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Abstract

Many tasks in speech processing involve classification of long term characteristics
of a speech segment such as language, speaker, dialect, or topic. A natural tech-
nique for determining these characteristics is to first convert the input speech into
a sequence of tokens such as words, phones, etc. From these tokens, we can then
look for distinctive sequences,keywords, that characterize the speech. In many
applications, a set of distinctive keywords may not be knowna priori. In this
case, an automatic method of building up keywords from short context units such
as phones is desirable. We propose a method for the construction of keywords
based upon Support Vector Machines. We cast the problem of keyword selection
as a feature selection problem forn-grams of phones. We propose an alternat-
ing filter-wrapper method that builds successively longer keywords. Application
of this method to language recognition and topic recognition tasks shows that the
technique produces interesting and significant qualitative and quantitative results.

1 Introduction

A common problem in speech processing is to identify properties of a speech segment such as
the language, speaker, topic, or dialect. A typical solution to this problem is to apply a detection
paradigm. A set of classifiers is applied to a speech segment to produce a decision. For instance, for
language recognition, we might construct detectors for English, French, and Spanish. The maximum
scoring detector on a speech segment would be the predicted language.

Two basic categories of systems have been applied to the detection problem. A first approach uses
short-term spectral characteristics of the speech and models these with Gaussian mixture models
(GMMs) or support vector machines (SVMs) directly producing a decision. Although quite accurate,
this type of system produces only a classification decision with no qualitative interpretation. A
second approach useshigh level features of the speech such as phones and words to detect the
properties. An advantage of this approach is that, in some instances, we can explain why we made a
decision. For example, a particular phone or word sequence might indicate the topic. We adopt this
latter approach for our paper.

SVMs have become a common method of extracting high-level properties of sequences of speech
tokens [1, 2, 3, 4]. Sequence kernels are constructed by viewing a speech segment as adocumentof
tokens. The SVM feature space in this case is a scaling of co-occurrence probabilities of tokens in
an utterance. This technique is analogous to methods for applying SVMs to text classification [5].

SVMs have been applied at many linguistic levels of tokens as detectors. Our focus in this paper
is at the acoustic phone level. Our goal is to automatically derive long sequences of phones which
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we call keywordswhich are characteristic of a given class. Prior work, for example, in language
recognition [6], has shown that certain words are a significant predictor of a language. For instance,
the presence of the phrase “you know” in a conversational speech segment is a strong indicator of
English. A difficulty in using words as the indicator of the language is that we may not have available
a speech-to-text (STT) system in all languages of interest. In this case, we’d like to automatically
construct keywords that are indicative of the language. Note that a similar problem can occur in
other property extraction problems. For instance, in topic recognition, proper names not in our STT
system dictionary may be a strong indicator of topic.

Our basic approach is to view keyword construction as a feature selection problem. Keywords are
composed of sequences of phones of lengthn, i.e. n-grams. We would like to find the set of
n-grams that best discriminates between classes. Unfortunately, this problem is difficult to solve
directly, since the number of uniquen-grams grows exponentially with increasingn. To alleviate
this difficultly, we propose a method that starts with lower ordern-grams and successively builds
higher ordern-grams.

The outline of the paper is as follows. In Section 2.1, we review the basic architecture that we use
for phone recognition and how it is applied to the problem. In Section 2.2, we review the application
of SVMs to determining properties. Section 3.1 describes a feature selection method for SVMs.
Section 3.2 presents our method for constructing long context units of phones to automatically cre-
ate keywords. We use a novel feature selection approach that attempts to find longer strings that
discriminate well between classes. Finally, in Section 4, we show the application of our method
to language and topic recognition problems. We show qualitatively that the method produces in-
teresting keywords. Quantitatively, we show that the method produces keywords which are good
discriminators between classes.

2 Phonotactic Classification

2.1 Phone Recognition

The high-level token extraction component of our system is a phone recognizer based upon the Brno
University (BUT) design [7]. The basic architecture of this system is a monophone HMM system
with a null grammar. Monophones are modeled by three states. This system uses two powerful
components to achieve high accuracy. First, split temporal context (STC) features provide contextual
cues for modeling monophones. Second, the BUT recognizer extensively uses discriminatively
trained feedforward artificial neural networks (ANNs) to model HMM state posterior probabilities.

We developed a phone recognizer for English units using the BUT architecture and automatically
generated STT transcripts on the Switchboard 2 Cell corpora [8]. Training data consisted of approx-
imately10 hours of speech. ANN training was accomplished using the ICSI Quicknet package [9].
The resulting system has 49 monophones including silence.

The BUT recognizer is used along with the HTK HMM toolkit [10] to produce lattices. Lattices
encode multiple hypotheses with acoustic likelihoods. From a lattice, a 1-best (Viterbi) output can
be produced. Alternatively, we use the lattice to produce expected counts of tokens andn-grams of
tokens.

Expected counts ofn-grams can be easily understood as an extension of standard counts. Suppose
we have a hypothesized string of tokens,W = w1, · · · , wn. Then bigrams are created by group-
ing two tokens at a time to form,W2 = w1_w2, w2_w3, · · · , wn−1_wn. Higher ordern-grams
are formed from longer juxtapositions of tokens. The count function for a given bigram,di, is
count(di|W2) is the number of occurrences ofdi in the sequenceW2. To extend counts to a lattice,
L, we find the expected count over all all possible hypotheses in the lattice,

count(di|L) = EW [count(di|W )] =
∑

W∈L

p(W |L) count(di|W ). (1)

The expected counts can be computed efficiently by a forward-backward algorithm; more details
can be found in Section 3.3 and [11].
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A useful application of expected counts is to find the probability of an n-gram in a lattice. For a
lattice,L, the joint probability of ann-gram,di, is

p(di|L) =
count(di|L)

∑

j count(dj |L)
(2)

where the sum in (2) is performed over alluniquen-grams in the utterance.

2.2 Discriminative Language Modeling: SVMs

We focus on token-based language recognition with SVMs using the approach from [1, 4]. Similar
to [1], a lattice of tokens,L, is modeled using a bag-of-n-grams approach. Joint probabilities of
the uniquen-grams,dj , on a per conversation basis are calculated,p(dj |L), see (2). Then, the
probabilities are mapped to a sparse vector with entries

Djp(dj |W ). (3)

The selection of the weighting,Dj , in (3) is critical for good performance. A typical choice is of the
form

Dj = min

(

Cj , gj

(

1

p(dj |all)

))

(4)

wheregj(·) is a function which squashes the dynamic range, andCj is a constant. The probabil-
ity p(dj |all) in (4) is calculated from the observed probability across all classes. The squashing
function should monotonically map the interval[1,∞) to itself to suppress large inverse probabili-
ties. Typical choices forgj aregj(x) =

√
x and gj(x) = log(x) + 1. In both cases, the squashing

functiongj normalizes out the typicality of a feature across all classes. The constantCj limits the
effect of any one feature on the kernel inner product. If we setCj = 1, then this makesDj = 1 for
all j. For the experiments in this paper, we usegj(x) =

√
x, which is suited to high frequency token

streams.

The general weighting of probabilities is then combined to form a kernel between two lattices,
see [1] for more details. For two lattices,L1 andL2, the kernel is

K(L1,L2) =
∑

j

D2
jp(dj |L1)p(dj |L2). (5)

Intuitively, the kernel in (5) says that if the samen-grams are present in two sequences and the
normalized frequencies are similar there will be a high degree of similarity (a large inner product).
If n-grams are not present, then this will reduce similarity since one of the probabilities in (5) will be
zero. The normalizationDj insures thatn-grams with large probabilities do not dominate the kernel
function. The kernel can alternatively be viewed as a linearization of the log-likelihood ratio [1].

Incorporating the kernel (5) into an SVM system is straightforward. SVM training and scoring
require only a method of kernel evaluation between two objects that produces positive definite kernel
matrices (the Mercer condition). We use the package SVMTorch [12]. Training is performed with a
one-versus-all strategy. For each target class, we group all remaining class data and then train with
these two classes.

3 Discriminative Keyword Selection

3.1 SVM Feature Selection

A first step towards an algorithm for automatic keyword generation using phones is to examine
feature selection methods. Ideally, we would like to select over all possiblen-grams, wheren is
varying, the most discriminative sequences for determining a property of a speech segment. The
number of features in this case is prohibitive, since it grows exponentially withn. Therefore, we
have to consider alternate methods.

As a first step, we examine feature selection for fixedn and look for keywords withn or less phones.
Suppose that we have a set of candidate keywords. Since we are already using an SVM, a natural
algorithm for discriminative feature selection in this case is to use a wrapper method [13].
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Suppose that the optimized SVM solution is

f(X) =
∑

i

αiK(X, Xi) + c (6)

and

w =
∑

i

αib(Xi) (7)

whereb(Xi) is the vector of weightedn-gram probabilities in (3). We note that the kernel presented
in (5) is linear. Also, then-gram probabilities have been normalized in (3) by their probability across
the entire data set. Intuitively, because of this normalization and sincef(X) = w

t
b(X) + c, large

magnitude entries inw correspond to significant features.

A confirmation of this intuitive idea is the algorithm of Guyon, et. al. [14]. Guyon proposes an
iterative wrapper method for feature selection for SVMs which has these basic steps:

• For a set of features,S, find the SVM solution with modelw.

• Rank the features by their corresponding model entriesw2
i . Here,wi is theith entry ofw

in (7).

• Eliminate low ranking features using a threshold.

The algorithm may be iterated multiple times.

Guyon’s algorithm for feature selection can be used for picking significantn-grams as keywords.
We can create a kernel which is the sum of kernels as in (5) up to the desiredn. We then train an
SVM and rankn-grams according to the magnitude of the entries in the SVM model vector,w.

As an example, we have looked at this feature selection method for a language recognition task
with trigrams (to be described in Section 4). Figure 1 provides a motivation for the applicability of
Guyon’s feature selection method. The figure shows two functions. First, the cumulative density
function (CDF) of the SVM model values,|wi|, is shown. The CDF has an S-curve shape; i.e., only
a small set of models weights has large magnitudes. The second curve shows the equal error rate
(EER) of the task as a function of applying one iteration of the Guyon algorithm and retraining the
SVM. EER is defined as the value where the miss and false alarm rates are equal. All features with
|wi| below the value on the x-axis are discarded in the first iteration. From the figure, we see that
only a small fraction (< 5%) of the features are needed to obtain good error rates. This interesting
result provides motivation that a small subset of keywords are significant to the task.
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Figure 1: Feature selection for a trigram language recognition task using Guyon’s method
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3.2 Keywords via an alternating wrapper/filter method

The algorithm in Section 3.1 gives a method forn-gram selection for fixedn. Now, suppose we
want to find keywords for arbitraryn. One possible hypothesis for keyword selection is that since
higher ordern-grams are discriminative, lower ordern-grams in the keywords will also be discrim-
inative. Therefore, it makes sense to finding distinguishing lower ordern-grams and then construct
longer units from these. On the basis of this idea, we propose the following algorithm for keyword
construction:

Keyword Building Algorithm

• Start with an initial value ofn = ns. Initialize the set,S′
n, to all possiblen-grams of phones

including lower order grams. By default, letS1 be the set of all phones.

• (Wrapper Step) Generaln. Apply the feature selection algorithm in Section 3.1 to produce
a subset of distinguishingn-grams,Sn ⊂ S′

n.

• (Filter Step) Construct a new set of(n + 1)-grams by juxtaposing elements fromSn with
phones. Nominally, we take this step to be juxtaposition on the right and left,S′

n+1 =
{dp, qd|d ∈ Sn, p ∈ S1, q ∈ S1}.

• Iterate to the wrapper step.

• Output:Sn at some stoppingn.

A few items should be noted about the proposed keyword building algorithm. First, we call the sec-
ond feature selection process a filter step, since induction has not been applied to the(n + 1)-gram
features. Second, note that the purpose of the filter step is to provide a candidate set of possible
(n + 1)-grams which can then be more systematically reduced. Third, several potential algorithms
exist for the filter step. In our experiments and in the algorithm description, we nominally append
one phone to the beginning and end of ann-gram. Another possibility is to try to combine over-
lappingn-grams. For instance, suppose the keyword issome_people which has phone transcript
s_ah_m_p_iy_p_l. Then, if we are looking at4-grams, we might see as top featuress_ah_m_p and
p_iy_p_l and combine these to produce a new keyword.

3.3 Keyword Implementation

The expectedn-gram counts were computed from lattices using the forward-backward algo-
rithm. Equation (8) gives the posterior probability of a connected sequence of arcs in the lattice
wheresrc_nd(a) anddst_nd(a) are the source and destination node of arca, ℓ(a)is the likelihood
associated with arca, α(n) andβ(n) are the forward and backward probabilities of reaching noden
from the beginning or end of the latticeL respectively, andℓ(L) is the total likelihood of the lattice
(theα(·) of the final node orβ(·) of the initial node of the lattice).

p(aj , ..., aj+n) =
α(src_nd(aj))ℓ(aj) . . . ℓ(aj+n)β(dst_nd(aj+n))

ℓ(L)
(8)

Now if we define the posterior probability of a nodep(n) as p(n) = (α(n)β(n))/ℓ(L). Then
equation (8) becomes:

p(aj , ..., aj+n) =
p(aj) . . . p(aj+n)

p(src_nd(aj+1)) . . . p(src_nd(aj+n))
. (9)

Equation (9) is attractive because it provides a way of computing the path posteriors locally using
only the individual arc and node posteriors along the path. We use this computation along with a
trie structure [15] to compute the posteriors of our keywords.

4 Experiments

4.1 Language Recognition Experimental Setup

The phone recognizer described in Section 2.1 was used to generate lattices across a train and an
evaluation data set. The training data set consists of more than 360 hours of telephone speech
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spanning 13 different languages and coming from a variety of different sources including Callhome,
Callfriend and Fisher. The evaluation data set is the NIST 2005 Language Recognition Evaluation
data consisting of roughly 20,000 utterances (with duration of 30, 10 or 3 seconds depending on the
task) coming from three collection sources including Callfriend, Mixer and OHSU. We evaluated
our system for the 30 and 10 second task under the the NIST 2005 closed condition which limits
the evaluation data to 7 languages (English, Hindi, Japanese, Korean, Mandarin, Spanish and Tamil)
coming only from the OHSU data source.

The training and evaluation data was segmented using an automatic speech activity detector and
segments smaller than 0.5 seconds were thrown out. We also sub-segmented long audio files in the
training data to keep the duration of each utterance to around 5 minutes (a shorter duration would
have created too many training instances). Lattice arcs with posterior probabilities lower than10−6

were removed and lattice expected counts smaller than10−3 were ignored. The top and bottom
600 ranking keywords for each language were selected after each training iteration. The support
vector machine was trained using a kernel formulation which requires pre-computing all of the
kernel distances between the data points and using an alternate kernel which simply indexes into
the resulting distance matrix (this approach becomes difficult when the number of data points is too
large).

4.2 Language Recognition Results (Qualitative and Quantitative)

To get a sense of how well our keyword building algorithm was working, we looked at the top
ranking keywords from the English model only (since our phone recognizer is trained using the
English phone set). Table 1 summarizes a few of the more compelling phone 5-grams, and a possible
keyword that corresponds to each one. Not suprisingly, we noticed that in the list of top-ranking
n-grams there were many variations or partialn-gram matches to the same keyword, as well as
n-grams that didn’t correspond to any apparent keyword.

The equal error rates for our system on the NIST 2005 language recognition evaluation are summa-
rized in Table 2. The 4-gram system gave a relative improvement of12% on the10 second task and
9% on the30 second task, but despite the compelling keywords produced by the 5-gram system, the
performance actually degraded significantly compared to the 3-gram and 4-gram systems.

Table 1: Top ranking keywords for 5-gram SVM for English language recognition model

phones Rank keyword

SIL_Y_UW_N_OW 1 you know

!NULL_SIL_Y_EH_AX 3 <s> yeah

!NULL_SIL_IY_M_TH 4 <s> ???

P_IY_P_AX_L 6 people

R_IY_L_IY_SIL 7 really

Y_UW_N_OW_OW 8 you know (var)

T_L_AY_K_SIL 17 ? like

L_AY_K_K_SIL 23 like (var)

R_AY_T_SIL_!NULL 27 right </s>

HH_AE_V_AX_N 29 have an

!NULL_SIL_W_EH_L 37 <s> well

Table 2: %EER for 10 and 30 second NIST language recognition tasks

N 1 2 3 4 5

10sec 25.3 16.5 11.3 10.0 13.6

30sec 18.3 07.4 04.3 03.9 05.6
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4.3 Topic Recognition Experimental Setup

Topic recognition was performed using a subset of the phase I Fisher corpus (English) from LDC.
This corpus consists of5, 851 telephone conversations. Participants were given instructions to dis-
cuss a topic for10 minutes from40 different possible topics. Topics included “Education”, “Hob-
bies,” “Foreign Relations”, etc. Prompts were used to elicit discussion on the topics. An example
prompt is:

Movies: Do each of you enjoy going to the movies in a theater, or would you
rather rent a movie and stay home? What was the last movie that you saw? Was it
good or bad and why?

For our experiments, we used2750 conversation sides for training. We also constructed development
and test sets of1372 conversation sides each. The training set was used to find keywords and models
for topic detection.

4.4 Topic Recognition Results

We first looked at top ranking keywords for several topics; some results are shown in Table 3. We
can see that many keywords show a strong correspondence with the topic. Also, there are partial
keywords which correspond to what appears to be longer keywords, e.g. “eh_t_s_ih_k” corresponds
to get sick.

As in the language recognition task, we used EER as the performance measure. Results in Table 4
show the performance for severaln-gram orders. Performance improves going from3-grams to4-
grams. But, as with the language recognition task, we see a degradation in performance for5-grams.

5 Conclusions and future work

We presented a method for automatic construction of keywords given a discriminative speech classi-
fication task. Our method was based upon successively building longer span keywords from shorter
span keywords using phones as a fundamental unit. The problem was cast as a feature selection
problem, and an alternating filter and wrapper algorithm was proposed. Results showed that reason-
able keywords and improved performance could be achieved using this methodology.

Table 3: Top keyword for 5-gram SVM in Topic Recognition

Topic Phones Keyword

Professional Sports on TV S_P_AO_R_T sport

Hypothetical: Time Travel G_OW_B_AE_K go back

Affirmative Action AX_V_AE_K_CH [affirmat]ive act[ion]

US Public Schools S_K_UW_L_Z schools

Movies IY_V_IY_D_IY DVD

Hobbies HH_OH_B_IY_Z hobbies

September 11 HH_AE_P_AX_N happen

Issues in the Middle East IH_Z_R_IY_L Israel

Illness EH_T_S_IH_K [g]et sick
Hypothetical: One Million Dollars to leave the US Y_UW_M_AY_Y you may

Table 4: Performance of Topic Detection for Differentn-gram orders

n-gram order 3 4 5

EER (%) 10.22 8.95 9.40
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Numerous possibilities exist for future work on this task. First, extension and experimentation on
other tasks such as dialect and speaker recognition would be interesting. The method has the poten-
tial for discovery of new interesting characteristics. Second, comparison of this method with other
feature selection methods may be appropriate [16]. A third area for extension is various technical
improvements. For instance, we might want to consider more general keyword models where skips
are allowed (or more general finite state transducers [17]). Also, alternate methods for the filter for
constructing higher ordern-grams is a good area for exploration.
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