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Abstract

Rosetta is one of the leading algorithms for protein structure prediction today. It
is a Monte Carlo energy minimization method requiring many random restarts to
find structures with low energy. In this paper we present aresamplingtechnique
for structure prediction of small alpha/beta proteins using Rosetta. From an ini-
tial round of Rosetta sampling, we learn properties of the energy landscape that
guide a subsequent round of sampling toward lower-energy structures. Rather than
attempt to fit the full energy landscape, we use feature selection methods—both
L1-regularized linear regression and decision trees—to identify structural features
that give rise to low energy. We then enrich these structural features in the second
sampling round. Results are presented across a benchmark set of nine small al-
pha/beta proteins demonstrating that our methods seldom impair, and frequently
improve, Rosetta’s performance.

1 Introduction

Protein structure prediction is one of the most important unsolved problems in biology today. With
the wealth of genome data now available, it is of great interest to determine the structures of the
proteins that genes encode. Proteins are composed of long chains of amino acid residues, of which
there are twenty natural varieties. A gene encodes a specific amino acid sequence, which, when
translated, folds into a unique three-dimensional conformation. The protein structure prediction
problem is to predict this conformation (the protein’stertiary structure) from the amino acid se-
quence (the protein’sprimary structure). The biological function of a protein is dependent on its
structure, so structure prediction is an important step towards function prediction. Potential applica-
tions of structure prediction range from elucidation of cellular processes to vaccine design.

Experimental methods for protein structure determination are costly and time-intensive, and the
number of known protein sequences now far outstrips the capacity of experimentalists to deter-
mine their structures. Computational methods have been improving steadily and are approaching
the level of resolution attainable in experiments. Structure prediction methods fall into two broad
camps: comparative modeling, in which solved protein structures are known for one or more pro-
teins with sequences similar to the target sequence (“homologs”), and ab initio modeling, in which
no homologs are known. In this paper we concentrate on ab initio modeling, and specifically on the
Rosetta algorithm [3].
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Figure 1: Flowchart of resampling method.

Rosetta is one of the leading methods for ab initio protein structure prediction today. Rosetta uses
a Monte Carlo search procedure to minimize an energy function that is sufficiently accurate that the
conformation found in nature (the “native” conformation) is generally the conformation with lowest
Rosetta energy. Finding the global minimum of the energy function is very difficult because of the
high dimensionality of the search space and the very large number of local minima. Rosetta employs
a number of strategies to combat these issues, but the primary one is to perform a large number of
random restarts. Thanks to a very large-scale distributed computing platform called Rosetta@home,
composed of more than three hundred thousand volunteer computers around the world, up to several
million local minima of the energy function (“decoys,” in Rosetta parlance) can be computed for
each target sequence.

Our work begins with the observation that a random-restart strategy throws away a great deal of in-
formation from previously computed local minima. In particular, previous samples from conforma-
tion space might suggest regions of uniformly lower energy; these are regions in which Rosetta may
wish to concentrate further sampling. This observation is applicable to many global optimization
problems, and past researchers have proposed a variety of methods for exploiting it, including fitting
a smoothedresponse surfaceto the local minima already gathered [1] and learning to predict good
starting points for optimization [2]. Unfortunately, conformation space is very high-dimensional and
very irregular, so response surfaces do not generalize well beyond the span of the points to which
they are fitted. Generally, the correct (or “native”) structure will not be in the span of the points seen
so far—if it were, the first round of Rosetta sampling would already have been successful.

We have developed an approach that sidesteps this limitation by explicitly recombining successful
features of the models seen so far. No single local minimum computed in the first round of Rosetta
search will haveall the native features. However, many native features are present in at leastsome
of the decoys. If these features can be identified and combined with each other, then sampling can
be improved. Our approach has three steps, each mapping from one structural representation space
to another (Figure 1). In the first step, we project the initial set of Rosetta models from continuous
conformation space into a discrete feature space. The structural features that we have designed
characterize significant aspects of protein structure and are largely sufficient to determine a unique
conformation. In the second step, we use feature selection methods including both decision trees
and Least Angle Regression (LARS) [4] to identify structural features that best account for energy
variation in the initial set of models. We can then predict that certain of these features (generally,
those associated with low energy) are present in the native conformation. In the third step, we use
constrained Rosetta search to generate a set of models enriched for these key features.

2 Outline

In section 3, we outline a response surface approach and its shortcomings, and motivate the move
to a feature-based representation. In section 4, we describe the features we use and the way that
particular feature values are enforced in Rosetta search. This characterizes the way we map points
from our discretized feature space back to continuous conformation space. In section 5, we describe
the feature selection techniques we use to determine which features to enforce. In section 6, we
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Figure 2: (a) Rosetta models (black) and relaxed natives (blue) projected onto the first principal
component. (b) Models and natives projected onto the third principal component.

show the results of Rosetta search biased towards selected features. In section 7, we conclude with
a discussion of the results achieved so far and of further work to be done.

3 Response Surface Methods

As an initial attempt at developing resampling methods for protein structure prediction, we inves-
tigated a response surface fitting approach. Our goal was to fit a smoothed energy surface to the
Rosetta models seen so far and then to minimize this surface to find new starting points for local
optimization of the Rosetta energy function.

The first task was to define the conformation space. The most natural space is defined in terms of
the conformational degrees of freedom. Each residue in an amino acid sequence has two primary
degrees of freedom: rotation around theCα–N bond, referred to as theφ torsion angle, and rotation
around theCα–C bond, referred to as theψ torsion angle. However, it is difficult to fit a response
surface in the space of torsion angles because the energy function is highly irregular in this space; a
slight change in a single torsion angle typically causes large global structural changes, which in turn
cause large energy changes. Instead, we took the three-dimensional coordinates of the backbone
atoms as our conformation space, with all models in the set aligned to a reference model. There are
four backbone atoms per residue and three coordinates per backbone atom, so ann-residue protein
is represented by a12n-dimensional vector. Even for small proteins of only around70 residues this
space is very high-dimensional, but we found that most of the structural variation in sets of Rosetta
models was captured by the first10 principal components. Data were sufficient to fit a response
surface in these10 dimensions.

Along certain directions, energy gradients were detectable that pointed toward the native structure.
One such direction was the first principal component for protein 1n0u (Figure 2.a; in this graph,
the native structure is represented as an ensemble of Rosetta-minimized structures that started at
the native conformation). However, in most directions the gradient did not point toward the natives
(Figure 2.b). A response surface fitted to the Rosetta models shown in these graphs will therefore
have high energy in the vicinity of the natives.

These observations suggest a new strategy: rather than fitting a response surface to all the dimensions
jointly, we should identify a few dimensions that are associated with clear score gradients and make
no claims about the other dimensions. This motivates a shift in philosophy: rather than predicting
energy and minimizing, we wish to predictfeaturesof the native structure and then enforce them
independently of each other.

3



(a) (b)

Figure 3: (a) Bins in Ramachandran plot. (b) Structure of 1dcj. Two helices are visible behind a beta
pleated sheat consisting of four strands, the bottommost three paired in the anti-parallel orientation
and the topmost two paired in the parallel orientation. In this “cartoon” representation of structure,
individual atoms are not rendered.

4 Structural features

For the purpose of the work described in this paper, we make use of two types of structural features:
torsion angle features and beta contact features.

4.1 Torsion angle features

The observed values of theφ andψ angles for a single residue are strongly clustered in the database
of solved protein structures (thePDB). Their empirical distribution is shown in aRamachandran
plot. In order to discretize the possible torsion angles for each residue, we divide the Ramachandran
plot into five regions, referred to as “A,” “B,” “E,” “G,” and “O,” (Figure 3.a). These regions are
chosen to correspond roughly to clusters observed in the PDB. A protein with70 amino acid residues
has70 torsion bin features, each with possible values A, B, E, G, and O.

The primary search move in Rosetta is afragment replacementmove: the conformation of a string
of three or nine consecutive residues within the target sequence is replaced with the conformation of
a similar subsequence from the PDB. A torsion angle feature can be constrained in Rosetta search by
limiting the fragments to those which have torsion angles within the given bin at the given residue
position. Strings of torsion features are referred to asbarcodesin Rosetta, and the apparatus for
defining and constraining them was developed in-house by Rosetta developers.

4.2 Beta contact features

Proteins exhibit two kinds ofsecondary structure, characterized by regular hydrogen bond patterns:
alpha helices and beta pleated sheets (Figure 3.b). In alpha helices, the hydrogen bonds are all
local, and are predicted fairly consistently by Rosetta. In beta sheets, however, the bonds can be
between residues that are quite distant along the chain. A beta contact feature for residuesi andj
indicates the presence of two backbone hydrogen bonds betweeni andj. We use the same definition
of beta pairing as the standard secondary structure assignment algorithm DSSP [5]. The bonding
pattern can be either parallel (as between the red residues in Figure 3.b) or antiparallel (as between
the blue residues). Furthermore, the pleating can have one of two different orientations. A beta
pairing feature is defined for every triple(i, j, o) of residue numbersi andj and orientationso ∈
{parallel,antiparallel}. The possible values of a beta pairing feature are X, indicating no pairing,
and P1 or P2, indicating pleating of orientation 1 or 2, respectively.

Beta contact features are enforced in Rosetta by means of a technique called “jumping.” A pseudo-
backbone-bond is introduced between the two residues to be glued together. This introduces a
closed loop into the backbone topology of the protein. Torsion angles within the loop can no longer
be altered without breaking the loop, so, in order to permit further fragment replacements, a cut (or
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“chainbreak”) must be introduced somewhere else in the loop. The backbone now takes the form of
a tree rather than a chain. After a Rosetta search trajectory terminates, an attempt is made to close
the chainbreak with local search over several torsion angles on either side of it.

5 Prediction of native features

Let us transform our set of multi-valued features into a set of 0-1 valued features indicating whether
or not a particular value for the feature is present. Let us assume that each binary featuref has an
independent energetic effect; if present, it brings with it an average energy bonusbf . Under these
assumptions, the full energy of a conformationd is modelled as

E0 +
∑

f

dfbf +N ,

whereE0 is a constant offset,df is either1 if the feature is present ind or 0 if it is absent, and
N is Gaussian noise. This model is partially justified by the fact that the true energy is indeed a
sum of energies from local interactions, and our features capture local structural information. Our
hypothesis is that native features have lower energy on average even if other native features are not
present.

In order to identify a small set of potentially native features, we useL1 regularization, or lasso
regression [6], to find a sparse model. The minimization performed is

argmin(b,E0)

∑
d∈D

(E(d) − E0 −
∑

f

dfbf )2 + C
∑

f

|bf |,

whereE(d) is the computed Rosetta energy of modeld and C is a regularization constant. The
small set of features that receive non-zero weights are those that best account for energy variations
in the population of decoys. These are the features we can most confidently predict to be native. The
Least Angle Regression algorithm [4] allows us to efficiently compute the trajectory of solutions
for all values ofC simultaneously. Experience with Rosetta has shown that constraining more than
ten or fifteen torsion features can hamper search more than it helps; if there are very few fragments
available for a given position that satisfy all torsion constraints, the lack of mobility at that position
can be harmful. We typically take the point in the LARS trajectory that gives fifteen feature values.

5.1 Feature enforcement strategy

LARS gives us a set of feature values that have a strong effect on energy. Our hypothesis is that
features strongly associated with lower energies—namely, those selected by LARS and given neg-
ative weights—are more likely to be native, and that features given positive weights by LARS are
more likely to be non-native. This hypothesis is born out by our experiments on a benchmark set of
9 small alpha/beta proteins. The LARS prediction accuracy is given in Figure 4.a. This chart shows,
for each protein, the fraction of LARS-selected features correctly labeled as native or non-native by
the sign of the LARS weight. Fifteen LARS features were requested per protein. The more accurate
“low energy leaf” predictions will be discussed in the next section.

It is clear from Figure 4.a that LARS is informative about native features for most proteins. However,
we cannot rely wholly on its predictions. If we were simply to constrain every LARS feature, then
Rosetta would never find the correct structure, since some incorrect features would be present in
every model. Our resampling strategy is therefore to flip a coin at the beginning of the Rosetta run
to decide whether or not to constrain a particular LARS feature. Coins are flipped independently
for each LARS feature. Resampling improves on unbiased Rosetta sampling if the number of viable
runs (runs in which no non-native features are enforced) is sufficiently high that the benefits from
the enforcement of native features are visible. We have achieved some success by enforcing LARS
features with probability30% each, as demonstrated in the results section.

5.2 Decision trees for beta contact features

Beta contact features are less suited to the lasso regression approach than torsion angle features,
because independence assumptions are not as valid. For instance, contact(i, j,parallel)and contact
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Figure 4: (a) LARS prediction accuracy when fitted to total decoy population and to the three
decision-tree leaves with lowest 10th percentile energies, ordered here by average rmsd. (b) Re-
lation of prediction accuracy to resampling improvement in LARS-only runs.

(i + 1, j + 1,parallel)are redundant and will usually co-occur, whereas contact(i, j,parallel)and
contact(i − 1, j + 1,parallel)are mutually exclusive and will never co-occur. For beta contact
features, we employ a decision tree approach to divide the decoy population into non-overlapping
clusters each defined by the presence of several beta contacts. Lasso regression is then employed in
each cluster separately to determine likely native torsion features.

We use decision trees of depth three. At each node, a beta contact feature is selected to use as a
split point and a child node is created for each of the three possible values X, P1, and P2. Our
strategy is to choose split points which most reduce entropy in the features. The beta contact feature
is therefore chosen whose mutual information with the other beta contact features is maximized, as
approximated by the sum of the marginal mutual informations with each other feature.

Since some clusters are sampled more heavily than others, the lowest energy within a cluster is not
a fair measure of its quality, even though, in principle, we care only about the lowest achievable
energy. Instead, we use the10th percentile energy to evaluate clusters. Its advantage as a statistic
is that its expectation is not dependent on sample size, but it often gives a reasonably tight upper
bound on achievable energy. Our resampling strategy, given a decision tree, is to sample evenly
from each of the top three leaves as ranked by10th percentile energy. Within the subpopulation of
decoys defined by each leaf, we select torsion features using LARS.

In our benchmark set, the top three low-energy leaves of the decision tree were generally closer to the
native than the population at large. Perhaps as a result, LARS generally achieved greater prediction
accuracy when restricted to their associated subpopulations, as seen in Figure 3.b. Leaves are sorted
by average rmsd, so “low energy leaf 1,” the “best” leaf, consists of decoys which are closest, on
average, to the native conformation. The best leaf consisted of only native contacts for all proteins
except 1n0u and 1ogw, but in both these cases it contained structures generally lower in rmsd than
the population at large and resampling achieved improvements over plain Rosetta sampling. In
general, LARS performed better on the leaves that were closer to the native structure, although there
were a few notable exceptions. Ideally, we would concentrate our sampling entirely on the best leaf,
but since we cannot generally identify which one it is, we have to hedge our bets. Including more
leaves in the resampling round increases the chances of resampling a native leaf but dilutes sampling
of the best leaf in the pool. This tradeoff is characteristic of resampling methods.

6 Results

We tested two Rosetta resampling schemes over a set of 9 alpha/beta proteins of between 59 and 81
residues. In the first scheme (referred to henceforth as “LARS-only”),15 LARS-predicted torsion
features were constrained at 30% frequency. In the second (referred to henceforth as “decision-
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RMSD of low-energy decoys Lowest RMSD of 25 low-energy decoys
Decision tree LARS only Decision tree LARS only

Control Resamp Control Resamp Control Resamp Control Resamp
1di2 2.35 2.14 2.76 0.97 1.78 1.34 1.82 0.73
1dtj 3.20 1.53 5.28 1.88 1.46 1.53 1.95 1.59
1dcj 2.35 3.31 2.34 2.11 2.19 1.86 1.71 1.88
1ogw 5.22 3.99 3.03 2.80 3.12 2.6 2.08 2.48
2reb 1.15 1.17 1.07 1.27 0.89 0.93 0.83 0.86
2tif 5.68 4.57 3.57 6.85 3.32 3.27 3.27 2.61
1n0u 11.89 11.60 11.93 3.54 9.78 3.19 3.54 2.84
1hz6A 2.52 1.06 3.36 4.68 2.38 1.06 1.97 1.19
1mkyA 10.39 8.21 4.60 4.58 3.43 3.25 3.33 4.23
Meandifference -0.8 -1.03 -1.04 -0.23
Mediandifference -1.11 -0.23 -0.33 -0.36
Numberimproved 7/9 6/9 7/9 5/9

tree”), three subpopulations were defined for each protein using a decision tree, and within each
subpopulation15 LARS-predicted torsion features were constrained at frequencies heuristically de-
termined on the basis of several meta-level “features of features,” including the rate of the feature’s
occurrence in the first round of Rosetta sampling and the magnitude of the regression weight for the
feature. Each resampling scheme was compared against a control population generated at the same
time. Exactly the same number of models were generated for the control and resampled populations.
The control and resampled populations for the LARS-only scheme consist of about 200,000 decoys
each. The populations for the decision-tree scheme consist of about 30,000 decoys each, due to lim-
itations in available compute time. The difference in quality between the two control populations is
partially explained by the different numbers of samples in each, and partially by changes in Rosetta
in the time between the generation of the two datasets.

Our two primary measures of success for a resampling run are both based on root-mean-square
distance to the native structure. Root-mean-square distance (rmsd) is a standard measure of discrep-
ancy between two structures. It is defined as the square root of the mean of the squared distances
between pairs of corresponding backbone atoms in the two structures, under the alignment that min-
imizes this quantity. Our first measure of success is the rmsd between the native structure and the
lowest scoring model. This measures Rosetta’s performance if forced to make a single prediction.
Our second measure of success is lowest rmsd among the twenty-five top-scoring models. This is a
smoother measure of the quality of the lowest scoring Rosetta models, and gives some indication of
the prediction quality if more sophisticated minima-selection methods are used than Rosetta energy
ranking. Structures at 1̊A from the native have atomic-level resolution—this is the goal. Structures
at between 2̊A and 4Å generally have several important structural details incorrect. In proteins the
size of those in our benchmark, structures more than 5Å from the native are poor predictions.

Both resampling schemes achieved some success. The performance measures are shown in table
6. The decision-tree scheme performed more consistently and achieved larger improvements on
average; it improved the low-energy rmsd in 7 of the 9 benchmark proteins, with a significant me-
dian improvement of 1.11̊A. Particularly exciting are the atomic-resolution prediction for 1hz6 and
the nearly atomic-resolution prediction for 1dtj. In both these cases, plain Rosetta sampling per-
formed considerably worse. The LARS-only scheme was successful as well, providing improved
lowest-energy predictions on 6 of the 9 benchmark proteins with a median improvement of 0.23Å.
The LARS-only low-energy prediction for 1di2 is atomic-resolution at 0.97Å away from the native
structure, as compared to 2.97Å for the control run. In general, improvements correlated with LARS
accuracy (Figure 4.b). The two notable exceptions were 2reb, for which plain Rosetta search per-
forms so well that constraints only hurt sampling, and 1n0u, for which plain Rosetta search concen-
trates almost entirely on a cluster with incorrect topology at 10Å. Certain LARS-selected features,
when enforced, switch sampling over to a cluster at around 3Å. Even when incorrect features are
enforced within this cluster, sampling is much improved.

The cases in which the decision-tree scheme did not yield improved low-energy predictions are
interesting in their own right. In the case of 1dcj, resampling does yield lower rmsd structures—the
top 25 low rms prediction is superior, and the minimum rmsd from the set is 1.35, nearly atomic
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resolution, as compared to 1.95 for the control run—but the Rosetta energy function does not pick
them out. This suggests that better decoy-selection techniques would improve our algorithms. In the
case of 2reb, the unbiased rounds of Rosetta sampling were so successful that they would have been
difficult to improve on. This emphasizes the point that resampling cannot hurt us too much. If a plain
Rosetta sampling round ofn decoys is followed by a resampling round ofn decoys, then no matter
how poor the resampled decoys are, sampling efficiency is decreased by at most a factor of2 (since
we could have generatedn plain Rosetta samples in the same time). The danger is that resampling
may overconverge to broad, false energy wells, achieving lower energies in the resampling round
even though rmsd is higher. This appears to occur with 2tif, in which the LARS-only low-energy
prediction has significantly lower energy than the control prediction despite being much farther from
the native. Once more, better decoy-selection techniques might help.

7 Discussion and Conclusions

Our results demonstrate that our resampling techniques improve structure prediction on a majority
of the proteins in our benchmark set. Our first resampling method significantly improves Rosetta
predictions in 3 of the 9 test cases, and marginally improves two or three more. Our second resam-
pling method expands the set of proteins on which we achieve improvements, including an additional
atomic-level prediction. It is important to note that significant improvements over Rosetta onany
proteins are hard to achieve; if our methods achieved one or two significantly improved predictions,
we would count them a success. Rosetta is the state of the art in protein structure prediction, and it
has undergone years of incremental advances and optimizations. Surpassing its performance is very
difficult. Furthermore, it doesn’t hurt Rosetta too badly if a resampling scheme performs worse than
unbiased sampling on some proteins, since models from the unbiased sampling round that precedes
the resampling round can be used as predictions as well.

There are a number of avenues of future work to pursue. We have designed a number of other
structural features, including per-residue secondary structure features, burial features, and side-chain
rotamer features, and we hope to incorporate these into our methods. The primary barrier is that
each new feature requires a method for constraining it during Rosetta search. We also plan to
further investigate the possibility of detecting which LARS predictions are correct using “features
of features,” and to apply these methods to discrimate between decision tree leaves as well. It is
possible that, with more sampling, the decision tree runs would yield atomic-resolution predictions.
However, computational costs for Rosetta are high; each Rosetta model takes approximately fifteen
minutes of CPU time to compute on a 1GHz CPU, and each of the 36 data sets represented here
consists of on the order of100, 000 models.

The success of our feature selection techniques suggests that the high dimensionality and multiple
minima that make high resolution protein structure prediction difficult to solve using traditional
methods provide an excellent application for modern machine learning methods. The intersection
between the two fields is just beginning, and we are excited to see further developments.
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