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Abstract

Many tasks (e.g., clustering) in machine learning only requiré ttdistances in-

stead of the original data. For dimension reductions intheorm 0 < o < 2),

the method oftable random projectionsan efficiently compute the, distances

in massive datasets (e.g., the Web or massive data streams) in one pass of the data.
The estimation task fostable random projectionsas been an interesting topic.

We propose a simple estimator based orfthetional powerof the samples (pro-

jected data), which is surprisingly near-optimal in terms of the asymptotic vari-
ance. In fact, it achieves the Cramér-Rao bound when 2 anda = 0+. This

new result will be useful when applyingable random projection® distance-

based clustering, classifications, kernels, massive data streams etc.

1 Introduction

Dimension reductions in thg, norm 0 < « < 2) have numerous applications in data mining,
information retrieval, and machine learning. In modern applications, the data can be way too large
for the physical memory or even the disk; and sometimes only one pass of the data can be afforded
for building statistical learning models [1, 2, 5]. We abstract the datadagaamatrixA € R"*P,

In many applications, it is often the case that we only need tlpgoperties (norms or distances) of

A. The method o$table random projection®, 18, 22] is a useful tool for efficiently computing the

lo (0 < o < 2) properties in massive data using a small (memory) space.

Denote the leading two rows in the data maiiXy u1, us € R”. Thel, distancel, is

D
d(a) = Z |u172~ — U27Z’|a. (1)

=1
The choice oty is beyond the scope of this study; but basically, we can treatatuningparameter.
In practice, the most popular choice, i.e., the- 2 norm, often does not work directly on the original
(unweighted) data, as it is well-known that truly large-scale datasets (especially Internet data) are
ubiquitously “heavy-tailed.” In machine learning, it is often crucial to careftéiyn-weightthe
data (e.g., taking logarithm or tf-idf) before applying subsequent learning algorithms usihg the
norm. As commented in [12, 21], therm-weightingprocedure is often far more important than
fine-tuning the learning parameters. Instead of weighting the original data, an alternative scheme
is to choose an appropriate norm. For example,itheorm has become popular recently, e.g.,
LASSO, LARS, 1-norm SVM [23], Laplacian radial basis kernel [4], etc. But other norms are also
possible. For example, [4] proposed a family of non-Gaussian radial basis kernels for SVM in the
form K (z,y) = exp (—p ), |z — ¥:|*), wherex andy are data points in high-dimensions; and [4]
showed thaty < 1 (evena = 0) in some cases produced better results in histogram-based image
classifications. Th&, norm witha < 1, which may initially appear strange, is now well-understood
to be a natural measure of sparsity [6]. In the extreme case, wher0+, thel, norm approaches
the Hamming norm (i.e., the number of non-zeros in the vector).

Therefore, there is the natural demand in science and engineering for dimension reductions in the
l,, norm other thari;. While the method ohormal random projectionor the l; norm [22] has
become very popular recently, we have to resort to more general methodologiesfer < 2.

The idea oftable random projectioris to multiply A with a random projection matriR, € RP**

(k < D). The matrixB = A x R € R™* will be much smaller tham\. The entries oR. are
(typically) i.i.d. samples from a symmetric-stable distribution [24], denoted 8/« 1), wherea

is the index and 1 is the scale. We can then discard the original data matxcause the projected
matrix B now contains enough information to recover the origlpgbroperties approximately.



A symmetrica-stable random variable is denoted By«, d), whered is the scale parameter. If
x ~ S(«,d), then its characteristic function (Fourier transform of the density function) would be

E (exp (V—1at)) = exp (—d]|t|*), (2)
whose inverse does not have a closed-form except fer2 (i.e., normal) ot = 1 (i.e., Cauchy).

Applying stable random projections an € R”, u, € RP yields, respectivelyy; = RTu; € R¥
andv; = RTuy € R*. By the properties of Fourier transforms, the projected differenggs; v2 ;,
Jj=1,2,...,k, areii.d. samples of the stable distributifx, d(,)), i.e.,

rj=v1; — V25~ S dw), J=1,2,...k )

Thus, the task is to estimate the scale parameter fraind. samplese; ~ S(a, d(,)). Because no
closed-form density functions are available exceptdfor 1,2, the estimation task is challenging
when we seek estimators that are both accurate and computationally efficient.

For general < « < 2, awidely used estimator is based on the sarmér-quantiled7,20], which
can be simplified to be theample mediaestimator by choosing th&75 - 0.25 sample quantiles
and using the symmetry &f(a, d()). Thatis

5 _ mediar{|z;|*,j =1,2,...,k}
dia)me = media(S(a, 1)} ' @

It has been well-known that theample mediarestimator is not accurate, especially when the
sample size: is not too large. Recently, [13] proposed various estimators based on the geometric
mean and the harmonic mean of the samples. lidrenonic mearestimator only works for small
«. Thegeometric meaestimator has nice properties including closed-form variances, closed-form
tail bounds in exponential forms, and very importantly, an analog of the Johnson-Lindenstrauss (JL)
Lemma [10] for dimension reduction ifa,. The geometric mean estimatonowever, can still be
improved for certainy, especially for large samples (e.g.,/as» co).

1.1 Our Contribution: the Fractional Power Estimator

The fractional powerestimator, with a simple unified format for dll < o < 2, is (surprisingly)
near-optimal in the Cramér-Rao sense (i.e., when oo, its variance is close to the Cramér-Rao
lower bound). In particularly, it achieves the Cramér-Rao bound wher2 anda — 0+.

The basic idea is straightforward. We first obtain an unbiased estimad@(g)oﬂenoted by{%m)w

We then estimaté, ) by (R(an)l/k, which can be improved by removing tiié() bias (this
consequently also reduces the variance) using Taylor expansions. We gheosd«) to minimize

the theoretical asymptotic variance. We prove ttigty) is the solution to a simple convex program,
i.e., \*(«) can be pre-computed and treated as a constant for exeryhe main computation

. N2 . . . . -
involves only(zfz1 |5 “) ; and hence this estimator is also computationally efficient.

1.2 Applications

The method o$table random projections useful for efficiently computing thig, properties (norms
or distances) in massive data, using a small (memory) space.

e Data stream computations Massive data streams are fundamental in many modern
data processing application [1, 2,5, 9]. It is common practice to store only a very small
sketchof the streams to efficiently compute thenorms of the individual streams or the
distances between a pair of streams. For example, in some cases, we only need to visually
monitor the time history of thé, distances; and approximate answers often suffice.

One interesting special case is to estimate the Hamming norms (or distances) using the
fact that, whene — 0+, d(o) = Zil lu1,; — ug,;|® approaches the total number of
non-zeros in{|uy ; — u24|}2,, i.e., the Hamming distance [5]. One may ask why not just
(binary) quantize the data and then appbymal random projectiont® the binary data. [5]
considered that the data adgnamic(i.e., frequent addition/subtraction) and hence pre-
quantizing the data would not work. Witstable random projectionave only need to
update the corresponding sketches whenever the data are updated.



e Computing all pairwise distances In many applications including distanced-based

clustering, classifications and kernels (e.g.) for SVM, we only need the pairwise distances.

Computing all pairwise distances af € R"*? would costO(n? D), which can be signif-
icantly reduced ta@(nDk + n2k) by stable random projectionsThe cost reduction will
be more considerable when the original datasets are too large for the physical memory.

e Estimating/,, distances online While it is often infeasible to store the original matrix
A inthe memory, it is also often infeasible to materialize all pairwise distancas rhus,

in applications such as online learning, databases, search engines, online recommendation

systems, and online market-basket analysis, it is often more efficient if weldtarR™**
in the memory and estimate any pairwise distanca ion the flyonly when it is necessary.

When we treaty as a tuning parameter, i.e., re-computing thalistances for many different,
stable random projectionsill be even more desirable as a cost-saving device.

2 Previous Estimators
We assumé i.i.d. sampless; ~ S(a,d(q)), j = 1,2, ..., k. We list several previous estimators.

e Thegeometric meapstimator is recommended in [13] far< 2.

k
Hj:l |ch|(¥/k

d(a).gm ' i
(a),9 (20 (2)D (1 — 1) sin (22) * ?
20 (32) T (1= 2) sin (r3)]"
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e Theharmonic mearmstimator is recommended in [13] for< o < 0.344.

J(a),;L77L _ —%F(—a) sin (%Oé) (k: B (—wI‘(—Qa) sin (7o) B 1)) 7 ®)

Zlle ||~ [F(—a) sin (goz)] ?
Var (dA(a)’hm) d(“)kz < [;ga)QsiS(ig;;]og) _ 1) +0 (%) ) 9)

e Fora = 2, thearithmetic mearestimator,; 25:1 |z;]?, is commonly used, which has

variance =2 dé) It can be improved by taking advantage of the marginalbrms [17].

3 The Fractional Power Estimator
Thefractional powerestimator takes advantage of the following statistical result in Lemma 1.

Lemma 1 Suppose ~ S (a, d(a)). Thenfor—1 < A\ < ¢,

E (j2]*) _dW (1 - 2) T()) sin(g)\) . (10)
fa=2ie,x~ S(2,d(2)) = N(O, 2d(2)), then for\ > —1,
E (o) = diy} 2r (1 - %) T'(\) sin (g/\) =dyy 2FF((§)). (11)

Proof: For0 < o <2and—1 < A < a, (10) can be inferred directly from [24, Theorem 2.6.3].
For o = 2, the moment Iﬁ|:c|A) exists for anyA > —1. (11) can be shown by directly integrating

the Gaussian density (using the integral formula [8, 3.381.4]). The Euler's reflection formula

(1 —2)(z) = and the duplication formul& ()" (z + §) = 2'~2%\/7I'(2z) are handy.

sln(Trz)



Thefractional powerestimator is defined in Lemma 2. See the proofin Appendix A.

Lemma 2 Denoted byl f,, the fractional power estimator is defined as

(1 S foy e .
@77 7\ k201 — AT (A ) sin (ZA"a)
11 /1 21(1 — 23")T(2X* @) sin (TA* @) B
(1 ke 2X (A* 1) ( [21(1 — A)T(A*a) sin (EA*a)]? 1)) ’ 42
where 2 i
. ) . N 1 =T'(1 = 20)I'(2\a) sin (T Aa) B
A = 7a2r%qurkn<lr% g(Xa), g(Xa) = 13 ([%F(l T 0a)sin (2Aa)]? ) (13)

Asymptotically (i.e., a8 — 00), the bias and variance @Af(a),fp are

; 1
E (dwy.sp) — die) = O (ﬁ) : (14)
. 11 27(1 — 2X9)T(2M\* @) sin (TA* @) ( 1 )
Var (diay. p) = diny—~— | = —-1)l+0(=). (15)
(de0.) = dlor 3 ([%ra —A)P(a) sin (SMa)]’ K2

. L N1/AT
Note that in calculating,,), s,,, the real computation only involve(szg?:1 || a) , because

all other terms are basically constants and can be pre-computed.
Figure 1(a) plotg (A; ) as a function of\ for many different values of. Figure 1(b) plots the

optimal\* as a function ofv. We can see that(); o) is a convex function of and—1 < A* < 1
(except fora = 2), which will be proved in Lemma 3.
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Figure 1: Left panel plots the variance facipof); «) as functions of\ for differentq, illustrating

g (A; «) is a convex function ok and the optimal solution (lowest points on the curves) are between
-1 and 0.5 & < 2). Note that there is a discontinuity betweer- 2— anda. = 2. Right panel plots

the optimal\* as a function ofv. Sincea = 2 is not included, we only seg* < 0.5 in the figure.

3.1 Special cases

The discontinuity\*(2—) = 0.5 andA*(2) = 1, reflects the fact that, for ~ S(a,d), E (|z]*)
exists for—1 < A < a whena < 2 and exists for anys > —1 whena = 2.

Whena = 2, sinceA*(2) = 1, thefractional powerestimator becomes Zle |z;|?, i.e., the
arithmetic mearestimator. We will from now on only considér< a < 2.

whena — 0+, sinceA*(0+) = —1, thefractional powerestimator approaches tharmonic mean
estimator, which is asymptotically optimal whan= 0+ [13].

Whena — 1, sinceA*(1) = 0 in the limit, thefractional powerestimator has the same asymptotic
variance as thgeometric mean estimator



3.2 The Asymptotic (Cramér-Rao) Efficiency

Foran estimatoai(a), its variance, under certain regularity condition, is lower-bounded by the Infor-
mation inequality (also known as the Cramér-Rao bound) [11, Chapter 2], |e(d2@a > m
The Fisher Information(ky) can be approximated by computationally intensive procedures [19].

Whena = 2, it is well-known that thearithmetic mearestimator attains the Cramér-Rao bound.
Whena = 0+, [13] has shown that thearmonic mearestimator is also asymptotically optimal.
Therefore, ouffractional powerestimator achieves the Cramér-Rao bound, exactly when 2,
and asymptotically whea = 0+.

The asymptotic (Cramér-Rao) efficiency is defined as the rat)';g(lgf to the asymptotic variance of

d(a) (d() = 1 for simplicity). Figure 2 plots the efficiencies for all estimators we have mentioned,
illustrating that thdractional powerestimator is near-optimal in a wide rangecof
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Figure 2: The asymptotic Cramér-Rao efficiencies of various estimatofsfon: < 2, which are
the ratios ofﬁ to the asymptotic variances of the estimators. Heigethe sample size an@d) is

the Fisher Information (we use the numeric values in [19]). The asymptotic variances#rtipe
medianestimatorci(a)_,me is computed from known statistical theory for sample quantiles. We can
see that théractional powerestimatorci(a% #p IS close to be optimal in a wide range of and it
always outperforms both thgeometric meaand theharmonic mearstimators. Note that since we
only consider < 2, the efficiency ofi(a”p does not achievé00% whena — 2—.

3.3 Theoretical Properties

We can show that, when computing tfractional powerestimatorci(a),fp, to find the opti-

mal \* only involves searching for the minimum on a convex curve in the narrow range

(max {—1,—5=1},0.5). These properties theoretically ensure that the new estimator is well-defined
and is numerically easy to compute. The proof of Lemma 3 is briefly sketched in Appendix B.

fine

Lemma 3 Part 1: ) —
g(Xa) =
A2 ( [21(1 — )T (A) sin ($2a)]?

(16)

is a convex function of.

Part 2: For0 < a < 2, the optimal\* = argming (); o), satisfies—1 < A* < 0.5.
_ Ll
2a 2

3.4 Comparing Variances at Finite Samples

It is also important to understand the small sample performance of the estimators. Figure 3 plots
the empirical mean square errors (MSE) from simulations forfthetional powerestimator, the
harmonic mearestimator, and theample mediarestimator. The MSE for thgeometric mean
estimators can be computed exactly without simulations.

Figure 3 indicates that thigactional powerestimatord(awp also has good small sample perfor-

mance unless is close to 2. Afterk > 50, the advantage of ) r, becomes noticeable even
whenq is very close to 2. It is also clear that tkample mediaestimator has poor small sample
performance; but even at very larggits performance is not that good except wheis about 1.



o
~
o
[
)

i w
0 o6 k=10 D o4 k=50
= z 0
505 5 0.08
@ 0.4 5
[} o 0.06
g 03 ——Fractional g 0.04 ——Fractional
30.2 — Geometric g — Geometric
§ o1 --- Harmonic § 0.02 --- Harmonic
s o ——Median ‘ s o ——Median

0 02040608 1 12141618 2 0 02040608 1 12141618 2
006 0.0109
o o o.o01
g 0.05 K =100 g/ 888: k =500
5004 S 0.007
) 54
® 0.03 © 0006
g F— £ 0.005 :
& 0.02 8 ractiona 2 0,004 g — Fractional
n . — Geometric ® o003k T .
& 0.01 g - |- - -Harmonic S o - ~_ Geometric
S o Medi & 0.002 - - -Harmonic
= edian = 0.001 ——Median

0
0
0 0.20.40.60.8 é 12141618 2 0 02040608 101.2 141618 2

Figure 3: We simulate the mean square errors (MSB§ 6imulations at every and k) for the
harmonic mearestimator ( < a < 0.344 only) and thefractional powerestimator. We compute
the MSE exactly for thgeometric meamstimator (foi0.344« < 2). Thefractional powethas good
accuracy (small MSE) at reasonable sample sizes (e.g.,50). But even at small samples (e.g.,
k = 10), it is quite accurate except whenapproaches 2.

4 Discussion 1
Thefractional powerestimatord ), ¢, (Z’;Zl |a:j|”a) can be treated aslmear estimator

in because the power/\* is just a constant. HoweveEf:1 lz;|*"* is not a metric because
M a < 1, as shown in Lemma 3. Thus our result does not conflict the celebrapedsibility result
[3], which proved that there is no hope to recover the origipalistances usintinear projections
andlinear estimatorsvithout incurring large errors.

Although thefractional powerestimator achieves near-optimal asymptotic variance, analyzing its
tail bounds does not appear straightforward. In fact, whespproaches 2, this estimator does

not have finite moments much higher than the second order, suggesting poor tail behavior. Our
additional simulations (not included in this paper) indicate tﬁg;yfp still has comparable tail
probability behavior as thgeometric meaestimator, whem < 1.

Finally, we should mention that the methodstédible random projectiondoes not take advantage of
the data sparsity while high-dimensional data (e.g., text data) are often highly sparse. A new method
call Conditional Random Sampling (CR&%-16] may be more preferable in highly sparse data.

5 Conclusion

In massive datasets such as the Web and massive data streams, dimension reductions are often crit-
ical for many applications including clustering, classifications, recommendation systems, and Web
search, because the data size may be too large for the physical memory or even for the hard disk and
sometimes only one pass of the data can be afforded for building statistical learning models.

While there are already many papers on dimension reductions ip tieerm, this paper focuses on
thel,, norm for0 < o < 2 usingstable random projectionss it has become increasingly popular in
machine learning to consider thenorm other thar,. It is also possible to treat as an additional
tuningparameter and re-run the learning algorithms many times for better performance.

Our main contribution is théactional powerestimator forstable random projectionsThis esti-

mator, with a unified format for ald < « < 2, is computationally efficient and (surprisingly) is

also near-optimal in terms of the asymptotic variance. We also prove some important theoretical
properties (variance, convexity, etc.) to show that this estimator is well-behaved. We expect that this
work will help advance the state-of-the-art of dimension reductions if,tinerms.



A Proof of Lemma 2

By Lemma 1, we first seek an unbiased estimator (mffgj denoted bﬁ(a),k,

k A
S e

1
k 2T(1 — MT(Aa)sin (ZAa)’

R(a)’)\: —1l/a< <1
whose variance is

N dZyy [ 2T(1 — 20)0(2Xa) sin (7Aa) 1 1
_ % (= _
Var(R(a)’A) Tk ( [27(1 — AT (M) sin(%)\a)}2 1)

A biased estimator ofl,, would be simply(}?m),A)m, which hasO (1) bias. This bias can

be removed to an extent by Taylor expansions [11, Theorem 6.1.1]. While it is well-known that
bias-corrections are not always beneficial because of the bias-variance trade-off phenomenon, in our
case, it is a good idea to conduct the bias-correction because the fupictios: 2'/* is convex for

z > 0. Note thatf’(z) = $z'/*~andf"(z) = + (+ — 1) 21/*72 > 0, assuming-£ < A < 3.
Becausef (z) is convex, removing th® (4) bias will also lead to a smaller variance.

We call this new estimator the “fractional power” estimator:

A
1 ko ag P 1A 11 /1 2P(1 — 20)T(2)\a) sin (TAq)
== — 1_77(7_1) ™ - s—1]],
kE 2T(1 — A)T'(Aa) sin (F Aa) E2Xx \ A [27(1 — MI'(Aa) sin (Z Aa) ]
where we plug in the estimatet?a). The asymptotic variance would be

Var(é(a)yfp)\) :Var(f%(a),k) (; (d?\a))l//\—1>2 Lo (]:_2>

_ 2 1 21(1 — 20)I'(2Ae) sin (rAa) _ 1
= dlr 323 ( [2T(1 — M (Aa)sin (FAa)]? 1) "o (kz) ’

/A Var(f%(a)yx) 1 (1 1) ( N )1/)\—2

d).fpn = (Rm),x) e

The optimal), denoted by*, is then
2 _ .
A" — argmin { % ( gm 2)\)1“(2)\04? sin (7r)\a)2 ~ 1)}
_ el [2D(1 — A)['(Aa) sin (£ Aa)]

B Proof of Lemma 3

We sketch the basic steps; and we direct readers to the additional supporting material for more detail.
We use the infinite-product representations of the Gamma and sine functions [8, 8.322,1.431.1],

to re-writeg (\; ) as
1 1 >~
gxe) = 5 (M(Ne) =1) = 55 (l;[l fa(Xa) — 1) ,

povar= (1-2)" (14 22) 7 (122) (122) (12 T 2y

With respect to\, the first two derivatives of(\; «) are

dg 1 2 > dlog f
— == -=M-1 M| .
o A2 ( )\( )+s:1 o )

8%g M 6 > 9% log fs > dlog fs R dlog fs 6
av*F(FJ“Zl oz ; X _Xgl ax ) At

s=




Also,

dlo 1 2 1 1
Z ngZQZz 2+0‘2< 2 7.2 T 3 242 g2 22)’
= oA = s — 35X + 2A 452 — N2« s2 + 3sda + 2X2« s2 — N2

S 0% log fs 4 202 a? 302 402 202
D TE R DA pas vl o s S Gy v E R s oIl Poas v A Py vo E I CAS
=1 s—1 S S S o S « S o S (e} S (e}
i 9% log fs

axe

s=1

16 3 2 1 3 8 2
Z (s — A)3 + (s—2))3 +2e ((25 — 23 (s —xa)? + (s+Aa)®  (s+2xa)® (25 + Aa)?’) ’

Z o* log fs

= ort

= 1206 ( 2 1 S CR 2 )
= feY - - .

L s=N% (s =201 (2s =)t (s—Aa)t  (s+2a)*  (s+22a)* (25 + da)?

To showgi2 > 0, it suffices to show* 22¢ %% > 0, which can shown based on its own second deriva-

tive (and hence we need -, M) Here we considek # 0 to avoid triviality. To complete
the proof, we use some propertles of the Riemann’s Zeta function and the infinite countability.

Next, we show thah* < —1 does not satisf)L’g“)

= 0, which is equivalentt@(\*) = 1

ROT) = M(A") (17_*Zalogfs ) 1
e
We show that when < —1, % > O . ()\) < h(-1). We then show% < 0 for
0 < @ < 0.5;and hencé(—1;a) < h(—1 ) 1. Therefore, we must have > —1.
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