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Abstract
Many tasks (e.g., clustering) in machine learning only require thelα distances in-
stead of the original data. For dimension reductions in thelα norm (0 < α ≤ 2),
the method ofstable random projectionscan efficiently compute thelα distances
in massive datasets (e.g., the Web or massive data streams) in one pass of the data.
The estimation task forstable random projectionshas been an interesting topic.
We propose a simple estimator based on thefractional powerof the samples (pro-
jected data), which is surprisingly near-optimal in terms of the asymptotic vari-
ance. In fact, it achieves the Cramér-Rao bound whenα = 2 andα = 0+. This
new result will be useful when applyingstable random projectionsto distance-
based clustering, classifications, kernels, massive data streams etc.

1 Introduction
Dimension reductions in thelα norm (0 < α ≤ 2) have numerous applications in data mining,
information retrieval, and machine learning. In modern applications, the data can be way too large
for the physical memory or even the disk; and sometimes only one pass of the data can be afforded
for building statistical learning models [1, 2, 5]. We abstract the data as adata matrixA ∈ R

n×D.
In many applications, it is often the case that we only need thelα properties (norms or distances) of
A. The method ofstable random projections[9,18,22] is a useful tool for efficiently computing the
lα (0 < α ≤ 2) properties in massive data using a small (memory) space.

Denote the leading two rows in the data matrixA by u1, u2 ∈ R
D. Thelα distanced(α) is

d(α) =

D
∑

i=1

|u1,i − u2,i|
α
. (1)

The choice ofα is beyond the scope of this study; but basically, we can treatα as atuningparameter.
In practice, the most popular choice, i.e., theα = 2 norm, often does not work directly on the original
(unweighted) data, as it is well-known that truly large-scale datasets (especially Internet data) are
ubiquitously “heavy-tailed.” In machine learning, it is often crucial to carefullyterm-weightthe
data (e.g., taking logarithm or tf-idf) before applying subsequent learning algorithms using thel2
norm. As commented in [12, 21], theterm-weightingprocedure is often far more important than
fine-tuning the learning parameters. Instead of weighting the original data, an alternative scheme
is to choose an appropriate norm. For example, thel1 norm has become popular recently, e.g.,
LASSO, LARS, 1-norm SVM [23], Laplacian radial basis kernel [4], etc. But other norms are also
possible. For example, [4] proposed a family of non-Gaussian radial basis kernels for SVM in the
form K(x, y) = exp (−ρ

∑

i |xi − yi|α), wherex andy are data points in high-dimensions; and [4]
showed thatα ≤ 1 (evenα = 0) in some cases produced better results in histogram-based image
classifications. Thelα norm withα < 1, which may initially appear strange, is now well-understood
to be a natural measure of sparsity [6]. In the extreme case, whenα → 0+, thelα norm approaches
the Hamming norm (i.e., the number of non-zeros in the vector).

Therefore, there is the natural demand in science and engineering for dimension reductions in the
lα norm other thanl2. While the method ofnormal random projectionsfor the l2 norm [22] has
become very popular recently, we have to resort to more general methodologies for0 < α < 2.
The idea ofstable random projectionsis to multiplyA with a random projection matrixR ∈ R

D×k

(k ≪ D). The matrixB = A× R ∈ R
n×k will be much smaller thanA. The entries ofR are

(typically) i.i.d. samples from a symmetricα-stable distribution [24], denoted byS(α, 1), whereα
is the index and 1 is the scale. We can then discard the original data matrixA because the projected
matrixB now contains enough information to recover the originallα properties approximately.



A symmetricα-stable random variable is denoted byS(α, d), whered is the scale parameter. If
x ∼ S(α, d), then its characteristic function (Fourier transform of the density function) would be

E
(

exp
(√

−1xt
))

= exp (−d|t|α) , (2)

whose inverse does not have a closed-form except forα = 2 (i.e., normal) orα = 1 (i.e., Cauchy).

Applying stable random projections onu1 ∈ R
D, u2 ∈ R

D yields, respectively,v1 = R
Tu1 ∈ R

k

andv2 = R
Tu2 ∈ R

k. By the properties of Fourier transforms, the projected differences,v1,j−v2,j,
j = 1, 2, ..., k, are i.i.d. samples of the stable distributionS(α, d(α)), i.e.,

xj = v1,j − v2,j ∼ S(α, d(α)), j = 1, 2, ..., k. (3)

Thus, the task is to estimate the scale parameter fromk i.i.d. samplesxj ∼ S(α, d(α)). Because no
closed-form density functions are available except forα = 1, 2, the estimation task is challenging
when we seek estimators that are both accurate and computationally efficient.

For general0 < α < 2, a widely used estimator is based on the sampleinter-quantiles[7,20], which
can be simplified to be thesample medianestimator by choosing the0.75 - 0.25 sample quantiles
and using the symmetry ofS(α, d(α)). That is

d̂(α),me =
median{|xj |

α, j = 1, 2, ..., k}

median{S(α, 1)}α
. (4)

It has been well-known that thesample medianestimator is not accurate, especially when the
sample sizek is not too large. Recently, [13] proposed various estimators based on the geometric
mean and the harmonic mean of the samples. Theharmonic meanestimator only works for small
α. Thegeometric meanestimator has nice properties including closed-form variances, closed-form
tail bounds in exponential forms, and very importantly, an analog of the Johnson-Lindenstrauss (JL)
Lemma [10] for dimension reduction inlα. Thegeometric mean estimator, however, can still be
improved for certainα, especially for large samples (e.g., ask → ∞).

1.1 Our Contribution: the Fractional Power Estimator

The fractional powerestimator, with a simple unified format for all0 < α ≤ 2, is (surprisingly)
near-optimal in the Cramér-Rao sense (i.e., whenk → ∞, its variance is close to the Cramér-Rao
lower bound). In particularly, it achieves the Cramér-Rao bound whenα = 2 andα → 0+.

The basic idea is straightforward. We first obtain an unbiased estimator ofdλ
(α), denoted byR̂(α),λ.

We then estimated(α) by
(

R̂(α),λ

)1/λ

, which can be improved by removing theO
(

1
k

)

bias (this

consequently also reduces the variance) using Taylor expansions. We chooseλ = λ∗(α) to minimize
the theoretical asymptotic variance. We prove thatλ∗(α) is the solution to a simple convex program,
i.e., λ∗(α) can be pre-computed and treated as a constant for everyα. The main computation

involves only
(

∑k
j=1 |xj |

λ∗α
)1/λ∗

; and hence this estimator is also computationally efficient.

1.2 Applications

The method ofstable random projectionsis useful for efficiently computing thelα properties (norms
or distances) in massive data, using a small (memory) space.

• Data stream computations Massive data streams are fundamental in many modern
data processing application [1, 2, 5, 9]. It is common practice to store only a very small
sketchof the streams to efficiently compute thelα norms of the individual streams or thelα
distances between a pair of streams. For example, in some cases, we only need to visually
monitor the time history of thelα distances; and approximate answers often suffice.
One interesting special case is to estimate the Hamming norms (or distances) using the
fact that, whenα → 0+, d(α) =

∑D
i=1 |u1,i − u2,i|α approaches the total number of

non-zeros in{|u1,i − u2,i|}D
i=1, i.e., the Hamming distance [5]. One may ask why not just

(binary) quantize the data and then applynormal random projectionsto the binary data. [5]
considered that the data aredynamic(i.e., frequent addition/subtraction) and hence pre-
quantizing the data would not work. Withstable random projections, we only need to
update the corresponding sketches whenever the data are updated.



• Computing all pairwise distances In many applications including distanced-based
clustering, classifications and kernels (e.g.) for SVM, we only need the pairwise distances.
Computing all pairwise distances ofA ∈ R

n×D would costO(n2D), which can be signif-
icantly reduced toO(nDk + n2k) by stable random projections. The cost reduction will
be more considerable when the original datasets are too large for the physical memory.

• Estimatinglα distances online While it is often infeasible to store the original matrix
A in the memory, it is also often infeasible to materialize all pairwise distances inA. Thus,
in applications such as online learning, databases, search engines, online recommendation
systems, and online market-basket analysis, it is often more efficient if we storeB ∈ R

n×k

in the memory and estimate any pairwise distance inA on the flyonly when it is necessary.

When we treatα as a tuning parameter, i.e., re-computing thelα distances for many differentα,
stable random projectionswill be even more desirable as a cost-saving device.

2 Previous Estimators

We assumek i.i.d. samplesxj ∼ S(α, d(α)), j = 1, 2, ..., k. We list several previous estimators.

• Thegeometric meanestimator is recommended in [13] forα < 2.

d̂(α),gm =

∏k
j=1 |xj |

α/k

[

2
π
Γ
(

α
k

)

Γ
(

1 − 1
k

)

sin
(

π
2

α
k

)]k
. (5)

Var
(

d̂(α),gm

)

= d
2
(α)

{

[

2
π
Γ
(

2α
k

)

Γ
(

1 − 2
k

)

sin
(

π α
k

)]k

[

2
π
Γ
(

α
k

)

Γ
(

1 − 1
k

)

sin
(

π
2

α
k

)]2k
− 1

}

(6)

= d
2
(α)

{

1

k

π2

12

(

α
2 + 2

)

}

+ O

(

1

k2

)

. (7)

• Theharmonic meanestimator is recommended in [13] for0 < α ≤ 0.344.

d̂(α),hm =
− 2

π
Γ(−α) sin

(

π
2
α
)

∑k
j=1 |xj |−α

(

k −

(

−πΓ(−2α) sin (πα)
[

Γ(−α) sin
(

π
2
α
)]2 − 1

))

, (8)

Var
(

d̂(α),hm

)

= d
2
(α)

1

k

(

−πΓ(−2α) sin (πα)
[

Γ(−α) sin
(

π
2
α
)]2 − 1

)

+ O

(

1

k2

)

. (9)

• For α = 2, thearithmetic meanestimator,1k
∑k

j=1 |xj |2, is commonly used, which has
variance =2

kd2
(2). It can be improved by taking advantage of the marginall2 norms [17].

3 The Fractional Power Estimator

Thefractional powerestimator takes advantage of the following statistical result in Lemma 1.

Lemma 1 Supposex ∼ S
(

α, d(α)

)

. Then for−1 < λ < α,

E
(

|x|λ
)

= d
λ/α
(α)

2

π
Γ

(

1 − λ

α

)

Γ(λ) sin
(π

2
λ
)

. (10)

If α = 2, i.e.,x ∼ S(2, d(2)) = N(0, 2d(2)), then forλ > −1,

E
(

|x|λ
)

= d
λ/2
(2)

2

π
Γ

(

1 − λ

2

)

Γ(λ) sin
(π

2
λ
)

= d
λ/2
(2)

2Γ (λ)

Γ
(

λ
2

) . (11)

Proof: For 0 < α ≤ 2 and−1 < λ < α, (10) can be inferred directly from [24, Theorem 2.6.3].
For α = 2, the moment E

(

|x|λ
)

exists for anyλ > −1. (11) can be shown by directly integrating
the Gaussian density (using the integral formula [8, 3.381.4]). The Euler’s reflection formula
Γ(1 − z)Γ(z) = π

sin(πz) and the duplication formulaΓ(z)Γ
(

z + 1
2

)

= 21−2z√πΓ(2z) are handy.



Thefractional powerestimator is defined in Lemma 2. See the proof in Appendix A.

Lemma 2 Denoted bŷd(α),fp, the fractional power estimator is defined as

d̂(α),fp =

(

1

k

∑k
j=1 |xj |

λ∗α

2
π
Γ(1 − λ∗)Γ(λ∗α) sin

(

π
2
λ∗α

)

)1/λ∗

×

(

1 −
1

k

1

2λ∗

(

1

λ∗

− 1

)

(

2
π
Γ(1 − 2λ∗)Γ(2λ∗α) sin (πλ∗α)

[

2
π
Γ(1 − λ∗)Γ(λ∗α) sin

(

π
2
λ∗α

)]2
− 1

))

, (12)

where
λ
∗ = argmin

−
1
2α

λ< 1
2

g (λ; α) , g (λ; α) =
1

λ2

(

2
π
Γ(1 − 2λ)Γ(2λα) sin (πλα)

[

2
π
Γ(1 − λ)Γ(λα) sin

(

π
2
λα
)]2 − 1

)

. (13)

Asymptotically (i.e., ask → ∞), the bias and variance of̂d(α),fp are

E
(

d̂(α),fp

)

− d(α) = O

(

1

k2

)

, (14)

Var
(

d̂(α),fp

)

= d
2
(α)

1

k

1

λ∗2

(

2
π
Γ(1 − 2λ∗)Γ(2λ∗α) sin (πλ∗α)

[

2
π
Γ(1 − λ∗)Γ(λ∗α) sin

(

π
2
λ∗α

)]2
− 1

)

+ O

(

1

k2

)

. (15)

Note that in calculatinĝd(α),fp, the real computation only involves
(

∑k
j=1 |xj |λ

∗α
)1/λ∗

, because

all other terms are basically constants and can be pre-computed.

Figure 1(a) plotsg (λ; α) as a function ofλ for many different values ofα. Figure 1(b) plots the
optimalλ∗ as a function ofα. We can see thatg (λ; α) is a convex function ofλ and−1 < λ∗ < 1

2
(except forα = 2), which will be proved in Lemma 3.
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Figure 1: Left panel plots the variance factorg (λ; α) as functions ofλ for differentα, illustrating
g (λ; α) is a convex function ofλ and the optimal solution (lowest points on the curves) are between
-1 and 0.5 (α < 2). Note that there is a discontinuity betweenα → 2− andα = 2. Right panel plots
the optimalλ∗ as a function ofα. Sinceα = 2 is not included, we only seeλ∗ < 0.5 in the figure.

3.1 Special cases

The discontinuity,λ∗(2−) = 0.5 andλ∗(2) = 1, reflects the fact that, forx ∼ S(α, d), E
(

|x|λ
)

exists for−1 < λ < α whenα < 2 and exists for anyλ > −1 whenα = 2.

Whenα = 2, sinceλ∗(2) = 1, the fractional powerestimator becomes1k
∑k

j=1 |xj |2, i.e., the
arithmetic meanestimator. We will from now on only consider0 < α < 2.

whenα → 0+, sinceλ∗(0+) = −1, thefractional powerestimator approaches theharmonic mean
estimator, which is asymptotically optimal whenα = 0+ [13].

Whenα → 1, sinceλ∗(1) = 0 in the limit, thefractional powerestimator has the same asymptotic
variance as thegeometric mean estimator.



3.2 The Asymptotic (Cramér-Rao) Efficiency

For an estimator̂d(α), its variance, under certain regularity condition, is lower-bounded by the Infor-

mation inequality (also known as the Cramér-Rao bound) [11, Chapter 2], i.e., Var
(

d̂(α)

)

≥ 1
kI(α) .

The Fisher Information I(α) can be approximated by computationally intensive procedures [19].

Whenα = 2, it is well-known that thearithmetic meanestimator attains the Cramér-Rao bound.
Whenα = 0+, [13] has shown that theharmonic meanestimator is also asymptotically optimal.
Therefore, ourfractional powerestimator achieves the Cramér-Rao bound, exactly whenα = 2,
and asymptotically whenα = 0+.

The asymptotic (Cramér-Rao) efficiency is defined as the ratio of1
kI(α) to the asymptotic variance of

d̂(α) (d(α) = 1 for simplicity). Figure 2 plots the efficiencies for all estimators we have mentioned,
illustrating that thefractional powerestimator is near-optimal in a wide range ofα.
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Figure 2: The asymptotic Cramér-Rao efficiencies of various estimators for0 < α < 2, which are
the ratios of 1

kI(α) to the asymptotic variances of the estimators. Herek is the sample size and I(α) is
the Fisher Information (we use the numeric values in [19]). The asymptotic variance of thesample
medianestimatord̂(α),me is computed from known statistical theory for sample quantiles. We can

see that thefractional powerestimatord̂(α),fp is close to be optimal in a wide range ofα; and it
always outperforms both thegeometric meanand theharmonic meanestimators. Note that since we
only considerα < 2, the efficiency ofd̂(α),fp does not achieve100% whenα → 2−.

3.3 Theoretical Properties

We can show that, when computing thefractional power estimator d̂(α),fp, to find the opti-
mal λ∗ only involves searching for the minimum on a convex curve in the narrow rangeλ∗ ∈
(

max
{

−1,− 1
2α

}

, 0.5
)

. These properties theoretically ensure that the new estimator is well-defined
and is numerically easy to compute. The proof of Lemma 3 is briefly sketched in Appendix B.

Lemma 3 Part 1: g (λ; α) =
1

λ2

(

2
π Γ(1 − 2λ)Γ(2λα) sin (πλα)
[

2
π Γ(1 − λ)Γ(λα) sin

(

π
2 λα

)]2 − 1

)

, (16)

is a convex function ofλ.

Part 2: For 0 < α < 2, the optimalλ∗ = argmin
− 1

2α λ< 1
2

g (λ; α), satisfies−1 < λ∗ < 0.5.

3.4 Comparing Variances at Finite Samples

It is also important to understand the small sample performance of the estimators. Figure 3 plots
the empirical mean square errors (MSE) from simulations for thefractional powerestimator, the
harmonic meanestimator, and thesample medianestimator. The MSE for thegeometric mean
estimators can be computed exactly without simulations.

Figure 3 indicates that thefractional powerestimatord̂(α),fp also has good small sample perfor-

mance unlessα is close to 2. Afterk ≥ 50, the advantage of̂d(α),fp becomes noticeable even
whenα is very close to 2. It is also clear that thesample medianestimator has poor small sample
performance; but even at very largek, its performance is not that good except whenα is about 1.
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Figure 3: We simulate the mean square errors (MSE) (106 simulations at everyα andk) for the
harmonic meanestimator (0 < α ≤ 0.344 only) and thefractional powerestimator. We compute
the MSE exactly for thegeometric meanestimator (for0.344α < 2). Thefractional powerhas good
accuracy (small MSE) at reasonable sample sizes (e.g.,k ≥ 50). But even at small samples (e.g.,
k = 10), it is quite accurate except whenα approaches 2.

4 Discussion
Thefractional powerestimatord̂(α),fp ∝

(

∑k
j=1 |xj |λ

∗α
)1/λ∗

can be treated as alinear estimator

in because the power1/λ∗ is just a constant. However,
∑k

j=1 |xj |λ
∗α is not a metric because

λ∗α < 1, as shown in Lemma 3. Thus our result does not conflict the celebratedimpossibility result
[3], which proved that there is no hope to recover the originall1 distances usinglinear projections
andlinear estimatorswithout incurring large errors.

Although thefractional powerestimator achieves near-optimal asymptotic variance, analyzing its
tail bounds does not appear straightforward. In fact, whenα approaches 2, this estimator does
not have finite moments much higher than the second order, suggesting poor tail behavior. Our
additional simulations (not included in this paper) indicate thatd̂(α),fp still has comparable tail
probability behavior as thegeometric meanestimator, whenα ≤ 1.

Finally, we should mention that the method ofstable random projectionsdoes not take advantage of
the data sparsity while high-dimensional data (e.g., text data) are often highly sparse. A new method
call Conditional Random Sampling (CRS)[14–16] may be more preferable in highly sparse data.

5 Conclusion
In massive datasets such as the Web and massive data streams, dimension reductions are often crit-
ical for many applications including clustering, classifications, recommendation systems, and Web
search, because the data size may be too large for the physical memory or even for the hard disk and
sometimes only one pass of the data can be afforded for building statistical learning models.

While there are already many papers on dimension reductions in thel2 norm, this paper focuses on
thelα norm for0 < α ≤ 2 usingstable random projections, as it has become increasingly popular in
machine learning to consider thelα norm other thanl2. It is also possible to treatα as an additional
tuningparameter and re-run the learning algorithms many times for better performance.

Our main contribution is thefractional powerestimator forstable random projections. This esti-
mator, with a unified format for all0 < α ≤ 2, is computationally efficient and (surprisingly) is
also near-optimal in terms of the asymptotic variance. We also prove some important theoretical
properties (variance, convexity, etc.) to show that this estimator is well-behaved. We expect that this
work will help advance the state-of-the-art of dimension reductions in thelα norms.



A Proof of Lemma 2

By Lemma 1, we first seek an unbiased estimator of ofdλ
(α), denoted byR̂(α),λ,

R̂(α),λ =
1

k

∑k
j=1 |xj|

λα

2
π Γ(1 − λ)Γ(λα) sin

(

π
2 λα

) , −1/α < λ < 1

whose variance is

Var
(

R̂(α),λ

)

=
d2λ
(α)

k

(

2
π Γ(1 − 2λ)Γ(2λα) sin (πλα)
[

2
π Γ(1 − λ)Γ(λα) sin

(

π
2 λα

)]2
− 1

)

, −
1

2α
< λ <

1

2

A biased estimator ofd(α) would be simply
(

R̂(α),λ

)1/λ

, which hasO
(

1
k

)

bias. This bias can
be removed to an extent by Taylor expansions [11, Theorem 6.1.1]. While it is well-known that
bias-corrections are not always beneficial because of the bias-variance trade-off phenomenon, in our
case, it is a good idea to conduct the bias-correction because the functionf(x) = x1/λ is convex for
x > 0. Note thatf ′(x) = 1

λx1/λ−1 andf ′′(x) = 1
λ

(

1
λ − 1

)

x1/λ−2 > 0, assuming− 1
2α < λ < 1

2 .
Becausef(x) is convex, removing theO

(

1
k

)

bias will also lead to a smaller variance.

We call this new estimator the “fractional power” estimator:

d̂(α),fp,λ =
(

R̂(α),λ

)1/λ
−

Var
(

R̂(α),λ

)

2

1

λ

(

1

λ
− 1

)

(

d
λ
(α)

)1/λ−2

=

(

1

k

∑k
j=1 |xj |

λα

2
π Γ(1 − λ)Γ(λα) sin

(

π
2 λα

)

)1/λ (

1 −
1

k

1

2λ

(

1

λ
− 1

)

(

2
π Γ(1 − 2λ)Γ(2λα) sin (πλα)
[

2
π Γ(1 − λ)Γ(λα) sin

(

π
2 λα

)]2
− 1

))

,

where we plug in the estimateddλ
(α). The asymptotic variance would be

Var
(

d̂(α),fp,λ

)

= Var
(

R̂(α),λ

)

(

1

λ

(

dλ
(α)

)1/λ−1
)2

+ O

(

1

k2

)

= d2
(α)

1

λ2k

(

2
π Γ(1 − 2λ)Γ(2λα) sin (πλα)
[

2
π Γ(1 − λ)Γ(λα) sin

(

π
2 λα

)]2
− 1

)

+ O

(

1

k2

)

.

The optimalλ, denoted byλ∗, is then

λ
∗ = argmin

−
1
2α

λ< 1
2

{

1

λ2

(

2
π
Γ(1 − 2λ)Γ(2λα) sin (πλα)

[

2
π
Γ(1 − λ)Γ(λα) sin

(

π
2
λα
)]2

− 1

)}

.

B Proof of Lemma 3

We sketch the basic steps; and we direct readers to the additional supporting material for more detail.

We use the infinite-product representations of the Gamma and sine functions [8, 8.322,1.431.1],

Γ(z) =
exp (−γez)

z

∞
∏

s=1

(

1 +
z

s

)

−1

exp

(

z

s

)

, sin(z) = z
∞
∏

s=1

(

1 −
z2

s2π2

)

,

to re-writeg (λ; α) as

g(λ; α) =
1

λ2
(M (λ; α) − 1) =

1

λ2

(

∞
∏

s=1

fs(λ; α) − 1

)

,

fs(λ; α) =

(

1 −
λ

s

)2 (

1 +
2λα

s

)

−1 (

1 −
λα

s

) (

1 +
λα

s

)3
(

1 −
λ2α2

4s2

)

−2 (

1 −
2λ

s

)

−1

.

With respect toλ, the first two derivatives ofg(λ; α) are

∂g

∂λ
=

1

λ2

(

−
2

λ
(M − 1) +

∞
∑

s=1

∂ log fs

∂λ
M

)

.

∂2g

∂λ2
=

M

λ2

(

6

λ2
+

∞
∑

s=1

∂2 log fs

∂λ2
+

(

∞
∑

s=1

∂ log fs

∂λ

)2

−
4

λ

∞
∑

s=1

∂ log fs

∂λ

)

−
6

λ4
.



Also,
∞
∑

s=1

∂ log fs

∂λ
= 2λ

∞
∑

s=1

1

s2 − 3sλ + 2λ2
+ α2

(

2

4s2 − λ2α2
+

1

s2 + 3sλα + 2λ2α2
−

1

s2 − λ2α2

)

,

∞
∑

s=1

∂2 log fs

∂λ2
=

∞
∑

s=1

−2

(s − λ)2
+

4

(s − 2λ)2
+

2α2

(2s − λα)2
−

α2

(s − λα)2
−

3α2

(s + λα)2
+

4α2

(s + 2λα)2
+

2α2

(2s + λα)2

∞
∑

s=1

∂3 log fs

∂λ3

=
∞
∑

s=1

4

(s − λ)3
+

16

(s − 2λ)3
+ 2α3

(

2

(2s − λα)3
−

1

(s − λα)3
+

3

(s + λα)3
−

8

(s + 2λα)3
−

2

(2s + λα)3

)

,

∞
∑

s=1

∂4 log fs

∂λ4

=

∞
∑

s=1

−12

(s − λ)4
+

96

(s − 2λ)4
+ 6α

4

(

2

(2s − λα)4
−

1

(s − λα)4
−

3

(s + λα)4
+

16

(s + 2λα)4
+

2

(2s + λα)4

)

.

To show∂2g
∂λ2 > 0, it suffices to showλ4 ∂2g

∂λ2 > 0, which can shown based on its own second deriva-

tive (and hence we need
∑∞

s=1
∂4 log fs

∂λ4 ). Here we considerλ 6= 0 to avoid triviality. To complete
the proof, we use some properties of the Riemann’s Zeta function and the infinite countability.

Next, we show thatλ∗ < −1 does not satisfy∂g(λ;α)
∂λ

∣

∣

∣

λ∗

= 0, which is equivalent toh(λ∗) = 1,

h(λ∗) = M(λ∗)

(

1 −
λ∗

2

∞
∑

s=1

∂ log fs

∂λ

∣

∣

∣

∣

∣

λ∗

)

= 1,

We show that whenλ < −1, ∂h
∂λ > 0, i.e., h(λ) < h(−1). We then show∂h(−1)

∂α < 0 for
0 < α < 0.5; and henceh(−1; α) < h(−1; 0+) = 1. Therefore, we must haveλ∗ > −1.
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