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Abstract

The cluster assumption is exploited by most semi-supervised learning (SSL) meth-
ods. However, if the unlabeled data is merely weakly related to the target classes,
it becomes questionable whether driving the decision boundary to the low density
regions of the unlabeled data will help the classification. In such case, the clus-
ter assumption may not be valid; and consequently how to leverage this type of
unlabeled data to enhance the classification accuracy becomes a challenge. We
introduce “Semi-supervised Learning with Weakly-Related Unlabeled Data”
(SSLW), an inductive method that builds upon the maximum-margin approach,
towards a better usage of weakly-related unlabeled information. Although the
SSLW could improve a wide range of classification tasks, in this paper, we focus
on text categorization with a small training pool. The key assumption behind this
work is that, even with different topics, the word usage patterns across different
corpora tends to be consistent. To this end, SSLW estimates the optimal word-
correlation matrix that is consistent with both the co-occurrence information de-
rived from the weakly-related unlabeled documents and the labeled documents.
For empirical evaluation, we present a direct comparison with a number of state-
of-the-art methods for inductive semi-supervised learning and text categorization.
We show that SSLW results in a significant improvement in categorization accu-
racy, equipped with a small training set and an unlabeled resource that is weakly
related to the test domain.

1 Introduction

Semi-supervised Learning (SSL) takes advantage of a large amount of unlabeled data to enhance
classification accuracy. Its application to text categorization is stimulated by the easy availability of
an overwhelming number of unannotated web pages, in contrast to the limited number of annotated
ones. Intuitively, corpora with different topics may not be content wise related, however, word usage
exhibits consistent patterns within a language. Then the question is, what would be an effective SSL
strategy to extract these valuable word usage patterns embedded in the unlabeled corpus? In this
paper, we aim to identify a new data representation, that is on one hand informative to the target
class (category), and on the other hand consistent with the feature coherence patterns exhibiting in
the weakly related unlabeled data. We further turn it into a convex optimization problem, and solve
it efficiently by an approximate approach. In this section, we first review the two types of semi-
supervised learning: transductive SSL and inductive SSL. Then we state SSL withweakly related
unlabeled data as a new challenge. Finally, we provide a strategy of how to address this challenge in
the domain of text categorization, as well as a brief summary of related work in text categorization.
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A variety of methods have been developed for transductive SSL[14, 21]. These methods can
be grouped as: EM with generative mixture models, bootstrapping methods (Self-training, Co-
training and the Yarowsky Algorithm), discriminative models (Transductive Support Vector Ma-
chines (TSVM) [2]) and data based methods, including Manifold Regularization [1], Information
Regularization [17], and Low Density Separation(LDS) [11]. Specifically, TSVM extends the max-
imum margin principle of SVM to unlabeled data. It combines the regularization of SVMs on the
labeled points with the cluster assumption on the unlabeled points, to enforce the decision bound-
ary to lie in low density regions. Data based methods discover an inherent geometry in the data,
and exploit it in finding a good classifier, to which additional regularization based on unlabeled
data is added to avoid overfitting. Manifold Regularization uses the combinatorial Laplacian as a
smoothness term. Based on the assumption that different classes usually form separate manifolds,
it constructs decision functions that vary little along the data manifolds. Information Regulariza-
tion seeks a good conditionalPr(y|x), assuming that the decision boundary lies in a low density
area andPr(y|x) only varies a little in the area of high density. Low Density Separation makes a
similar assumption as Manifold Regularization and Information Regularization. In addition, it fur-
ther computes a new data representation based on the unlabeled data, which often results in better
classification performance for SSL.

Not many inductive SSL approaches have been presented. In general, the essential distinction be-
tween transductive learning and inductive learning is that transductive learning produces labels only
for the available unlabeled data; while inductive learning not only produces labels for the unlabeled
data, but also learns a classifier that can be used to predict labels for new data. In this sense, some
SSL algorithms, though named as “transductive”, have an inductive nature. For example, TSVM
is an inductive learner, because it learns a classifier from a mixture of labeled and unlabeled data.
Similarly, as an inductive component of Low Density Separation (LDS) [11],∆ TSVMs learns the
SVM classification model in the primal, which can be used for predicting new data. However, the
graph part of LDS is transductive, because the kernel and the graph distances are addressed by a
prior eigen-decompostion and re-representation (MDS); thus, it is unclear how to make a prediction
of a new test point other than by rebuilding the graph with the new test point. Manifold Regulariza-
tion [1] also has an implementation with inductive nature. Harmonic Mixtures [22] is a recent work
that aims to overcome the limitations of non-inductive inference. It models the data by a generative
mixture of Gaussians, and adds discriminative regularization using the graph Laplacian.

In this paper, we focus on inductive SSL. In contrast to previous work in this area, we focus on the
following important problem that has been overlooked before. As stated in [11], either directly or
indirectly, all successful semi-supervised algorithms typically make the cluster assumption, which
puts the decision boundary in low density areas without crossing the high density regions. Note that
the cluster assumption is only meaningful when the labeled and unlabeled data are somehow closely
related. When the unlabeled data comes from arbitrary data sources, their input patterns may not
be closely related to that of labeled ones. As a result, the labeled and unlabeled data could be well
separated, which makes it difficult, if not impossible, to exploit the cluster assumption. Hence, the
key challenge is how to leverage the seemingly unrelated unlabeled data to improve the classifica-
tion accuracy of the target classes. Analogous to transfer learning in which information from one
category may be generalized to the others, we propose a scheme that helps the categorization of one
data source, by making use of information from other unlabeled data sources with little relevance.
Our study stands in contrast to the previous ones in that we aim to make maximum use of the un-
labeled data that is weakly related to the test bed. We refer to this problem as “SSL with weakly
related unlabeled data”, or SSLW for short. We first build a maximum margin framework for
SSL with weakly related unlabeled data. We then cast the framework into an Second Order Cone
Programming (SOCP) problem that can be efficiently solved.

A typical approach for semi-supervised learning with weakly related unlabeled data, presented in
the recent study [13] is to first derive a new data representation from unlabeled data, and then apply
supervised learning technique to the derived new data representation. In [13], the authors proposed
a SSL scheme termed as self-taught learning, which essentially conducts the unsupervised dimen-
sion reduction using sparse coding [10]. The new dimensions derived from the unlabeled data can
then be used to represent the labeled data points for supervised learning. Notably, self-taught learn-
ing [13] performs coding and classification in two separate stages. In contrast, in our method, the
construction of a good data representation is combined with the training of a maximum margin clas-
sifier under a unified framework. In particular, the data representation generated by our method

2



exploits both labeled and unlabeled data, which differentiates the proposed framework from self-
taught learning.

In general, SSLW could improve a wide range of classification tasks. However in this study, we
focus on text categorization with a small training set. Text categorization has been actively studied
in the communities of Web data mining, information retrieval and statistical learning [9, 20]. A
number of statistical learning techniques have been applied to text categorization [19], including
the K Nearest Neighbor approaches, decision trees, Bayesian classifiers, inductive rule learning,
neural networks, support vector machines (SVM), and logistic regression. Empirical studies [7]
have shown that support vector machines (SVM) is the leading technique for text categorization.
Given the limited amount of labeled documents, the key of semi-supervised text categorization is to
exploit the unlabeled documents. The popular implementations of semi-supervised SVMs in [8,15]
are considered to be state-of-the-art in text categorization.

For text categorization with a small training pool, it is very likely that a large portion of words used
by the testing documents are unseen in the training set, which could lead to a poor estimation of the
similarity between documents. If we can identify the coherence information of words (e.g., word
correlation) from both the labeled and unlabeled documents, we will be able to more accurately
estimate the document similarity, particularly for documents sharing few or no common words, thus
improving the overall classification accuracy. A straightforward approach is to utilize the word co-
occurrence information for computing document similarity. However, this straightforward approach
may not serve the best interests of word correlation, because not all of the co-occurrence patterns
are useful. Some co-occurrence patterns (e.g., co-occurrence with common words) do not reflect
the semantic relations among words, and some are not related to the target class. Consequently,
it is critical to identify a subset of co-occurrence patterns that are most informative to the target
classification problems. To address this problem, SSLW explicitly estimates the optimal word-
correlation matrix for the target document categorization problem. The rest of paper is organized
as follows. Section 2 introduces the basic notations and gives a brief review of the SVM dualism.
In Section 3, we propose the framework of SSL with weakly-related unlabeled data, followed by an
efficient algorithm for its computation in Section 4. Section 5 evaluates SSLW; and in section 6 we
provide some insights into the experimental evidence and discuss future work.

2 Preliminaries
We introduce the notation used throughout this paper and briefly review the SVM dual formulation.
DenoteL = {(x1, y1), . . . , (xl, yl)} as the collection of labeled documents, whereyi is +1 when
documentxi belongs to a given document category and−1 when it does not (text categorization
problem for multi-labeled documents can be treated as a set of independent binary classification
problems). LetU = {xl+1 . . . ,xn} be the unlabeled collection of documents. LetV denote the
size of the vocabulary. Importantly, as an SSL task with weakly-related unlabeled data,U comes
from some external resources that are weakly related to the test domain. To facilitate our discussion,
we denote the document-word matrix onL by D = (d1,d2, . . . ,dl), wheredi ∈ N

V represents
the word-frequency vector for documentdi. Theword-document matrix onL + U is denoted by
G = (g1,g2, . . . ,gV ), wheregi = (gi,1, gi,2, . . . , gi,n) represents the occurrence of theith word in
all then documents. Recall the dual formalism for SVM:

max
α

α
>e−

1

2
(α ◦ y)>K(α ◦ y)

s.t. α
>y = 0

0 ≤ αi ≤ C, i = 1, 2, . . . , n, (1)

whereα = (αi, α2, . . . , αn) are the weights assigned to the training documents,e is a vector
with all elements being1, and the symbol◦ denotes an element-wise product between two vectors.
K ∈ R

n×n is the kernel matrix representing the document pairwise similarity andK = D>D.

3 The Framework of Semi-supervised Learning with Weakly-Related
Unlabeled Data

In this section, we present the algorithm of Semi-supervised Learning with Weakly-Related Unla-
beled Data (SSLW). As analysized in Section 1, the kernel similarity measure in the standard SVM
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dual formalismK = D>D, is problematic in the sense that the similarity between two documents
will be zero if they do not share any common words, even if there exists a pairwise relationship be-
tween the seen words and the unseen ones, from a large collection of documents. To solve this prob-
lem, we take into account a word-correlation matrix when computing the kernel similarity matrix,
and we search for an optimal word-correlation matrix, towards maximizing the categorization mar-
gin. Specifically, we define the kernel matrix asK = D>RD, by introducing the word-correlation
matrixR ∈ R

V ×V , where each elementRi,j represents the correlation between theith and thejth
words. NoteG>G is not a desirable solution toR, because it is improper to assign a high corre-
lation to two words simply because of their high co-occurrence; the two words may be not closely
related as judged by the maximum-margin criterion. Therefore, it is important to search for the opti-
mal word-correlation matrixR in addition to the maximum discovered in Eqn. (1), to maximize the
categorization margin. We denote the optimal value of the objective function in Eqn. (1) asκ(K):

κ(K) = max
α

α
>e−

1

2
(α ◦ y)>K(α ◦ y) (2)

Given the fact thatκ(K) is inversely-related to the categorization margin [4], minimizingκ(K) is
equivalent to maximizing the categorization margin.

Now we consider how to make maximum use of the weakly-related sourceU . TheG matrix is crucial
in capturing the word correlation information from the weakly-related external sourceU . Thus, to
incorporate the external source into the learning of the word-correlation matrixR, we regularizeR
according toG by introducing an internal representation of wordsW = (w1,w2, . . . ,wV ), where
vectorwi is the internal representation of theith word (This idea is similar to non-negative matrix
factorization (NMF) [6]). We expect thatW carries an equivalent amount of information asG does,
i.e.,G andW are roughly equivalent representations of words. As there exists a matrixU such that
the matrixG can be recovered fromW by a linear transformationG = UW , the word-correlation
matrix can be computed asR = W>W . Further, the constraintsG = UW andR = WW> can be
combined to obtain the following positive semi-definite constraint

(

R G>

G T

)

� 0, (3)

whereT = UU> [18]. Another strategy we use to involve the unlabeled data into the learning of
word correlation, is to construct the word correlation matrixR as a non-negative linear combination
of the topp right eigenvectors ofG, i.e.,

R = ξIV +

p
∑

i=1

(αi − ξ)sis
>
i , (4)

where{si, i = 1, 2, . . . , n} denote the right eigenvectors of matrixG, sorted in descending order
of their eigenvaluesθi. IV is theV × V identity matrix, andαi ≥ 0, i = 1, . . . , p andξ ≥ 0 are
non-negative combination weights. Note that introducingξIV ensures non-singularity of the matrix
R, which is important when computing the expression for matrixT ). This simplification ofR al-
lows us to effectively extract and utilize the word co-occurrence information in the external source
U . Additionally, the positive semi-definite constraintR � 0 is converted into simple non-negative
constraints, i.e.,ξ ≥ 0 and{αi ≥ 0}p

i=1. The number of variables inR, which was originally
O(V 2), is now reduced top + 1. A further insight into the combination weights reveals that, both
the straightforward co-occurrence matrixG>G and Manifold Regulization, give predefined weights
for eigenvector combination and thus can be seen as the special cases of SSLW. Precisely speak-
ing, the straightforward co-occurrence matrixG>G, directly uses the eigenvalues as the weights.
Manifold Regularization does a slightly better job by defining the weights as a strict function of the
eigenvalues. Different from both, we give SSLW the entire freedom to learn the weights from data.
In this sense, SSLW generalizes these two methods.

Based on the above analysis, we reformulate an extension of SVM dual in Eqn. (1), to search for an
optimal word-correlation matrixR, by exploiting the word co-occurrence information in the external
U , under maximum-margin criterion, i.e.,

min
R∈∆,U,W

κ(D>RD) (5)

where the word-correlation matrixR is restricted to domain∆ that is defined as

∆ =

{

R ∈ SV ×V
+ :

(

R G>

G T

)

� 0.

}

(6)
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if we use (3) forR, and

∆ =

{

R = ξIV +

p
∑

i=1

(αi − ξ)sis
>
i : ξ ≥ 0, αi ≥ 0, i = 1, . . . , p

}

(7)

if we use Eqn. (4) forR. Given the definition ofκ in Eqn. (2), Eqn. (5) is the following min-max
problem without analytic solution.

min
R∈∆,U,W

max
α

α
>e−

1

2
(α ◦ y)>(D>RD)(α ◦ y) (8)

4 An Efficient Algorithm of SSLW

This section provides a computationally-efficient and scalable algorithm for solving the min-max
problem in Eqn. (8), with domain∆ defined in (6). We first rewrite the maximization problem in
Eqn. (1) into a minimization problem by computing its dual form:

min
t,η,δ,ρ

t + 2Cδ>e

s.t.

(

K ρ ◦ y + λe

(ρ ◦ y + λe)
>

t

)

� 0

ρ = e + η − δ

δi ≥ 0, ηi ≥ 0, i = 1, 2, . . . , n. (9)

Then, by plugging Eqn. (9) back into Eqn. (5), we transform the min-max problem in Eqn. (8) into
the following minimization problem:

min
t,η,δ,ρ,R

t + 2Cδ>e + Cttr(T ) + Crtr(R)

s.t.

(

D>RD ρ ◦ y + λe

(ρ ◦ y + λe)> t

)

� 0

δi ≥ 0, ηi ≥ 0, i = 1, 2, . . . , n

ρ = e + η − δ,

(

R G>

G T

)

� 0. (10)

Note that as our goal is to computeR andT , thus any valid(W, U) is sufficient, and no uniqueness
constraints are imposed onW andU .

In Eqn. (10),Cttr(T ) andCrtr(R) serve as sparse regularizers forR andT . They are added to
improve the stability of the optimal solution, as well as to favor a simpler model over sophisticated
ones. The parametersCt andCr are used to weigh the importance of the two regularization terms.
The trace heuristic has been widely used to enforce a low-rank matrix by minimizing its trace in
place of its rank. In the generalization of the trace heuristic presented by [5], the dual of the spectrum
norm is the convex envelope of the rank on the set of matrices with norm less than one. The rank
objective can be replaced with the dual of the spectral norm, for rank minimization. In other words,
the best convex regularizer one can get for rank minimization is the trace function.

Eqn. (10) is a Semi-Definite Programming (SDP) problem [3], and in general can be solved using
SDP packages such as SeDuMi [16]. However, solving a SDP problem is computationally expensive
and does not easily scale to a large number of training examples. [18] recently provides an elegant
scheme of rewriting a SDP problem into a Second Order Cone Programming (SOCP) problem that
can be much more efficiently solved [3]. Technically, we adopt this procedure and rewrite Eqn. (10)
into a typical SOCP problem that can be efficiently solved. Given the estimated word-correlation
matrixR andK = D>RD, the example weightsα in SVM model can be estimated using the KKT
conditionsα = (yy> ◦ K)−1(e + η − δ + λy). And the thresholdb in SVM can be obtained by
solving the primal SVM using the linear programming technique.

5 Evaluation

In this section, we evaluate SSLW on text categorization with limited training data. The experiment
set up is purely inductive, i.e., the testing feature space is invisible in the training phrase. As an SSL

5



task with weakly-related unlabeled data, the provided unlabeled data have little relevance to the test
domain. We show that SSLW can achieve noticeable gains over the state-of-the-art methods in both
inductive SSL and text categorization, and we provide insight into why this happens. Following [18],
our implementation of SSLW selects the top200 right eigenvectors of the document-word matrixG
matrix to construct theR matrix. As defined in Section 3, theG matrix covers both the training sets
and the weakly-related external collection.

Evaluation datasetsTwo standard datasets for text categorization are used as the evaluation test bed:
the Reuters-21578 dataset and the WebKB dataset. For computational simplicity,1000 documents
are randomly selected from the TREC AP88 dataset and are used as an external information source
for both datasets. The AP88 dataset includes a collection of news documents reported by Associated
Press in 1988. The same pre-processing and indexing procedure are applied to these three datasets,
by using the Lemur Toolkit1. For the Reuters-21578 dataset, among the135 TOPICS categories,
the10 categories with the largest amount of documents are selected (see Table 1). This results in
a collection of9, 400 documents. For the WebKB dataset, which has seven categories: student,
faculty, staff, department, course, project, and other, we discard the category of “other” due to its
unclear definition (see Table 2). This results in4, 518 data samples in the selected dataset. The
Reuters-21578 dataset and the TREC AP88 dataset have very limited relevance in topic; and the
WebKB dataset and the TREC AP88 dataset are even less content-wise related.

Category earn acq money-fx crude grain trade interest wheat ship corn
# Samples 3987 2448 801 634 628 552 513 306 305 254

Table 1: The ten categories of the Reuters-21578 dataset withthe largest amount of documents.

Category course department faculty project staff student
# Samples 930 182 1124 504 137 1641

Table 2: The six categories of the WebKB dataset.

Evaluation MethodologyWe focus on binary classification. For each class,4 positive samples and
4 negative samples are randomly selected to form the training set; and the rest of the data serve
as the testing set. As a rare classification problem, the testing data is very unbalanced. Therefore,
we adopt the area under the ROC curve (AUR) [12] as the quantitative measurement of the binary
classification performance for text categorization. AUR is computed based on the output of real-
value scores of the classifiers returned for testing documents. Each experiment is repeated ten times,
and the AUR averaged over these trials is reported.

Baseline MethodsWe use six baseline methods to demonstrate the strength of SSLW from dif-
ferent perspectives. The first two baselines are the standard SVM and the traditional TSVM.The
third baseline is∇ TSVM 2, the inductive component of LDS, which delivers the state-of-the-art
performance of SSL. The fourth baseline Manifold Regularization3 (ManifoldR for short) is in-
cluded as a state-of-the-art SSL approach with an inductive nature, and more importantly, being
able to incorporate word relationship into the regularization. For the fifth baseline, we compare the
word-correlation matrix estimated by SSLW, with the trivial word-correlation matrixG>G; and we
name this baseline asCOR. Finally, self-taught learning [13] serves as our sixth baseline method,
named asSelf-taught. It uses the unlabeled data to find an low-dimension representation, and then
conducts standard classification in this new space.

Text Categorization with Limited Training Data We describe the AUR results of both the Reuters-
21578 dataset and the WebKB datset, by using different methods. For the Reuters-21578 dataset,
Table 3 summarizes the AUR comparison between the six baseline methods and SSLW. Both mean
and variance of AUR are shown in the table. We observe that SSLW consistently outperforms the six
baselines in AUR across most of the ten categories. In general, a t-test shows our performance gain is
statistically significant compared to all the baselines at a significance level of0.05. Detailed analysis
is provided below. First, TSVM and∇TSVM overall perform even worse than the standard SVM.
This observation reveals that if the unlabeled data are only weakly relevant to the target class, it could

1http://www.lemurproject.org/
2http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/lds/
3http://manifold.cs.uchicago.edu/manifold_regularization/software.html
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harm the categorization accuracy by simply pushing the decision boundary towards the low density
regions, and away from the high density areas of the unlabeled data. It also justifies our intuitive
hypothesis that the cluster assumption is not valid in this case. Second, the dramatic advantage
of SSLW over the COR method confirms our previous analysis – learning a good word-correlation
matrix that is jointly determined by the co-occurrence matrix and the classification margin (as SSLW
does), can achieve significant gains over simply using the trivial formG>G. Third, we observe that
SSLW algorithm consistently improves over Manifold Regularization, except on “trace” category
where ManifoldR has a little advantage. Most noticeably, on “wheat” category and “ship” category,
the AUR is improved by more than10%, as a result of SSLW. These results demonstrate that SSLW
is effective in improving text categorization accuracy with a small amount of training data. We also
notice that,∆TSVM outperforms TSVM on some categories, but is slightly worse than TSVM on
some others. The unstable performance of∆TSVM can possibly be explained by its gradient descent
nature. Finally, our method receives gains against self-taught learning [13] on most categories.
This proves SSLW is more effective than self-taught learning in using unlabeled data to improve
classification. The gains can be attributed to the fact that Self-taught does coding and classification
in two separate stages, while SSLW achieves these two purposes simultaneously.

A more careful examination indicates that SSLW also reduces thestandard deviationin classification
accuracy. The standard deviations by SSLW are mostly less than2.5%; while those by the baseline
methods are mostly above2.5%. Over all the ten categories except the “money-fix” category, SSLW
always delivers the lowest or the second lowest standard deviation, among all the six methods. We
hypothesize that the large standard deviation by the baseline models is mainly due to the small
number of training documents. In this situation, many words should only appear in a few training
documents. As a result, the association between these words and the class labels can not be reliably
established. In extreme cases where these words do not appear in any of the training documents, no
association can be established between these words and the class labels. Evidently, test documents
related to these unseen words are likely to be classified incorrectly. By contrast, SSLW can resolve
this problem by estimating the word correlation. For a missing word, its association with the class
label can be reliably estimated through the correlation with other words that appear frequently in the
training examples.

Table 4 shows the AUR results of the WebKB dataset, from which we observe the similar trends as
described above in the Reuters-21578 dataset. It is shown that SSLW maintains its clear advantage
over the six baseline methods, across all the six categories.

Category SVM TSVM ∇TSVM ManifoldR COR Self-taught SSLW
earn 82.3 ± 2.1 70.9 ± 4.1 70.1 ± 5.2 86.4 ± 2.1 62.6 ± 5.8 65.9 ± 3.5 89.3 ± 1.6

acq 69.7 ± 3.0 63.1 ± 3.3 59.2 ± 4.1 70.1 ± 3.0 51.2 ± 4.7 68.2 ± 2.6 73.5 ± 3.3

money-fx 71.3 ± 2.6 67.4 ± 3.1 70.0 ± 2.0 74.0 ± 2.6 76.5 ± 4.6 75.7 ± 3.9 82.1 ± 4.4

crude 69.7 ± 3.3 68.6 ± 3.2 59.9 ± 4.7 71.5 ± 3.3 56.0 ± 5.7 67.6 ± 3.1 77.5 ± 1.7

grain 70.7 ± 3.5 68.7 ± 2.3 66.4 ± 3.5 75.1 ± 3.5 62.1 ± 5.4 69.0 ± 2.9 82.7 ± 2.0

trade 82.7 ± 3.4 65.1 ± 5.0 71.5 ± 4.2 85.1 ± 3.4 78.8 ± 5.2 78.5 ± 4.4 84.4 ± 3.9

interest 79.3 ± 1.5 60.2 ± 3.9 70.4 ± 3.1 85.0 ± 1.5 69.4 ± 4.7 76.5 ± 2.5 89.4 ± 1.8

wheat 77.6 ± 3.8 61.9 ± 3.6 64.7 ± 4.6 79.1 ± 3.8 54.4 ± 5.7 67.1 ± 2.6 89.4 ± 1.6

ship 70.4 ± 2.6 64.5 ± 2.9 65.8 ± 3.9 72.3 ± 2.6 52.1 ± 5.0 68.0 ± 2.1 82.8 ± 1.4

corn 80.8 ± 2.9 65.4 ± 2.1 66.5 ± 5.3 77.0 ± 5.0 54.5 ± 5.6 66.8 ± 3.7 86.4 ± 2.3

Table 3: The AUR results (%) on the Reuters-21578 dataset with8 training examples per category.

Category SVM TSVM ∇TSVM ManifoldR COR Self-taught SSLW
course 66.8 ± 2.2 61.5 ± 2.0 61.8 ± 2.9 68.4 ± 2.8 63.3 ± 5.4 66.0 ± 3.9 76.2 ± 2.5

dept. 72.2 ± 2.8 58.8 ± 5.2 63.7 ± 3.5 73.4 ± 5.9 58.3 ± 5.1 70.8 ± 3.6 87.6 ± 2.2

faculty 56.7 ± 3.4 56.4 ± 2.6 54.2 ± 3.0 56.9 ± 2.8 53.1 ± 4.6 61.7 ± 3.3 61.6 ± 3.4

project 59.6 ± 2.9 57.0 ± 2.3 60.3 ± 1.4 61.8 ± 3.1 50.0 ± 5.9 58.7 ± 3.0 69.5 ± 3.2

staff 58.1 ± 1.6 53.0 ± 1.1 51.6 ± 1.3 52.9 ± 0.9 46.4 ± 1.6 59.9 ± 1.9 58.3 ± 1.5

student 59.2 ± 2.7 54.0 ± 2.3 55.3 ± 2.7 59.4 ± 3.1 56.0 ± 4.1 61.0 ± 1.9 67.7 ± 2.6

Table 4: The AUR results (%) on the WebKB dataset with8 training examples per category.
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6 Conclusion

This paper explores a new challenge in semi-supervised learning, i.e., how to leverage the unlabeled
information that is weakly related to the target classes, to improve classification performance. We
propose the algorithm of Semi-supervised Learning with Weakly-Related Unlabeled Data (SSLW)
to address this challenge. SSLW extends the theory of support vector machines to effectively iden-
tify those co-occurrence patterns that are most informative to the categorization margin and ignore
those that are irrelevant to the categorization task. Applied to text categorization with limited num-
ber of training samples, SSLW automatically estimates the word correlation matrix by effectively
exploiting the word co-occurrence embedded in the weakly-related unlabeled corpus. Empirical
studies show that SSLW significantly improves both the accuracy and the reliability of text catego-
rization, given a small training pool and the additional unlabeled data that are weakly related to the
test bed. Although SSLW is presented in the context of text categorization, it potentially facilitates
classification tasks in a variety of domains. In future work, we will evaluate the benefits of SSLW on
larger data sets and in other domains. We will also investigate SSLW’s dependencies on the number
of eigenvectors used, and its behavior when varying the number of labeled training examples.
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