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Abstract

Web servers on the Internet need to maintain high reliability, but the cause
of intermittent failures of web transactions is non-obvious. We use approx-
imate Bayesian inference to diagnose problems with web services. This
diagnosis problem is far larger than any previously attempted: it requires
inference of 10* possible faults from 10° observations. Further, such infer-
ence must be performed in less than a second. Inference can be done at
this speed by combining a mean-field variational approximation and the
use of stochastic gradient descent to optimize a variational cost function.
We use this fast inference to diagnose a time series of anomalous HTTP
requests taken from a real web service. The inference is fast enough to
analyze network logs with billions of entries in a matter of hours.

1 Introduction

Internet content providers, such as MSN, Google and Yahoo, all depend on the correct
functioning of the wide-area Internet to communicate with their users and provide their
services. When these content providers lose network connectivity with some of their users,
it is critical that they quickly resolve the problem, even if the failure lies outside their own
systems. ' One challenge is that content providers have little direct visibility into the
wide-area Internet infrastructure and the causes of user request failures. Requests may fail
because of problems in the content provider’s systems or faults in the network infrastructure
anywhere between the user and the content provider, including routers, proxies, firewalls,
and DNS servers. Other failing requests may be due to denial of service attacks or bugs in
the user’s software. To compound the diagnosis problem, these faults may be intermittent:
we must use probabilistic inference to perform diagnosis, rather than using logic.

A second challenge is the scale involved. Not only do popular Internet content providers
receive billions of HTTP requests a week, but the number of potential causes of failure are
numerous. Counting only the coarse-grained Autonomous Systems (ASes) through which
users receive Internet connectivity, there are over 20k potential causes of failure. In this
paper, we show that approximate Bayesian inference scales to handle this high rate of
observations and accurately estimates the underlying failure rates of such a large number of
potential causes of failure.

To scale Bayesian inference to Internet-sized problems, we must make several simplifying
approximations. First, we introduce a bipartite graphical model using overlapping noisy-
ORs, to model the interactions between faults and observations. Second, we use mean-

LA loss of connectivity to users translates directly into lost revenue and a sullied reputation for
content providers, even if the cause of the problem is a third-party network component.



field variational inference to map the diagnosis problem to a reasonably-sized optimization
problem. Third, we further approximate the integral in the variational method. Fourth, we
speed up the optimization problem using stochastic gradient descent.

The paper is structured as follows: Section 1.1 discusses related work to this paper. We
describe the graphical model in Section 2, and the approximate inference in that model
in Section 2.1, including stochastic gradient descent (in Section 3). We present inference
results on synthetic and real data in Section 4 and then draw conclusions.

1.1 Previous Work

The original application of Bayesian diagnosis was medicine. One of the original diagno-
sis network was QMR-DT [14], a bipartite graphical model that used noisy-OR to model
symptoms given diseases. Exact inference in such networks is intractable (exponential in the
number of positive symptoms, [2]), so different approximation and sampling algorithms were
proposed. Shwe and Cooper proposed likelihood-weighted sampling [13], while Jaakkola
and Jordan proposed using a variational approximation to unlink each input to the net-
work [3]. With only thousands of possible symptoms and hundreds of diseases, QMR-DT
was considered very challenging.

More recently, researchers have applied Bayesian techniques for the diagnosis of computers
and networks [1][12][16]. This work has tended to avoid inference in large networks, due to
speed constraints. In contrast, we attack the enormous inference problem directly.

2 Graphical model of diagnosis
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Figure 1: The full graphical model for the diagnosis of Internet faults

The initial graphical model for diagnosis is shown in Figure 1. Starting at the bottom, we
observe a large number of binary random variables, each corresponding to the success/failure
of a single HTTP request. The failure of an HTTP request can be modeled as a noisy-OR [11]
of a set of Bernoulli-distributed binary variables, each of which models the underlying factors
that can cause a request to fail:

P(V; = fall‘D”) =1- (1 — Ti()> H(l — Tijdij), (1)
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where 7;; is the probability that the observation is a failure if a single underlying fault d;;
is present. The matrix r;; is typically very sparse, because there are only a small number of
possible causes for the failure of any request. The r;y parameter models the probability of a
spontaneous failure without any known cause. The r;; are set by elicitation of probabilities
from an expert.

The noisy-OR models the causal structure in the network, and its connections are derivable
from the metadata associated with the HTTP request. For example, a single request can fail
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Figure 2: Graphical model after integrating out instantaneous faults: a bipartite noisy-OR
network with Beta distributions as hidden variables

because its server has failed, or because a misconfigured or overloaded router can cause an
AS to lose connectivity to the content provider, or because the user agent is not compatible
with the service. All of these underlying causes are modeled independently for each request,
because possible faults in the system can be intermittent.

Each of the Bernoulli variables D;; depends on an underlying continuous fault rate variable
F; €[0,1):

dij —d;;
P(Dij|Fy = pj) = i (1 — py)' =%, (2)

where p1; is the probability of a fault manifesting at any time. We model the F} as inde-
pendent Beta distributions, one for each fault:

)h

(1 — Ky ’ (3)
where B is the beta function. The fan-out for each of these fault rates can be different:
some of these fault rates are connected to many observations, while less common ones are
connected to fewer.

Our goal is to model the posterior distribution P(F|V) in order to identify hidden faults
and track them through time. The existence of the D;; random variable is a nuisance. We

do not want to estimate P(5|\7) for any D;;: the distribution of instantaneous problems is
not interesting. Fortunately, we can exactly integrate out these nuisance variables, because
they are connected to only one observation thru a noisy-OR.

After integrating out the D;;, the graphical model is shown in Figure 2. The model is now
completely analogous to the QMR-DT mode [14], but instead of the noisy-OR, combining
binary random variables, they combine rate variables:

P(Vi = fall|[Fj = pj) =1 - (I*Tv:o)H(lfﬁjuj)- (4)

One can view (4) as a generalization of a noisy-OR to continuous [0, 1] variables.

2.1 Approximations to make inference tractable

In order to scale inference up to 10* hidden variables, and 10° observations, we choose a
simple, robust approximate inference algorithm: mean-field variational inference [4]. Mean-
field variational inference approximates the posterior P(ﬁ |‘7) with a factorized distribution.
For inferring fault rates, we choose to approximate P with a product of beta distributions

QUEV) =T a(F51V) _Hwﬂ?rl(luj)ﬁjl_ -



Mean-field variational inference maximizes a lower bound on the evidence of the model:
P(V|@)p(f) |,
max L = / Q(E dgi. (6)
QUiilV)

This integral can be broken into two terms: a cross-entropy between the approximate pos-
terior and the prior, and an expected log-likelihood of the observations:

Lo Q(AV)
= — 1
rg?ﬁ /Q(MV) %8 (i)

The first integral is the negative of a sum of cross-entropies between Beta distributions with
a closed form:

dji + <1og p(v|ﬁ)>Q . (7)
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+(8; — B)U(B;) — (o + B — o = B)v(aj + B;),
where 1 is the digamma function.

However, the expected log likelihood of a noisy-OR integrated over a product of Beta dis-
tributions does not have an analytic form. Therefore, we employ the MF(0) approximation
of Ng and Jordan [9], replacing the expectation of the log likelihood with the log likelihood
of the expectation. The second term then becomes the sum of a set of log likelihoods, one
per observation:

L) =8 (1 = (= rio) [I;[1 = rijo/ (o + ﬂj)]) if V; =1 (failure);
z log(1 —rio) +>_, log[l —rija;/(aj + B5)]  if Vi =0 (success).

For the Internet diagnosis case, the MF(0) approximation is reasonable: we expect the
posterior distribution to be concentrated around its mean, due to the large amount of data
that is available. Ng and Jordan [9] have have proved accuracy bounds for MF(0) based on
the number of parents that an observation has.

(9)

The final cost function for a minimization routine then becomes

mlélc ZDKL a;llps) ZL(W). (10)
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3 Variational inference by stochastic gradient descent

In order to apply unconstrained optimization algorithms to minimize (10), we need transform
the variables: only positive a; and §; are valid, so we parameterize them by

o = e, B; = eb. (11)
and the gradient computation becomes
oC 8DKL qJ||p]
— =, . 12
oa; =9 | 2= Z 3% (12)

J
with a similar gradient for b;. Note that this gradient computation can be quite computa-
tionally expensive, given that ¢ sums over all of the observations.

For Internet diagnosis, we can decompose the observation stream into blocks, where the size
of the block is determined by how quickly the underlying rates of faults change, and how
finely we want to sample those rates. We typically use blocks of 100,000 observations, which
can make the computation of the gradient expensive. Further, we repeat the inference over
and over again, on thousands of blocks of data: we prefer a fast optimization procedure over
a highly accurate one.

Therefore, we investigated the use of stochastic gradient descent for optimizing the vari-
ational cost function. Stochastic gradient descent approximates the full gradient with a



Algorithm 1 Variational Gradient Descent

Require: Noisy-OR parameters r;;, priors a]Q, ﬁ?, observations V;
Initialize a; = log(ay), b; = log(637)
Initialize y;, z; to 0
for £ = 1 to number of epochs do
for all Faults j do
a; = exp(a;), B; = exp(b;)
yi < &y; + (1= §)0Dkw(g;]lps; aj, B5) /Oa;
zj  &zj + (1 = §)0Dxur(gllpj; oy, B;)/ 9b;
aj < aj —ny;
bj — bj = nz;
end for
for all Observations i do
for all Parent faults j of observation v; do
a; = exp(a;), B; = exp(b;)
end for
for all Parent faults j of observation v; do

yj — &y; — (1 = §IL(V;; @, B)/a,
2 = €2 — (1 - ©)OL(V;: @, ) /b,
aj < aj —ny;
bj — bj — Nz
end for
end for
end for

=<

single term from the gradient: the state of the optimization is updated using that single
term [5]. This enables the system to converge quickly to an approximate answer. The details
of stochastic gradient descent are shown in Algorithm 1.

Estimating the sum in equation (12) with a single term adds a tremendous amount of noise
to the estimates. For example, the sign of a single L(V;) gradient term depends only on
the sign of V;. In order to reduce the noise in the estimate, we use momentum [15]: we
exponentially smooth the gradient with a first-order filter before applying it to the state
variables. This momentum modification is shown in Algorithm 1. We typically use a large
step size (n = 0.1) and momentum term (£ = 0.99), in order to both react quickly to changes
in the fault rate and to smooth out noise.

Stochastic gradient descent can be used as a purely on-line method (where each data point
is seen only once), setting the “number of epochs” in Algorithm 1 to 1. Alternatively, it can
get higher accuracy if it is allowed to sweep through the data multiple times.

3.1 Other possible approaches

We considered and tested several other approaches to solving the approximate inference
problem.

Jaakkola and Jordan propose a variational inference method for bipartite noisy-OR net-
works [3], where one variational parameter is introduced to unlink one observation from
the network. We typically have far more observations than possible faults: this previous
approach would have forced us to solve very large optimization problems (with 100,000 pa-
rameters). Instead, we solve an optimization that has dimension equal to the number of
faults.

We originally optimized the variational cost function (10) with both BFGS and the trust-
region algorithm in the Matlab optimization toolbox. This turned out to be far worse than
stochastic gradient descent. We found that a C# implementation of L-BFGS, as described in
Nocedal and Wright [10] sped up the exact optimization by orders of magnitude. We report
on the L-BFGS performance, below: it is within 4x the speed of the stochastic gradient
descent.



We experimented with Metropolis-Hastings to sample from the posterior, using a Gaussian
random walk in (a;,b;). We found that the burn-in time was very long. Also, each update
is slow, because the speed of a single update depends on the fan-out of each fault. In the
Internet diagnosis network, the fan-out is quite high (because a single fault affects many
observations). Thus, Metropolis-Hastings was far slower than variational inference.

We did not try loopy belief propagation [8], nor expectation propagation [6]. Because the
Beta distribution is not conjugate to the noisy OR, the messages passed by either algorithm
do not have a closed form.

Finally, we did not try the idea of learning to predict the posterior from the observations
by sampling from the generative model and learning the reverse mapping [7]. For Internet
diagnosis, we do not know the structure of graphical model for a block of data ahead of
time: the structure depends on the metadata for the requests in the log. Thus, we cannot
amortize the learning time of a predictive model.

4 Results

We test the approximations and optimization methods used for Internet diagnosis on both
synthetic and real data.

4.1 Synthetic data with known hidden state

Testing the accuracy of approximate inference is very difficult, because, for large graphical
models, the true posterior distribution is intractable. However, we can probe the reliability
of the model on a synthetic data set.

We start by generating fault rates from a prior (here, 2000 faults drawn from Beta(5e-
3,1)). We randomly generate connections from faults to observations, with probability
5 x 1073, Each connection has a strength r;; drawn randomly from [0,1]. We generate
100,000 observations from the noisy-OR model (4). Given these observations, we predict an
approximate posterior.

Given that the number of observations is much larger than the number of faults, we expect
that the posterior distribution should tightly cluster around the rate that generated the
observations. Difference between the true rate and the mean of the approximate posterior
should reflect inaccuracies in the estimation.
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Figure 3: The error in estimate of rate versus true underlying rate. Black dots are L-BFGS,
Red dots are Stochastic Gradient Descent with 20 epochs.

The results for a run is shown in Figure 3. The figure shows that the errors in the estimate
are small enough to be very useful for understanding network errors. There is a slight
systematic bias in the stochastic gradient descent, as compared to L-BFGS. However, the
improvement in speed shown in Table 1 is worth the loss of accuracy: we need inference to



be as fast as possible to scale to billions of samples. The run times are for a uniprocessor
Pentium 4, 3 GHz, with code in C#.

Algorithm Accuracy Time
(RMSE) (CPU sec)
L-BFGS 0.0033 38
SGD, 1 epoch 0.0343 0.5
SGD, 20 epochs | 0.0075 11.7

Table 1: Accuracy and speed on synthetic data set

4.2 Real data from web server logs

We then tested the algorithm on real data from a major web service. Each observation
consists of a success or failure of a single HTTP request. We selected 18848 possible faults
that occur frequently in the dataset, including the web server that received the request,
which autonomous system that originated the request, and which “user agent” (brower or
robot) generated the request.

We have been analyzing HT'TP logs collected over several months with the stochastic gra-
dient descent algorithm. In this paper, we present an analysis of a short 2.5 hour window
containing an anomalously high rate of failures, in order to demonstrate that our algo-
rithm can help us understand the cause of failures based on observations in a real-world
environment.

We broke the time series of observations into blocks of 100,000 observations, and inferred

the hidden rates for each block. The initial state of the optimizer was set to be the state of

the optimizer at convergence of the previous block. Thus, for stochastic gradient descent,
the momentum variables were carried forward from block to block.
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Figure 4: The inferred fault rate for two Autonomous Systems, as a function of time. These
are the only two faults with high rate.

The results of this tracking experiment are shown in Figure 4. In this figure, we used
stochastic gradient descent and a Beta(0.1,100) prior. The figure shows the only two faults
whose probability went higher than 0.1 in this time interval: they correspond to two ASes in
the same city, both causing failures at roughly the same time. This could be due to a router
that is in common between them, or perhaps an denial of service attack that originated in
that city.

The speed of the analysis is much faster than real time. For a data set of 10 million
samples, L-BFGS required 209 CPU seconds, while SGD (with 3 passes of data per block)
only required 51 seconds. This allows us to go through logs containing billions of entries in
a matter of hours.



5 Conclusions

This paper presents high-speed variational inference to diagnose problems on the scale of
the Internet. Given observations at a web server, the diagnosis can determine whether a web
server needs rebooting, whether part of the Internet is broken, or whether the web server is
compatible with a browser or user agent.

In order to scale inference up to Internet-sized diagnosis problems, we make several ap-
proximations. First, we use mean-field variational inference to approximate the posterior
distribution. The expected log likelihood inside of the variational cost function is approxi-
mated with the MF(0) approximation. Finally, we use stochastic gradient descent to perform
the variational optimization.

We are currently using variational stochastic gradient descent to analyze logs that contain
billions of requests. We are not aware of any other applications of variational inference at
this scale. Future publications will include conclusions of such analysis, and implications
for web services and the Internet at large.
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