
Cutoff Averaging: Technical Appendix

A Proof of Thm. 1: A Regret Bound for Margin-Based Perceptron

Proof. Throughout this proof,ℓ denotes the hinge loss. We define∆i = ‖u−wi−1‖2 −‖u−wi‖2

and prove the theorem by proving upper and lower bounds on
∑m

i=1
∆i. Beginning with the upper

bound, we notice that
∑m

i=1
∆i is a telescopic sum that collapses to

m
∑

i=1

∆i = ‖u − w0‖2 − ‖u − wm‖2 .

Neglecting‖u − wm‖2 and using the facts thatw0 = (0, . . . , 0) and that‖u‖ ≤ 1, we obtain the
upper bound

m
∑

i=1

∆i ≤ 1 . (5)

Moving on to the lower bound, we focus on rounds whereℓ(wi−1; (wi, yi)) > 0. We rewrite∆i as
αi + βi, where

αi = ‖u − wi−1‖2 − ‖u − w
′
i−1‖2 and βi = ‖u − w

′
i−1‖2 − ‖u − wi‖2 .

Settingη = 1/(
√

mR), we can rewriteαi as

αi = ‖u − wi−1‖2 − ‖u − wi−1 − ηyixi‖2

= 2η (yi〈u,xi〉 − yi〈wi−1,xi〉) − η2‖xi‖2 , (6)
where the first inequality follows from the definition ofw

′
i−1 and the second equality is straight-

forward linear algebra. Next, we combine the term in Eq. (6) with three additional facts: (1) by
assumption‖x‖ ≤ R, (2) by the assumption thatℓ(wi−1; (xi, yi)) > 0 and using the definition of
the hinge loss, we haveℓ(wi−1; (xi, yi)) = 1 − yi〈wi−1,xi〉, and (3) by the definition of the hinge
lossℓ(u; (xi, yi)) ≥ 1 − yi〈u,xi〉. We obtain the lower bound

αi ≥ 2η
(

− ℓ
(

u; (xi, yi)
)

+ ℓ
(

wi−1; (xi, yi)
)

)

− η2R2 .

Next we prove thatβi is always non-negative. If1 ≤ 1

‖w′

i−1
‖ then this claim is an immediate

consequence of the definition ofwi. Otherwise, it holds that‖w′
i−1‖ ≥ 1, wi = w

′
i−1/‖w′

i−1‖,
and we have that

βi = ‖u − w
′
i−1‖2 −

∥

∥

∥

∥

u − w
′
i−1

‖w′
i−1

‖

∥

∥

∥

∥

2

= −2

(

1 − 1

‖w′
i−1

‖

)

〈u,w′
i−1〉 + ‖w′

i−1‖2 − 1 . (7)

Using the Cauchy-Schwartz inequality and the assumption that‖u‖ ≤ 1, we lower bound the term

−2

(

1 − 1

‖w′
i−1

‖

)

〈u,w′
i−1〉

with −2‖w′
i−1‖ + 2. Plugging this lower bound into Eq. (7) gives

βi ≥ 1 − 2‖w′
i−1‖ + ‖w′

i−1‖2 =
(

1 − ‖w′
i−1‖

)2
.

We have proven thatβi is non-negative and we conclude that

∆i ≥ 2η
(

− ℓ
(

u; (xi, yi)
)

+ ℓ
(

wi−1; (xi, yi)
)

)

− η2R2 . (8)

Note that the above holds trivially wheneverℓ(wi−1; (xi, yi)) = 0, and therefore the above holds
for all i. Summing∆i over alli, we get

m
∑

i=1

∆i ≥ − 2η

m
∑

1=1

ℓ
(

u; (xi, yi)
)

+ 2η

m
∑

1=1

ℓ
(

wi−1; (xi, yi)
)

− mη2R2 .

Comparing the above to the upper bound in Eq. (5) and rearranging terms gives the bound

1

m

m
∑

1=1

ℓ
(

wi−1; (xi, yi)
)

≤ 1

m

m
∑

1=1

ℓ
(

u; (xi, yi)
)

+
1

2mη
+

ηR2

2
.

Recalling thatη = 1/(
√

mR) proves the bound.
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B Proof of Lemma 1: An Adaptation of Freedman’s Bound

The following is a detailed proof of Lemma 1. We show that the lemma is a direct corollary from
Freedman’s tail bound for martingales [6]. This proof is adapted from the work of Cesa-Bianchi and
Gentile in [3, Proposition 2] with two exceptions: First we use the full power of Freedman’s theorem
and prove a Kolmogorov-type maximal inequality, namely, aninequality that holds uniformly for
any prefix of the random variable sequence. Second, we build on Freeman’s original bound, as it
appears in [6], rather than the slightly different version used in [3].

One of the straightforward techniques used in our proof is the square root trick. There is really
nothing tricky about this elementary technique: it involves finding the positive root of a second-
degree polynomial, in order to satisfy a quadratic constraint. The term “square root trick” has been
coined elsewhere and we stick with this name.

Lemma 2. Let b and c be positive numbers. Then,

(1) x2 − bx − c > 0 and x ≥ 0 ⇐⇒ x > b+
√

b2+4c
2

(2) x2 − bx − c < 0 and x ≥ 0 ⇐⇒ 0 ≤ x < b+
√

b2+4c
2

Proof. The left-hand side of (1) above is a second degree polynomialin x with a positive leading
term, one negative rootN and one positive rootP . Therefore, it is positive in the region(−∞, N)∪
(P,∞). Intersecting this constraint withx ≥ 0, givesx > P . Equivalently, the left-hand side of
(2) is negative betweenN andP . Intersecting this constraint withx ≥ 0 results in the constraint
0 ≤ x < P . In both cases, the value ofP can be calculated using the quadratic formula.

For completeness, we give Freedman’s original theorem:

Theorem 3 (Freedman, [6]). Let (Ai)
m
i=0 be a martingale with respect to (Zi)

m
i=1. Let Bi = Ai −

Ai−1 be the corresponding sequence of martingale differences and let Di = Var[Bi|(Zj)
i−1

j=1
] be

the corresponding sequence of conditional variances. Assume |Bi| ≤ 1 for all i. For any positive
numbers a and b,

Pr

(

∃t
t
∑

i=1

Bi ≥ a ,
t
∑

i=1

Di ≤ b

)

≤ exp

(

− a2

2(a + b)

)

.

We are now ready to prove Lemma 1.

Proof of Lemma 1. Define, for alli ∈ {1, . . . ,m}

Bi =
Ui − Li

C
and Vi = Var

[

Bi

∣

∣(Zj)
i−1

j=1

]

.

Note that(Bi)
m
i=1 is a sequence of martingale differences with respect to(Zi)

m
i=1, and that|Bi| ≤ 1

for all i. For brevity, defineα = ln(m
δ

). We begin by examining the probability

Pr

(

∃t
t
∑

i=1

Bi ≥ α +

√

α2 + 2α
(

1 +
∑t

i=1
Vi

)

)

.

Since|Bi| ≤ 1, it holds that
∑m

i=1
Vi ≤ m. Therefore, we can upper-bound the above by

m
∑

s=1

Pr

(

∃t

t
∑

i=1

Bi ≥ α +
√

α2 + 2αs ,

t
∑

i=1

Vi ≤ s

)

.

Each summand above satisfies the requirements of Freedman’sbound, Thm. 3. Applying the theo-
rem for each summand gives the upper bound

m
∑

s=1

exp

(

−
(

α +
√

α2 + 2αs
)2

2
(

α +
√

α2 + 2αs + s
)

)

=

m
∑

s=1

exp(−α) = δ .
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Overall, we have proven that, with probability at least1 − δ, it holds that

∀ t

t
∑

i=1

Bi < α +

√

α2 + 2α(1 +
∑t

i=1
Vi) , (9)

Given a concrete value of(Zj)
i−1

j=1
, Ui is just a constant and does not effect the variance. Therefore,

Vi =
Var
[

Li

∣

∣(Zj)
i−1

j=1

]

C2
≤

E
[

L2
i

∣

∣(Zj)
i−1

j=1

]

C2
≤

E
[

Li

∣

∣(Zj)
i−1

j=1

]

C
=

Ui

C
.

where the first inequality follows from the definition of variance, the second inequality follows from
the fact thatLi ∈ [0, C], and the last equality uses the definition ofUi. Plugging this bound into
Eq. (9), we have

∀ t

t
∑

i=1

Bi < α +

√

α2 + 2α
(

1 + 1

C

∑t
i=1

Ui

)

.

Using the definition ofBi and the fact that
√

a + b ≤ √
a +

√
b, we have

∀ t 1

C

∑t
i=1

Ui − 1

C

∑t
i=1

Li < 2α +

√

2α
(

1 + 1

C

∑t
i=1

Ui

)

.

Focus for a moment on one value oft. Substitutingγ =
√

1 + 1

C

∑t
i=1

U1 andλ = 1

C

∑t
i=1

Li,
the above can be rewritten as the following quadratic constraint onγ

γ2 −
√

2αγ − (2α + λ + 1) < 0 .

Using the square-root trick, outlined in Lemma 2, the above is equivalent to

γ <

√
2α +

√
10α + 4λ + 4

2
.

Taking the square of both sides above, we get

γ2 < 3α + λ + 1 +
√

5α2 + 2αλ + 2α .

Once again using the inequality
√

a + b + c ≤ √
a +

√
b +

√
c, we get

γ2 < λ + (3 +
√

5)α +
√

2αλ +
√

2α .

Finally, assumingm ≥ 4 we have thatα >
√

α and therefore

γ2 < λ + (3 +
√

5 +
√

2)α +
√

2αλ .

Plugging in the definitions ofγ andλ and using3 +
√

5 +
√

2 < 7 concludes the proof.
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