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Abstract

We present a new analysis for the combination of binary classifiers. Our analysis
makes use of the Neyman-Pearson lemma as a theoretical basis to analyze combi-
nations of classifiers. We give a method for finding the optimal decision rule for a
combination of classifiers and prove that it has the optimal ROC curve. We show
how our method generalizes and improves previous work on combining classifiers
and generating ROC curves.

1 Introduction

We present an optimal way to combine binary classifiers in the Neyman-Pearson sense: for a given
upper bound on false alarms (false positives), we find the set of combination rules maximizing the
detection rate (true positives). This forms the optimal ROC curve of a combination of classifiers.

This paper makes the following original contributions: (1) We present a new method for finding
the meta-classifier with the optimal ROC curve. (2) We show how our framework can be used to
interpret, generalize,andimproveprevious work by Provost and Fawcett [1] and Flach and Wu [2].
(3) We present experimental results that show our method is practical and performs well, even when
we must estimate the distributions with insufficient data.

In addition, we prove the following results: (1) We show that the optimal ROC curve is composed
in general of2n + 1 different decision rules and of the interpolation between these rules (over the
space of22n

possible Boolean rules). (2) We prove that our method is optimal in this space. (3) We
prove that the Boolean AND and OR rules are always part of the optimal set for the special case of
independent classifiers (though in general we make no independence assumptions). (4) We prove a
sufficient condition for Provost and Fawcett’s method to be optimal.

2 Background

Consider classification problems where examples from a space of inputsX are associated with
binary labels{0, 1} and there is a fixed but unknown probability distributionP(x, c) over examples
(x, c) ∈ X × {0, 1}. H0 andH1 denote the events thatc = 0 andc = 1, respectively.

A binary classifier is a functionf : X → {0, 1} that predicts labels on new inputs. When we use
the term “classifier” in this paper we mean binary classifier. We address the problem of combining
results fromn base classifiersf1, f2, . . . , fn. Let Yi = fi(X) be a random variable indicating the
output of classifierfi andY ∈ {0, 1}n = (Y1, Y2, . . . , Yn). We can characterize the performance of
classifierfi by its detection rate(alsotrue positives, orpower) PDi = Pr[Yi = 1|H1] and itsfalse
alarm rate(alsofalse positives, ortest size)PFi = Pr[Yi = 1|H0]. In this paper we are concerned
with properclassifiers, that is, classifiers wherePDi > PFi. We sometimes omit the subscripti.
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TheReceiver Operating Characteristic (ROC) curveplotsPF on thex-axis andPD on they-axis
(ROC space). The point(0, 0) represents always classifying as 0, the point(1, 1) represents always
classifying as 1, and the point(0, 1) represents perfect classification. If one classifier’s curve has no
points below another, itweakly dominatesthe latter. If no points are below and at least one point
is strictly above, itdominatesit. The liney = x describes a classifier that is no better than chance,
and every proper classifier dominates this line. When an ROC curve consists of a single point, we
connect it with straight lines to(0, 0) and(1, 1) in order to compare it with others (see Lemma 1).

In this paper, we focus on base classifiers that occupy a single point in ROC space. Many classifiers
have tunable parameters and can produce a continuous ROC curve; our analysis can apply to these
cases by choosing representative points and treating each one as a separate classifier.

2.1 The ROC convex hull

Provost and Fawcett [1] give a seminal result on the use of ROC curves for combining classifiers.
They suggest taking the convex hull of all points of the ROC curves of the classifiers. ThisROC
convex hull (ROCCH)combination rule interpolates between base classifiersf1, f2, . . . , fn, select-
ing (1) a single best classifier or (2) a randomization between the decisions of two classifiers for
every false alarm rate [1]. This approach, however, is not optimal: as pointed out in later work by
Fawcett, the BooleanANDandORrules over classifiers can perform better than the ROCCH [3].

AND and OR are only 2 of22n

possible Boolean rules over the outputs ofn base classifiers (n
classifiers⇒ 2n possible outcomes⇒ 22n

rules over outcomes). We address finding optimal rules.

2.2 The Neyman-Pearson lemma

In this section we introduce Neyman-Pearson theory from the framework of statistical hypothesis
testing [4, 5], which forms the basis of our analysis.

We test a null hypothesisH0 against an alternativeH1. Let the random variableY have probability
distributionsP (Y|H0) underH0 andP (Y|H1) underH1, and define thelikelihood ratioℓ(Y) =
P (Y|H1)/P (Y|H0). The Neyman-Pearson lemma states that the likelihood ratio test

D(Y) =

{
1 if ℓ(Y) > τ
γ if ℓ(Y) = τ
0 if ℓ(Y) < τ

, (1)

for someτ ∈ (0,∞) andγ ∈ [0, 1], is a most powerful test for its size: no other test has higher
PD = Pr[D(Y) = 1|H1] for the same bound onPF = Pr[D(Y) = 1|H0]. (Whenℓ(Y) = τ ,
D = 1 with probabilityγ and 0 otherwise.) Given a test sizeα, we maximizePD subject toPF ≤ α
by choosingτ andγ as follows. First we find the smallest valueτ∗ such thatPr[ℓ(Y) > τ∗|H0] ≤
α. To maximizePD, which is monotonically nondecreasing withPF , we choose the highest value
γ∗ that satisfiesPr[D(Y) = 1|H0] = Pr[ℓ(Y) > τ∗|H0] + γ∗ Pr[ℓ(Y) = τ∗|H0] ≤ α, finding
γ∗ = (α − Pr[ℓ(Y) > τ∗|H0])/Pr[ℓ(Y) = τ∗|H0].

3 The optimal ROC curve for a combination of classifiers

We characterize the optimal ROC curve for a decision based on a combination of arbitrary
classifiers—for any given boundα onPF , we maximizePD. We frame this problem as a Neyman-
Pearson hypothesis test parameterized by the choice ofα. We assume nothing about the classifiers
except that each produces an output in{0, 1}. In particular, we do not assume the classifiers are
independent or related in any way.

Before introducing our method we analyze the one-classifier case (n= 1).

Lemma 1 Let f1 be a classifier with performance probabilitiesPD1 and PF1. Its optimal ROC
curve is a piecewise linear function parameterized by a free parameterα boundingPF : for α <
PF1, PD(α) = (PD1/PF1)α, and forα > PF1, PD(α) = [(1−PD1)/(1−PF1)](α−PF1)+PD1.

Proof. Whenα < PF1, we can obtain a likelihood ratio test by settingτ∗ = ℓ(1) andγ∗ = α/PF1,
and forα > PF1, we setτ∗ = ℓ(0) andγ∗ = (α − PF1)/(1 − PF1). 2
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The intuitive interpretation of this result is that to decrease or increase the false alarm rate of the
classifier, we randomize between using its predictions and always choosing 1 or 0. In ROC space,
this forms lines interpolating between(PF1, PD1) and(1, 1) or (0, 0), respectively.

To generalize this result for the combination ofn classifiers, we require the distributionsP (Y|H0)
andP (Y|H1). With this information we then compute and sort the likelihood ratiosℓ(y) for all
outcomesy ∈ {0, 1}n. LetL be the list of likelihood ratios ranked from low to high.

Lemma 2 Given any0 ≤ α ≤ 1, the orderingL determines parametersτ∗ andγ∗ for a likelihood
ratio test of sizeα.

Lemma 2 sets up a classification rule for each interval between likelihoods inL and interpolates
between them to create a test with size exactlyα. Our meta-classifier does this for any given bound
on its false positive rate, then makes predictions according to Equation 1. To find the ROC curve for
our meta-classifier, we plotPD againstPF for all 0 ≤ α ≤ 1. In particular, for eachy ∈ {0, 1}n

we can computePr[ℓ(Y) > ℓ(y)|H0], which gives us one value forτ∗ and a point in ROC space
(PF andPD follow directly fromL andP ). Eachτ∗ will turn out to be the slope of a line segment
between adjacent vertices, and varyingγ∗ interpolates between the vertices. We call the ROC curve
obtained in this way theLR-ROC.

Theorem 1 The LR-ROC weakly dominates the ROC curve of any possible combination of Boolean
functionsg : {0, 1}n → {0, 1} over the outputs ofn classifiers.

Proof. Let α′ be the probability of false alarmPF for g. Let τ∗ andγ∗ be chosen for a test of
sizeα′. Then our meta-classifier’s decision rule is a likelihood ratio test. By the Neyman-Pearson
lemma, no other test has higher power for any given size. Since ROC space plots power on the
y-axis and size on thex-axis, this means that thePD for g atPF = α′ cannot be higher than that of
the LR-ROC. Since this is true at anyα′, the LR-ROC weakly dominates the ROC curve forg. 2

3.1 Practical considerations

To compute all likelihood ratios for the classifier outcomes we need to know the probability distri-
butionsP (Y|H0) andP (Y|H1). In practice these distributions need to be estimated. The simplest
method is to run the base classifiers on a training set and count occurrences of each outcome. It is
likely that some outcomes will not occur in the training, or will occur only a small number of times.
Our initial approach to deal with small or zero counts when estimating was to use add-one smooth-
ing. In our experiments, however, simple special-case treatment of zero counts always produced
better results than smoothing, both on the training set and on the test set. See Section 5 for details.

Furthermore, the optimal ROC curve may have a different likelihood ratio for each possible outcome
from then classifiers, and therefore a different point in ROC space, so optimal ROC curves in general
have up to2n points. This implies an exponential (in the number of classifiers) lower bound on the
running time of any algorithm to compute the optimal ROC curve for a combination of classifiers.
For a handful of classifiers, such a bound is not problematic, but it is impractical to compute the
optimal ROC curve for dozens or hundreds of classifiers. (However, by computing and sorting the
likelihood ratios we avoid a22n

-time search over all possible classification functions.)

4 Analysis

4.1 The independent case

In this section we take an in-depth look at the case of two binary classifiersf1 and f2 that are
conditionally independent given the input’s class, so thatP (Y1, Y2|Hc) = P (Y1|Hc)P (Y2|Hc) for
c ∈ {0, 1} (this section is the only part of the paper in which we make any independence assump-
tions). SinceY1 andY2 are conditionally independent, we do not need the full joint distribution; we
need only the probabilitiesPD1, PF1, PD2, andPF2 to find the combinedPD andPF . For example,
ℓ(01) = ((1 − PD1)PD2)/((1 − PF1)PF2).

The assumption thatf1 andf2 are conditionally independent and proper defines a partial ordering
on the likelihood ratio:ℓ(00) < ℓ(10) < ℓ(11) and ℓ(00) < ℓ(01) < ℓ(11). Without loss of
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Table 1: Two probability distributions.

Class 1 (H1) Class 0 (H0)
Y1

Y2 0 1
0 0.2 0.375
1 0.1 0.325

Y1

Y2 0 1
0 0.5 0.1
1 0.3 0.1

(a)

Class 1 (H1) Class 0 (H0)
Y1

Y2 0 1
0 0.2 0.1
1 0.2 0.5

Y1

Y2 0 1
0 0.1 0.3
1 0.5 0.1

(b)

generality, we assumeℓ(00) < ℓ(01) < ℓ(10) < ℓ(11). This ordering breaks the likelihood ratio’s
range(0,∞) into five regions; choosingτ in each region defines a different decision rule.

The trivial cases0 ≤ τ < ℓ(00) and ℓ(11) < τ < ∞ correspond to always classifying as
1 and 0, respectively.PD and PF are therefore both equal to 1 and both equal to 0, respec-
tively. For the caseℓ(00) ≤ τ < ℓ(01), Pr [ℓ(Y) > τ ] = Pr [Y = 01 ∨ Y = 10 ∨ Y = 11] =
Pr [Y1 = 1 ∨ Y2 = 1] . Thresholds in this range define an OR rule for the classifiers, withPD =
PD1 + PD2 − PD1PD2 andPF = PF1 + PF2 − PF1PF2. For the caseℓ(01) ≤ τ < ℓ(10), we
havePr [ℓ(Y) > τ ] = Pr [Y = 10 ∨ Y = 11] = Pr [Y1 = 1] . Therefore the performance proba-
bilities are simplyPD = PD1 andPF = PF1. Finally, the caseℓ(10) ≤ τ < ℓ(11) implies that
Pr [ℓ(Y) > τ ] = Pr [Y = 11] , and therefore thresholds in this range define an AND rule, with
PD = PD1PD2 andPF = PF1PF2. Figure 1a illustrates this analysis with an example.

The assumption of conditional independence is a sufficient condition for ensuring that the AND and
OR rules improve on the ROCCH forn classifiers, as the following result shows.

Theorem 2 If the distributions of the outputs ofn proper binary classifiersY1, Y2, . . . , Yn are con-
ditionally independent given the instance class, then the points in ROC space for the rules AND
(Y1 ∧ Y2 ∧ · · · ∧ Yn) and OR (Y1 ∨ Y2 ∨ · · · ∨ Yn) are strictly above the convex hull of the ROC
curves of the base classifiersf1, . . . , fn. Furthermore, these Boolean rules belong to the LR-ROC.

Proof. The likelihood ratio of the case when AND outputs1 is given by ℓ(11 · · · 1) =
(PD1PD2 · · ·PDn)/(PF1PF2 · · ·PFn). The likelihood ratio of the case when OR does not output1
is given byℓ(00 · · · 0) = [(1−PD1)(1−PD2) · · · (1−PDn)]/[(1−PF1)(1−PF2) · · · (1−PFn)].
Now recall that for proper classifiersfi, PDi > PFi and thus(1−PDi)/(1−PFi) < 1 < PDi/PFi.
It is now clear thatℓ(00 · · · 0) is the smallest likelihood ratio andℓ(11 · · · 1) is the largest likelihood
ratio, since others are obtained only by swappingP(F,D)i and(1 − P(F,D)i), and therefore the OR
and AND rules will always be part of the optimal set of decisions for conditionally independent clas-
sifiers. These rules arestrictly above the ROCCH: becauseℓ(11 · · · 1) > PD1/PD2, andPD1/PD2

is the slope of the line from(0, 0) to the first point in the ROCCH (f1), the AND point must be
above the ROCCH. A similar argument holds for OR sinceℓ(00 · · · 0) < (1 − PDn)/(1 − PFn). 2

4.2 Two examples

We return now to the general case with no independence assumptions. We present two example
distributions for the two-classifier case that demonstrate interesting results.

The first distribution appears in Table 1a. The likelihood ratio values areℓ(00) = 0.4, ℓ(10) = 3.75,
ℓ(01) = 1/3, andℓ(11) = 3.25, giving usℓ(01) < ℓ(00) < ℓ(11) < ℓ(10). The three non-trivial
rules correspond to the Boolean functionsY1 ∨ ¬Y2, Y1, andY1 ∧ ¬Y2. Note thatY2 appears only
negatively despite being a proper classifier, and both the AND and OR rules are sub-optimal.

The distribution for the second example appears in Table 1b. The likelihood ratios of the outcomes
areℓ(00) = 2.0, ℓ(10) = 1/3, ℓ(01) = 0.4, andℓ(11) = 5, soℓ(10) < ℓ(01) < ℓ(00) < ℓ(11)
and the three points defining the optimal ROC curve are¬Y1 ∨ Y2, ¬(Y1 ⊕ Y2), andY1 ∧ Y2 (see
Figure 1b). In this case, an XOR rule emerges from the likelihood ratio analysis.

These examples show that for true optimal results it is not sufficient to use weighted voting rules
w1Y1 + w2Y2 + · · · + wnYn ≥ τ , wherew ∈ (0,∞) (like some ensemble methods). Weighted
voting always has AND and OR rules in its ROC curve, so it cannot always express optimal rules.
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Figure 1: (a) ROC for two conditionally independent classifiers. (b) ROC curve for the distributions
in Table 1b. (c) Original ROC curve and optimal ROC curve for example in Section 4.4.

4.3 Optimality of the ROCCH

We have seen that in some cases, rules exist with points strictly above the ROCCH. As the following
result shows, however, there are conditions under which the ROCCH is optimal.

Theorem 3 Considern classifiersf1, . . . , fn. The convex hull of points(PFi, PDi) with (0, 0) and
(1, 1) (the ROCCH) is an optimal ROC curve for the combination if(Yi = 1) ⇒ (Yj = 1) for i < j
and the following ordering holds:ℓ(00 · · · 0) < ℓ(00 · · · 01) < ℓ(00 · · · 011) < · · · < ℓ(1 · · · 1).

Proof. The condition(Yi = 1) ⇒ (Yj = 1) for i < j implies that we only need to considern + 2
points in the ROC space (the two extra points are(0, 0) and(1, 1)) rather than2n. It also implies the
following conditions on the joint distribution:Pr[Y1 = 0 ∧ · · · ∧ Yi = 0 ∧ Yi+1 = 1 ∧ · · · ∧ Yn =
1|H0] = PFi+1 − PFi, andPr[Y1 = 1 ∧ · · · ∧ Yn = 1|H0] = PF1. With these conditions
and the ordering condition on the likelihood ratios, we havePr[ℓ(Y) > ℓ(1 · · · 1)|H0] = 0, and
Pr[ℓ(Y) > ℓ(0 · · · 0

︸ ︷︷ ︸

i

1 · · · 1)|H0] = PFi. Therefore, finding the optimal threshold of the likelihood

ratio test forPFi−1 ≤ α < PFi, we getτ∗ = ℓ(0 · · · 0
︸ ︷︷ ︸

i−1

1 · · · 1), and forPFi ≤ α < PFi+1,

τ∗ = ℓ(0 · · · 0
︸ ︷︷ ︸

i

1 · · · 1). This change inτ∗ implies that the pointPFi is part of the LR-ROC. Setting

α = PFi (thusτ∗ = ℓ(0 · · · 0
︸ ︷︷ ︸

i

1 · · · 1) andγ∗=0) impliesPr[ℓ(Y) > τ∗|H1] = PDi. 2

The conditionYi = 1 ⇒ Yj = 1 for i < j is the same inclusion condition Flach and Wu use
for repairing an ROC curve [2]. It intuitively represents the performance in ROC space of a single
classifier with different operating points. The next section explores this relationship further.

4.4 Repairing an ROC curve

Flach and Wu give a voting technique to repair concavities in an ROC curve that generates operating
points above the ROCCH [2]. Their intuition is that points underneath the convex hull can be
mirrored to appear above the convex hull in much the same way as an improper classifier can be
negated to obtain a proper classifier. Although their algorithm produces better ROC curves, their
solution will often yield curves with new concavities (see for example Flach and Wu’s Figure 4 [2]).
Their algorithm has a similar purpose to ours, but theirs is a local greedy optimization technique,
while our method performs a global search in order to find the best ROC curve.

Figure 1c shows an example comparing their method to ours. Consider the following probabil-
ity distribution on a random variableY ∈ {0, 1}2: P ((00, 10, 01, 11)|H1) = (0.1, 0.3, 0.0, 0.6),
P ((00, 10, 01, 11)|H0) = (0.5, 0.001, 0.4, 0.099). Flach and Wu’s method assumes the original
ROC curve to be repaired has threemodels, or operating points:f1 predicts 1 whenY ∈ {11}, f2

predicts 1 whenY ∈ {11, 01}, andf3 predicts 1 whenY ∈ {11, 01, 10}. If we apply Flach and
Wu’s repair algorithm, the pointf2 is corrected to the pointf ′

2; however, the operating points off1

andf3 remain the same.
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Figure 2: Empirical ROC curves for experimental results on four UCI datasets.

Our method improves on this result by ordering the likelihood ratiosℓ(01) < ℓ(00) < ℓ(11) < ℓ(10)
and using that ordering to make three different rules:f ′

1 predicts 1 whenY ∈ {10}, f ′

2 predicts 1
whenY ∈ {10, 11}, andf ′

3 predicts 1 whenY ∈ {10, 11, 00}.

5 Experiments

We ran experiments to test the performance of our combining method on theadult, hypothyroid,
sick-euthyroid, andsickdatasets from the UCI machine learning repository [6]. We chose five base
classifiers from the YALE machine learning platform [7]: PART (a decision list algorithm), SMO
(Sequential Minimal Optimization), SimpleLogistic, VotedPerceptron, and Y-NaiveBayes. We used
default settings for all classifiers. Theadult dataset has around 30,000 training points and 15,000
test points and thesickdataset has around 2000 training points and 700 test points. The others each
have around 2000 points that we split randomly into 1000 training and 1000 test.

For each experiment, we estimate the joint distribution by training the base classifiers on a training
set and counting the outcomes. We compute likelihood ratios for all outcomes and order them. When
outcomes have no examples, we treat·/0 as near-infinite and0/· as near-zero and define0/0 = 1.
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We derive a sequence of decision rules from the likelihood ratios computed on the training set. We
can compute an optimal ROC curve for the combination by counting the number of true positives
and false positives each rule achieves. In the test set we use the rules learned on the training set.

5.1 Results

The ROC graphs for our four experiments appear in Figure 2. The ROC curves in these experiments
all rise very quickly and then flatten out, so we show only the range ofPF1 for which the values
are interesting. We can draw some general conclusions from these graphs. First, PART clearly
outperforms the other base classifiers in three out of four experiments, though it seems to overfit
on the hypothyroid dataset. The LR-ROC dominates the ROC curves of the base classifiers on both
training and test sets. The ROC curves for the base classifiers are all strictly below the LR-ROC
in results on the test sets. The results on training sets seem to imply that the LR-ROC is primarily
classifying like PART with a small boost from the other classifiers; however, the test set results (in
particular, Figure 2b) demonstrate that the LR-ROC generalizes better than the base classifiers.

The robustness of our method to estimation errors is uncertain. In our experiments we found that
smoothing did not improve generalization, but undoubtedly our method would benefit from better
estimation of the outcome distribution and increased robustness.

We ran separate experiments to test how many classifiers our method could support in practice.
Estimation of the joint distribution and computation of the ROC curve finished within one minute
for 20 classifiers (not including time to train the individual classifiers). Unfortunately, the inherent
exponential structure of the optimal ROC curve means we cannot expect to do significantly better
(at the same rate, 30 classifiers would take over 12 hours and 40 classifiers almost a year and a half).

6 Related work

Our work is loosely related to ensemble methods such asbagging [8] and boosting[9] because
it finds meta-classification rules over a set of base classifiers. However, bagging and boosting each
take one base classifier and train many times, resampling or reweighting the training data to generate
classifier diversity [10] or increase the classification margin [11]. The decision rules applied to
the generated classifiers are (weighted) majority voting. In contrast, our method takes any binary
classifiers and finds optimal combination rules from the more general space of all binary functions.

Ranking algorithms, such as RankBoost [12], approach the problem of ranking points by score or
preference. Although we present our methods in a different light, our decision rule can be interpreted
as a ranking algorithm. RankBoost, however, is a boosting algorithm and therefore fundamentally
different from our approach. Ranking can be used for classification by choosing a cutoff or threshold,
and in fact ranking algorithms tend to optimize the common Area Under the ROC Curve (AUC)
metric. Although our method may have the side effect of maximizing the AUC, its formulation is
different in that instead of optimizing a single global metric, it is a constrained optimization problem,
maximizingPD for eachPF .

Another more similar method for combining classifiers isstacking[13]. Stacking trains ameta-
learner to combine the predictions of several base classifiers; in fact, our method might be consid-
ered a stacking method with a particular meta-classifier. It can be difficult to show the improvement
of stacking in general over selecting the best base-level classifier [14]; however, stacking has a use-
ful interpretation as generalized cross-validation that makes it practical. Our analysis shows that our
combination method is the optimal meta-learner in the Neyman-Pearson sense, but incorporating the
model validation aspect of stacking would make an interesting extension to our work.

7 Conclusion

In this paper we introduce a new way to analyze a combination of classifiers and their ROC curves.
We give a method for combining classifiers and prove that it is optimal in the Neyman-Pearson
sense. This work raises several interesting questions.

Although the algorithm presented in this paper avoids checking the whole doubly exponential num-
ber of rules, the exponential factor in running time limits the number of classifiers that can be
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combined in practice. Can a good approximation algorithm approach optimality while having lower
time complexity? Though in general we make no assumptions about independence, Theorem 2
shows that certain simple rules are optimal when we do know that the classifiers are independent.
Theorem 3 proves that the ROCCH can be optimal when onlyn output combinations are possible.
Perhaps other restrictions on the distribution of outcomes can lead to useful special cases.

Acknowledgments

This work was supported in part by TRUST (Team for Research in Ubiquitous Secure Technology),
which receives support from the National Science Foundation (NSF award number CCF-0424422)
and the following organizations: AFOSR (#FA9550-06-1-0244), Cisco, British Telecom, ESCHER,
HP, IBM, iCAST, Intel, Microsoft, ORNL, Pirelli, Qualcomm, Sun, Symantec, Telecom Italia, and
United Technologies; and in part by the UC Berkeley-Taiwan International Collaboration in Ad-
vanced Security Technologies (iCAST) program. The opinions expressed in this paper are solely
those of the authors and do not necessarily reflect the opinions of any funding agency or the U.S. or
Taiwanese governments.

References

[1] Foster Provost and Tom Fawcett. Robust classification for imprecise environments.Machine Learning
Journal, 42(3):203–231, March 2001.

[2] Peter A. Flach and Shaomin Wu. Repairing concavities in ROC curves. InProceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI’05), pages 702–707, August 2005.

[3] Tom Fawcett. ROC graphs: Notes and practical considerations for data mining researchers. Technical
Report HPL-2003-4, HP Laboratories, Palo Alto, CA, January 2003. Updated March 2004.

[4] J. Neyman and E. S. Pearson. On the problem of the most efficient tests of statistical hypotheses.Philo-
sophical Transactions of the Royal Society of London, Series A, Containing Papers of a Mathematical or
Physical Character, 231:289–337, 1933.

[5] Vincent H. Poor.An Introduction to Signal Detection and Estimation. Springer-Verlag, second edition,
1988.

[6] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine learning databases,
1998. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[7] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. YALE: Rapid prototyping for com-
plex data mining tasks. InProceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2006.

[8] L. Breiman. Bagging predictors.Machine Learning, 24(2):123–140, 1996.

[9] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. InThirteenth International
Conference on Machine Learning, pages 148–156, Bari, Italy, 1996. Morgan Kaufmann.

[10] Thomas G. Dietterich. Ensemble methods in machine learning.Lecture Notes in Computer Science,
1857:1–15, 2000.

[11] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new ex-
planation for the effectiveness of voting methods.The Annals of Statistics, 26(5):1651–1686, October
1998.

[12] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting algorithm for com-
bining preferences.Journal of Machine Learning Research (JMLR), 4:933–969, 2003.

[13] D. H. Wolpert. Stacked generalization.Neural Networks, 5:241–259, 1992.

[14] Saso D̆zeroski and Bernard̆Zenko. Is combining classifiers with stacking better than selecting the best
one?Machine Learning, 54:255–273, 2004.

8


