1) =
pn−1Γ(np )
2n−1Γn( 1

p )

(
1−

∑n−1
i=1 |ui|p

) 1−p
p

is a

probability density. In particular, this means that∫
q(u1, ..., un−1)du =

pn−1Γ
(
n
p

)
2n−1Γn

(
1
p

) ∫ (1−
n−1∑
i=1

|ui|p
) 1−p

p

du

= 1

which is equivalent to∫ (
1−

n−1∑
i=1

|ui|p
) 1−p

p

du =
2n−1Γn

(
1
p

)
pn−1Γ

(
n
p

) .
Therefore,

V n−1
p (r) =

∫
Sn−1
p

du

=
2
n
rn ·

∫ (
1−

n−1∑
i=1

|ui|p
) 1−p

p

du

=
rn2nΓn

(
1
p

)
npn−1Γ

(
n
p

)
Di�erentiation of V n−1

p (r) with respect to r yields the result for the surface area. �

De�nition 6. Lp-Spherically Symmetric Distribution [2] A random vector
Y = (Y1, ..., Yn)> is said to have a Lp-spherically symmetric distribution if Y can
be written as a product of two independent random variables Y = R · U , where R
is a non-negative univariate random variable with density qr : R+ → R+ and U is
uniformly distributed on the unit p-sphere, i.e.

qu(u1, ..., un) =
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

(see Theorem 4).



9

Lemma 7. Probability Density Functions [2]
Let Y = (Y1, ..., Yn)> be an n-dimensional random variable with P{Y = 0} = 0

and a density of the form Y ∼ %̃(||y||pp). Then the following three statements hold:

(1) The random variables R = ||Y ||p and U = Y
||Y ||p are independent.

(2) U = Y
||Y ||p is uniformly distributed on the unit p-sphere Sn−1

p .

(3) R = ||Y ||p has a density qr, where qr relates to %̃ via

qr(r) =
rn−12nΓ( 1

p )n

pn−1Γ(np )
%̃(rp)

= Sn−1
p (r)%̃(rp), r > 0.

Proof. The proof is a more detailed version of the proof found in [2].
First we transform the density of Y with the transformation of lemma 3 and

obtain the new density in spherical and radial coordinates

q(u1, ..., un−1, r) = 2

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

%̃(rp)rn−1

−1 < ui < 1, 1 ≤ i ≤ n− 1,
n∑
i=1

|ui|p < 1.

Since q can be written as a product of a function of r and a function of u =
(u1, ..., un−1), U and R are independent. Thus, ||Y ||p = R and U = Y

||Y ||p are

independent as well.
In order to get qu(u1, ..., un−1), we must integrate out r. However, we do not

know the exact form of %̃. But since q is a probability density, we know that∫ ∞
0

∫
q(u1, ..., un−1, r)dudr = 1.

Since Y and R are independent, we can write this integral as∫ ∞
0

∫
q(u1, ..., un−1, r)dudr = 2

∫ (
1−

n−1∑
i=1

|ui|p
) 1−p

p

du ·
∫ ∞

0

%̃(rp)rn−1dr.

From that, we can immediately derive∫ ∞
0

%̃(rp)rn−1dr =

2
∫ (

1−
n−1∑
i=1

|ui|p
) 1−p

p

du

−1

.

In order to solve

(
2
∫ (

1−
∑n−1
i=1 |ui|p

) 1−p
p

du
)−1

we can use theorem 4. In this

theorem, we showed that qu(u1, ..., un−1) =
pn−1Γ(np )
2n−1Γn( 1

p )

(
1−

∑n−1
i=1 |ui|p

) 1−p
p

is the

uniform distribution on the p-unit sphere. In particular, we know that
∫
q(u1, ..., un−1)du =

1 and, therefore, ∫ (
1−

∑n−1
i=1 |ui|p

) 1−p
p

du =
2n−1Γn

(
1
p

)
pn−1Γ

(
n
p

) .
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Thus,

∫ ∞
0

%̃(rp)rn−1dr =

2
∫ (

1−
n−1∑
i=1

|ui|p
) 1−p

p

du

−1

=
pn−1Γ

(
n
p

)
2nΓn

(
1
p

)
and

qu(u1, ..., un−1) =
∫ ∞

0

q(u1, ..., un−1, r)dr

=

(
1−

n−1∑
i=1

|ui|p
) 1−p

p pn−1Γ
(
n
p

)
2n−1Γn

(
1
p

) .
This shows that Y is uniformly distributed on the unit p-sphere.

The density of R can be computed by integrating out u1, ..., un−1

qr(r) =
∫
q(u1, ..., un−1, r)du

=
2nΓn

(
1
p

)
pn−1Γ

(
n
p

)rn−1%̃(rp), r > 0

by the same argument as in 2. This completes the proof. �

The next theorem tells us that Y is Lp-spherically symmetric distributed if and
only if its density has the form %̃(||y||pp).

Theorem 8. Form of Lp-Spherically Symmetric Distribution [2] Let Y =
(Y1, ..., Yn)>be an n-dimensional random variable with P{Y = 0} = 0. Then, the

density of Y has the form %̃(||y||pp), where g : R+ → R+ is a measurable function,

if and only if Y = RU is spherically symmetric distributed, with independent R and

U , where R has the density

qr(r) =
2nΓn

(
1
p

)
pn−1Γ

(
n
p

)rn−1g(rp), r > 0.

Proof. Su�ciency: Assume Y = RU with independent R and U , where U is uni-
formly distributed on the p-sphere and R has the density qr. Then the joint density
is given by (see theorem 4):

q(r, u1, ..., un−1) = qr(r)
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

) (1−
n−1∑
i=1

|ui|p
) 1−p

p

−1 < ui < 1, 1 ≤ i ≤ n− 1,
n−1∑
i=1

|ui|p < 1, r > 0.
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Now let yi = rui for 1 ≤ i ≤ n− 1 and |yn| = r
(

1−
∑n−1
i=1 |ui|p

) 1
p

. We can use 3

to see that the absolute value of the determinant of the Jacobian is given byrn−1

(
1−

n−1∑
i=1

|ui|p
) 1−p

p

−1

= r1−n

(
1−

n−1∑
i=1

|ui|p
) p−1

p

.

Therefore,

p(y1, ..., yn) =
pn−1Γ

(
n
p

)
2n−1Γn

(
1
p

)qr(||y||p)||y||1−np

= %̃(||y||pp).

Necessity: Assume Y ∼ %̃(||Y ||pp). According to lemma 7 Y
||Y ||p and Y are inde-

pendent and Y
||Y ||p is uniformly distributed on the p-sphere. Again in lemma 7 we

showed that R has the density

qr(r) =
2nΓn

(
1
p

)
pn−1Γ

(
n
p

)rn−1%̃(rp), r > 0.

Therefore, Y is Lp-spherically symmetric distributed if and only if Y ∼ %̃(||Y ||pp)
for some density %̃. �

3.2. Distributions.

3.2.1. The p-Spherically Symmetric Distribution with Radial Mixture of Log-Normal

Distribution. We obtain this distribution by modeling the radial component with
a mixture of log-Normal distributions

qr(r) =
K∑
k=1

ηk

rσk
√

2π
exp

(
− (log r − µk)2

2σ2
k

)
.

Here, ηk with
∑
k ηk = 1 constitute the �prior� probability of selecting one log-

Normal distribution from the mixture, and µk and σ2
k denote the mean and the

variance of the kth mixture. Taking into account the uniform distribution on the
p-sphere, we get

q(u, r) =

(
1−

n−1∑
i=1

|ui|p
) 1−p

p pn−1Γ
(
n
p

)
2n−1Γn

(
1
p

) K∑
k=1

ηk

rσk
√

2π
exp

(
− (log r − µk)2

2σ2
k

)
.

Reversing the coordinate transform, we obtain the distribution in Euclidean coor-
dinates

%(y) =
pn−1Γ

(
n
p

)
2nΓn

(
1
p

) K∑
k=1

ηk

||y||npσk
√

2π
exp

(
− (log ||y||p − µk)2

2σ2
k

)
.

Since ||y||p being log-Normal distributed means log ||y||p being Gaussian distributed,
we can use the standard EM for a mixture of Gaussians on the log-domain to es-
timate the parameters of the mixture. This is justi�ed because log (or exp) is a
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strictly monotonic increasing (decreasing) function and the multiplicative determi-
nant of the Jacobian does not depend on the parameters. Therefore, the maximizing
parameter values for one the mixture of log-Normal distributions also maximizes
the log-likelihood of the mixture of Gaussians in the log-domain.

In order to transform the radial component into the radial component of the
p-generalized distribution, we will need the cumulative distribution function, which
is given by

F(r0) =
∫ r0

0

qr(r)dr

=
∫ r0

0

K∑
k=1

ηk

rσk
√

2π
exp

(
− (log r − µk)2

2σ2
k

)
dr

=
K∑
k=1

ηk

∫ r0

0

1
rσk
√

2π
exp

(
− (log r − µk)2

2σ2
k

)
dr

=
K∑
k=1

ηkFk(r0;µk, σk) ,

where Fk(r0;µk, σk) is simply the cumulative distribution function of the log-
Normal distribution with parameters µk and σk.

3.2.2. The p-generalized Normal distribution. The p-generalized Normal distribu-
tion is obtained by choosing Y to be a collection of n i.i.d. random variables Yi,
each distributed according to the exponential power distribution

Yi ∼ p(y) =
p

Γ
(

1
p

)
(2σ2)

1
p 2

exp
(
−|y|

p

2σ2

)

Y ∼ %(y) =
n∏
i=1

p(yi) =

 p

Γ
(

1
p

)
(2σ2)

1
p 2

n

exp
(
−
∑n
i=1 |yi|p

2σ2

)
Since %(y) has the form %̃(||y||pp), it is a proper p-spherically symmetric distribution
due to Theorem 8. Note, that for the case of p = 2, the p-generalized Normal
distribution reduces to a multivariate isotropic Gaussian. In order to compute the
contrast gain control function, we need to compute the radial distribution qr of
p(x). Transforming p according to Lemma 3 yields

q(r,u) =
pnrn−1

Γn
(

1
p

)
(2σ)

n
p 2n−1

exp
(
− r

p

2σ

)(
1−

n−1∑
i=1

|ui|p
) 1−p

p

.

By integrating over u (see lemma 5 how to carry out the integral) we get

qr(r) =
p rn−1

Γ
(
n
p

)
(2σ2)

n
p

exp
(
− rp

2σ2

)
In order to estimate the scale parameter σ from data X = {r1, ..., rm} =

{||x1||p, ..., ||xm||p}, we carry out the usual procedure for maximum likelihood es-
timation and obtain
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d

dσ
log qr(r) =

d

dσ

(
−2n
p

log(σ)− rp

2σ2

)
=

rpp− 2nσ2

pσ3

d

dσ

m∑
i=1

log qr(ri) =
m∑
i=1

rpi p− 2nσ2

pσ3

!= 0.

This yields

σ̂ =

√√√√ p

2mn

m∑
i=1

rpi .

For the transformation of the radial component, we will also need the cumulative
distribution function of

qr(r) =
p rn−1

Γ
(
n
p

)
(2σ2)

n
p

exp
(
− rp

2σ2

)
.

It can be computed via simple integration with the substitution y = rp

2σ2

FNp(a) =
∫ a

0

prn−1

Γ
(
n
p

)
(2σ2)

n
p

exp
(
− rp

2σ2

)
dr

=
p

Γ
(
n
p

)
(2σ2)

n
p

∫ a

0

rn−1 exp
(
− rp

2σ2

)
dr

=
1

Γ
(
n
p

) ∫ ap

2σ2

0

y
n
p−1 exp(−y)dy

=
Γ
(
n
p ,

ap

2σ2

)
Γ
(
n
p

) ,

where Γ (z, b) =
∫ b

0
yz−1 exp(−y)dy is the incomplete Γ-function.

4. Log-Likelihood of Filters under the Log-Normal Mixture Model

The log-likelihood of a basis W in whitened space, given a set of whitened images
X = {x1, ...,xm}, is given by

L(W|η, µ, σ) =
m∑
i=1

log p(yi|η, µ, σ,xi,W)

= m(n− 1) log p+m log Γ
(
n

p

)
−mn log 2−mn log Γ

(
1
p

)
+

m∑
i=1

log

(
K∑
k=1

ηk

||Wx||npσk
√

2π
exp

(
− (log ||Wxi||p − µk)2

2σ2
k

))
.
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Taking the derivative with respect to the jth row wj of W yields

∂

∂wj
L(W|η, µ, σ)

=

mX
i=1

∂

∂wj
log

0BBBBB@
KX
k=1

ηk

||Wxi||npσk
√

2π
exp

 
−

(log ||Wxi||p − µk)2

2σ2
k

!
| {z }

=:L1(W|η,µ,σ,xi)

1CCCCCA
=

mX
i=1

L1(W|η, µ, σ,xi)−1 ·
KX
k=1

ηk

σk
√

2π

∂

∂wj

 
||Wxi||−np exp

 
−

(log ||Wxi||p − µk)2

2σ2
k

!!

=
mX
i=1

L1(W|η, µ, σ,xi)−1 ×

KX
k=1

ηk

σk
√

2π
||Wxi||

−(n+1)
p exp

 
−

(log ||Wxi||p − µk)2

2σ2
k

! 
−n−

1

σ2
k

(log ||Wxi||p − µk)

!
∂

∂wj
||Wxi||p

=
mX
i=1

L1(W|η, µ, σ,xi)−1||Wxi||
−(n+p)
p · x>i ×

KX
k=1

ηk

σk
√

2π
exp

 
−

(log ||Wxi||p − µk)2

2σ2
k

! 
−n−

1

σ2
k

(log ||Wxi||p − µk)

!
∆j |wjxi|p−1 ,

since ∂
∂wj
||Wxi||p = ∂

∂wj
(
∑n
i=1 |wix|p)

1
p = ||Wxi||1−pp · ∆j |wjxi|p−1 · x>i with

∆ij := sgn(wjxi).
Therefore, the gradient ∂

∂WL(W|η, µ, σ) can be written as an product between

two matrices ∂
∂WL(W|η, µ, σ) = A ·B with

(A)ji = −∆ij |wjxi|p−1
KX
k=1

ηk

σk
√

2π
exp

 
−

(log ||Wxi||p − µk)2

2σ2
k

! 
n+

1

σ2
k

(log ||Wxi||p − µk)

!
(B)i` = L1(W|η, µ, σ,xi)−1||Wxi||

−(n+p)
p · xi`

=

 
||Wxi||pp

KX
k=1

ηk

σk
√

2π
exp

 
−

(log ||Wxi||p − µk)2

2σ2
k

!!−1

· xi`
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Absolute Di�erence [Bits/Comp.] Relative Di�erence [% wrt. cICA]

Color Gray Color Gray

HAD - PIX −4.0778± 0.0039 −3.1275 +−0.0040 92.0797 +−0.0581 90.8566 +−0.0854

SYM - PIX −4.1665± 0.0040 −3.1697 +−0.0037 94.0826± 0.0534 92.0834 +−0.0876

ICA - PIX −4.2376± 0.0041 −3.2146 +−0.0037 95.6872± 0.0489 93.3870 +−0.0823

cHAD - PIX −4.3516± 0.0055 −3.4149± 0.0058 98.2622± 0.0086 99.2077± 0.0103

cSYM - PIX −4.3819± 0.0056 −3.4242± 0.0058 98.9454± 0.0098 99.4770± 0.0099

cICA - PIX −4.4286± 0.0057 −3.4422± 0.0059 100.0000± 0.0000 100.0000± 0.0000

Table 1. Di�erence in ALL for gray value and color images with
standard devation over ten training and test set pairs. For com-
putational e�ciency the patch size has been chosen 7 × 7. The
columns on the left display the absolute di�erence to the PIX rep-
resentation. The columns on the right show the percentual di�er-
ence with respect to the largest reduction achieved by ICA with
non-factorial model.

5. ALL Scores For Color and Gray Value Images

Figure 5.1. ALL in Bits per component as a function of p for
achromatic (right) and chromatic (left) images. For computational
e�ciency both plots have been computed on patches of size 7× 7.
The slightly brighter envelope depicts the standard deviation over
ten pairs of training and test sets. For further details see the
respective �gure in the paper.
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