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Abstract

We describe a neurobiologically plausible model to implement dynamic routing
using the concept of neuronal communication through neuronal coherence. The
model has a three-tier architecture: a raw input tier, a routing control tier, and an
invariant output tier. The correct mapping between input and output tiers is re-
alized by an appropriate alignment of the phases of their respective background
oscillations by the routing control units. We present an example architecture, im-
plemented on a neuromorphic chip, that is able to achieve circular-shift invariance.
A simple extension to our model can accomplish circular-shift dynamic routing
with only O(N) connections, compared to O(N2) connections required by tradi-
tional models.

1 Dynamic Routing Circuit Models for Circular-Shift Invariance

Dynamic routing circuit models are among the most prominent neural models for invariant recogni-
tion [1] (also see [2] for review). These models implement shift invariance by dynamically changing
spatial connectivity to transform an object to a standard position or orientation. The connectivity
between the raw input and invariant output layers is controlled by routing units, which turn certain
subsets of connections on or off (Figure 1A). An important feature of this model is the explicit rep-
resentation ofwhat andwhere information in the main network and the routing units, respectively;
the routing units use thewhere information to create invariant representations.

Traditional solutions for shift invariance are neurobiologically implausible for at least two reasons.
First, there are too many synaptic connections: forN input neurons,N output neurons andN
possible input-output mappings, the network requires O(N2) connections in the routing layer—
between each of theN routing units and each set ofN connections that that routing unit gates (Figure
1A). Second, these connections must be extremely precise: each routing unit must activate an input-
output mapping (Nindividual connections) corresponding to the desired shift (as highlighted in
Figure 1A). Other approaches that have been proposed, includinginvariant feature networks [3,4],
also suffer from significant drawbacks, such as the inability to explicitly representwhere information
[2]. It remains an open question how biology could achieve shift invariance without profligate and
precise connections.

In this article, we propose a simple solution for shift invariance for quantities that are circular or
periodic in nature—circular-shift invariance (CSI)—orientation invariance in vision and key invari-
ance in music. The visual system may create orientation-invariant representations to aid recognition
under conditions of object rotation or head-tilt [5,6]; a similar mechanism could be employed by
the auditory system to create key-invariant representations under conditions where the same melody
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Figure 1: Dynamic routing.A In traditional dynamic routing, connections from the (raw) input layer
to the (invariant) output layer are gated by routing units. For instance, the mapping from A to 5, B to
6, . . . , F to 4 is achieved by turning on the highlighted routing unit.B In time-division multiplexing
(TDM), the encoder samples input channels periodically (using a rotating switch) while the decoder
sends each sample to the appropriate output channel (based on its time bin). TDM can be extended to
achieve a circular-shift transformation by altering the angle between encoder and decoder switches
(θ), thereby creating a rotated mapping between input and output channels (adapted from [7]).

is played in different keys. Similar to orientation, which is a periodic quantity, musical notes one
octave apart sound alike, a phenomenon known as octave equivalence [8]. Thus, the problems of
key invariance and orientation invariance admit similar solutions.

Deriving inspiration from time-division multiplexing (TDM), we propose a neural network for CSI
that uses phase to encode and decode information. We modulate the temporal window of commu-
nication between (raw) input and (invariant) output neurons to achieve the appropriate input–output
mapping. Extending TDM, any particular circular-shift transformation can be accomplished by
changing the relative angle,θ, between the rotating switches of the encoder (that encodes the raw
input in time) and decoder (that decodes the invariant output in time) (Figure 1B). This obviates the
need to hardwire routing control units that specifically modulate the strength of each possible input-
output connection, thereby significantly reducing the complexity inherent in the traditional dynamic
routing solution. Similarly, a remapping between the input and output neurons can be achieved by
introducing a relative phase-shift in their background oscillations.

2 Dynamic Routing through Neuronal Coherence

To modulate the temporal window of communication, the model uses a ring of neurons (theoscilla-
tion ring) to select the pool of neurons (in theprojection ring) that encode or decode information at a
particular time (Figure 2A). Each projection pool encodes a specific value of the feature (for exam-
ple, one of twelve musical notes). Upon activation by external input, each pool is active only when
background inhibition generated by the oscillation ring (outer ring of neurons) is at a minimum. In
addition to exciting 12 inhibitory interneurons in the projection ring, each oscillation ring neuron
excites its nearest 18 neighbors in the clockwise direction around the oscillation ring. As a result, a
wave of inhibition travels around the projection ring that allows only one pool to be excitable at any
point in time. These neurons become excitable at roughly the same time (numbered sectors, inner
ring) by virtue of recurrent excitatory intra-pool connections.

Decoding is accomplished by a second tier of rings (Figure 2B). The projection ring of the first (in-
put) tier connects all-to-all to the projection ring of the second (output) tier. The two oscillation rings
create a window of excitability for the pools of neurons in their respective projection rings. Hence,
the most effective communication occurs between input and output pools that become excitable at
the same time (i.e. are oscillating in phase with one another [9]).

The CSI problem is solved by introducing a phase-shift between the input and output tiers. If they
are exactly in phase, then an input pool is simply mapped to the output pool directly above it. If their
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Figure 2: Double-Ring Network for Encoding and Decoding.A The projection (inner) ring is
divided into (numbered) pools. The oscillation (outer) ring modulates sub-threshold activity (wave-
forms) of the projection ring by exciting (black distribution) inhibitory neurons that inhibit neigh-
boring projection neurons. A wave of activity travels around the oscillation ring due to asymmetric
excitatory connections, creating a corresponding wave of inhibitory activity in the projection ring,
such that only one pool of projection neurons is excitable (spikes) at a given time.B Two instances
of the double-ring structure from A. The input projection ring connects all-to-all to the output pro-
jection ring (dashed lines). Because each input pool will spike only during a distinct time bin, and
each output pool is excitable only in a certain time bin, communication occurs between input and
output pools that are oscillating in phase with each other. Appropriate phase offset between input
and output oscillation rings realizes the desired circular shift (input pool H to output pool 1, solid
arrow).C Interactions among pools highlighted in B.

phases are different, the input is dynamically routed to an appropriate circularly shifted position in
the output tier. Such changes in phase are analogous to adjusting the angle of the rotating switch
at either the encoder or the decoder in TDM (see Figure 1B). There is some evidence that neural
systems could employ phase relationships of subthreshold oscillations to selectively target neural
populations [9-11].

3 Implementation in Silicon

We implemented this solution to CSI on a neuromorphic silicon chip [12]. The neuromorphic chip
has neurons whose properties resemble that of biological neurons; these neurons even have intrin-
sic differences, thereby mimicking heterogeneity in real neurobiological systems. The chip uses a
conductance-based spiking model for both inhibitory and excitatory neurons. Inhibitory neurons
project to nearby excitatory and inhibitory neurons via a diffusor network that determines the spread
of inhibition. A lookup table of excitatory synaptic connectivity is stored in a separate random-
access memory (RAM) chip. Spikes occurring on-chip are converted to a neuron address, mapped
to synapses (if any) via the lookup table, and routed to the targeted on-chip synapse. A universal
serial bus (USB) interface chip communicates spikes to and from a computer, for external input and
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Figure 3: Traveling-wave activity in the oscillation ring.A Population activity (5ms bins) of a pool
of eighteen (adjacent) oscillation neurons.B Increasing the strength of feedforward excitation led
to increasing frequencies of periodic firing in theθ andα range (1-10 Hz). Strength of excitation
is the amplitude change in post-synaptic conductance due to a single pre-synaptic spike (measured
relative to minimum amplitude used).

data analysis, respectively. Simulations on the chip occur in real-time, making it an attractive option
for implementing the model.

We configured the following parameters:

• Magnitude of a potassium M-current: increasing this current’s magnitude increased the
post-spike repolarization time of the membrane potential, thereby constraining spiking to a
single time bin per cycle.

• The strength of excitatory and inhibitory synapses: a correct balance had to be established
between excitation and inhibition to make only a small subset of neurons in the projection
rings fire at a time—too much excitation led to widespread firing and too much inhibition
led to neurons that were entirely silent or fired sporadically.

• The space constant of inhibitory spread: increasing the spread was effective in preventing
runaway excitation, which could occur due to the recurrent excitatory connections.

We were able to create a stable traveling wave of background activity within the oscillation ring.
We transiently stimulated a small subset of the neurons, which initiated a wave of activity that
propagated in a stable manner around the ring after the transient external stimulation had ceased
(Figure 3A). The network frequency determined from a Fourier transform of the network activity
smoothed with a non-causal Gaussian kernel (FDHM = 80ms) was 7.4Hz. The frequency varied
with the strength of the neurons’ excitatory connections (Figure 3B), measured as the amplitude of
the step increase in membrane conductivity due to the arrival of a pre-synaptic spike. Over much
of the range of the synaptic strengths tested, we observed stable oscillations in theθ andα bands
(1-10Hz); the frequency appeared to increase logarithmically with synaptic strength.

4 Phase-based Encoding and Decoding

In order to assess the best-case performance of the model, the background activity in the input and
output projection rings was derived from the input oscillation ring. Their spikes were delivered to
the appropriately circularly-shifted output oscillation neurons. The asymmetric feedforward con-
nections were disabled in the output oscillation ring. For instance, in order to achieve a circular shift
by k pools (i.e. mapping input projection pool 1 to output projection poolk + 1, input pool 2 to
output poolk + 2, and so on), activity from the input oscillation neurons closest to input pool 1 was
fed into the output oscillation neurons closest to output poolk. By providing the appropriate phase
difference between input and output oscillation, we were able to assess the performance of the model
under ideal conditions. In the Discussion section, we discuss a biologically plausible mechanism to
control the relative phases.
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Figure 4: Phase-based encoding. Rasters indicating activity of projection pools in 1ms bins, and
mean phase of firing (×’s) for each pool (relative to arbitrary zero time). The abscissa shows firing
time normalized by the period of oscillation (which may be converted to firing phase by multiplica-
tion by 2π). Under constant input to the input projection ring, the input pools fire approximately in
sequence. Two cycles of pool activity normalized by maximum firing rate for each pool are shown
in left inset (for clarity, pools 1-6 are shown in the top panel and pools 7-12 are shown separately
in the bottom panel); phase of background inhibition of pool 4 is shown (below) for reference.
Phase-aligned average1 of activity (right inset) showed that the firing times were relatively tight and
uniform across pools: a standard deviation of 0.0945 periods, or equivalently, a spread of 1.135
pools at any instant of time.

We verified that the input projection pools fired in a phase-shifted fashion relative to one another,
a property critical for accurate encoding (see Figure 2). We stimulated all pools in the input pro-
jection ring simultaneously while the input oscillation ring provided a periodic wave of background
inhibition. The mean phase of firing for each pool (relative to arbitrary zero time) increased nearly
linearly with pool number, thereby providing evidence for accurate, phase-based encoding (Figure
4). The firing times of all pools are shown for two cycles of background oscillatory activity (Figure 4
left inset). A phase-aligned average1 showed that the timing was relatively tight (standard deviation
1.135 pools) and uniform across pools of neurons (Figure 4right inset).

We then characterized the system’s ability to correctly decode this encoding under a given circular
shift. The shift was set to seven pools, mapping input pool 1 to output pool 8, and so on. Each input
pool was stimulated in turn. We expected to see only the appropriately shifted output pool become
highly active. In fact, not only was this pool active, but other pools around it were also active,
though to a lesser extent (Figure 5A). Thus, the phase-encoded input was decoded successfully, and
circularly shifted, except that the output units were broadly tuned.

To quantify the overall precision of encoding and decoding, we constructed aninput-locked aver-
age of the tuning curves (Figure 5B): the curves were circularly shifted to the left by an amount
corresponding to the stimulated input pool number, and the raw pool firing rates were averaged. If
the phase-based encoding and decoding were perfect, the peak should occur at a shift of 7 pools.

1The phase-aligned average was constructed by shifting the pool-activity curves by the (# of the pool)×

( 1

12
of the period) to align activity across pools, which was then averaged.
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Figure 5: Decoding phase-encoded input.A In order to assess decoding performance under a given
circular shift (here 7 pools) each input pool was stimulated in turn and activity in each output pool
was recorded and averaged over 500ms. The pool’s response, normalized by its maximum firing
rate, is plotted for each stimulated input pool (arrows pointing to curves, color code as in Figure 4).
Each input pool stimulation trial consistently resulted in peak activity in the appropriate output pool;
however, adjacent pools were also active, but to a lesser extent, resulting in a broad tuning curve.B
The best-fit Gaussian (dot-dashed grey curve,σ = 2.30 pools) to the input-locked average of the raw
pool firing rates (see text for details) revealed a maximum between a shift of 7 and 8 pools (inverted
grey triangle; expected peak at a shift of 7 pools).

Indeed, the highest (average) firing rate corresponded to a shift of 7 pools. However, the activity
corresponding to a shift of 8 pools was nearly equal to that of 7 pools, and the best fitting Gaus-
sian curve to the activity histogram (grey dot-dashed line) peaked at a point between pools 7 and 8
(inverted grey triangle). The standard deviation (σ) was 2.30 pools, versus the expected idealσ of
1.60, which corresponds to the encoding distribution (σ= 1.135 pools) convolved with itself.

5 Discussion

We have demonstrated a biologically plausible mechanism for the dynamic routing of information
in time that obviates the need for precise gating of connections. This mechanism requires that a
wave of activity propagate around pools of neurons arranged in a ring. While previous work has
described traveling waves in a ring of neurons [13], and a double ring architecture (for determining
head-direction) [14], our work combines these two features (twin rings with phase-shifted traveling
waves) to achieve dynamic routing. These features of the model are found in the cortex: Bonhoeffer
and Grinwald [15] describe iso-orientation columns in the cat visual cortex that are arranged in
ring-like pinwheel patterns, with orientation tuning changing gradually around the pinwheel center.
Moreover, Rubino et al. [16] have shown that coherent oscillations can propagate as waves across
the cortical surface in the motor cortex of awake, behaving monkeys performing a delayed reaching
task.

Our solution for CSI is also applicable to music perception. In the Western twelve-tone, equal-
temperament tuning system (12-tone scale), each octave is divided into twelve logarithmically-
spaced notes. Human observers are known to construct mental representations for raw notes that
are invariant of the (perceived) key of the music: a note of C heard in the key of C-Major is percep-
tually equivalent to the note C# heard in the key of C#-Major [8,17]. In previous dynamic routing
models of key invariance, the tonic—the first note of the key (e.g., C is the tonic of C-Major)—
supplies the equivalentwhere information used by routing units that gate precise connections to
map the raw note into a key-invariant output representation [17].

To achieve key invariance in our model, the bottom tier encodes raw note information while the top
tier decodes key-invariant notes (Figure 6). The middle tier receives the tonic information and aligns
the phase of the first output pool (whose invariant representation corresponds to the tonic) with the
appropriate input pool (whose raw note representation corresponds to the tonic of the perceived key).
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Figure 6: Phase-based dynamic routing to achieve key-invariance. The input (bottom) tier encodes
raw note information, and the output (top) tier decodes key-invariant information. The routing
(middle) tier sets the phase of the background wave activity in the input and output oscillation rings
(dashed arrows) such that the first output pool is in phase with the input pool representing the note
corresponding to the tonic. On the left, where G is the tonic, input pool G, output pool 1, and the
routing tier are in phase with one another (black clocks), while input pool C and output pool 6 are in
phase with one another (grey clocks). Thus, the raw note input, G, activates the invariant output 1,
which corresponds to the perceived tonic invariant representation (heavy solid arrows). On the right,
the same raw input note, G, is active, but the key is different and A is now the active tonic; thus the
raw input, G, is now mapped to output pool 11.

The tonic information is supplied to a specific pool in the routing ring according to the perceived
key. This pool projects directly down to the input pool corresponding to the tonic. This ensures
that the current tonic’s input pool is excitable in the same time bin as the first output pool. Each
of the remaining raw input notes of the octave is mapped by time binning to the corresponding
key-invariant representation in the output tier, as the phases of input pools are all shifted by the
same amount. Supporting evidence for phase-based encoding of note information comes from MEG
recordings in humans: the phase of the MEG signal (predominantly over right hemispheric sensor
locations) tracks the note of the heard note sequence with surprising accuracy [18].

The input and output tiers’ periods must be kept in lock-step, which can be accomplished through
more plausible means than employed in the current implementation of this model. Here, we main-
tained a fixed phase shift between the input and output oscillation rings by feeding activity from the
input oscillation ring to the appropriately shifted pool in the output oscillation ring. This approach
allowed us to avoid difficulties achieving coherent oscillations at identical frequencies in the input
and output oscillation rings. Alternatively, entrainment could be achieved even when the frequencies
are not identical—a more biologically plausible scenario—if the routing ring resets the phase of the
input and output rings on a cycle-by-cycle basis. Lakatos et al. [19] have shown that somatosen-
sory inputs can reset the phase of ongoing neuronal oscillations in the primary auditory cortex (A1),
which helps in the generation of a unified auditory-tactile percept (the so-called “Hearing-Hands
Effect”).

A simple extension to our model can reduce the number of connections below the requirements of
traditional dynamic routing models. Instead of having all-to-all connections between the input and
output layers, a relay layer of very few (M¿ N ) neurons could be used to transmit the spikes
form the input neurons to the output neurons (analogous to the single wire connecting encoder and
decoder in Figure 1B). A small number of (or ideally even one) relay neurons suffices because
encoding and decoding occur intime. Hence, the connections between each input pool and the
relay neurons require O(MN) ≈ O(N) connections (as long asM does not scale withN ) and
those between the relay neurons and each output pool require O(MN) ≈ O(N) connections as well.
Thus, by removing all-to-all connectivity between the input and output units (a standard feature in
traditional dynamic routing models), the number of required connections is reduced from O(N2)
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to O(N). Further, by replacing the strict pool boundaries with nearest neighbor connectivity in the
projection rings, the proposed model can accommodate a continuum of rotation angles.

In summary, we propose that the mechanism of dynamic routing through neuronal coherence could
be a general mechanism that could be used by multiple sensory and motor modalities in the neo-
cortex: it is particularly suitable for placing raw information in an appropriate context (defined by
the routing tier).
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