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Abstract

Assessing similarity between features is a key step in object recognition and scene
categorization tasks. We argue that knowledge on the distribution of distances
generated by similarity functions is crucial in deciding whether features are sim-
ilar or not. Intuitively one would expect that similarities between features could
arise from any distribution. In this paper, we will derive the contrary, and re-
port the theoretical result thatLp-norms –a class of commonly applied distance
metrics– from one feature vector to other vectors are Weibull-distributed if the
feature values are correlated and non-identically distributed. Besides these as-
sumptions being realistic for images, we experimentally show them to hold for
various popular feature extraction algorithms, for a diverse range of images. This
fundamental insight opens new directions in the assessment of feature similarity,
with projected improvements in object and scene recognition algorithms.

1 Introduction

Measurement of similarity is a critical asset of state of the art in computer vision. In all three major
streams of current research - the recognition of known objects [13], assigning an object to a class
[8, 24], or assigning a scene to a type [6, 25] - the problem is transposed into the equality of features
derived from similarity functions. Hence, besides the issue of feature distinctiveness, comparing
two images heavily relies on such similarity functions. We argue that knowledge on thedistribution
of distances generated by such similarity functions is even more important, as it is that knowledge
which is crucial in deciding whether features are similar or not.

For example, Nowak and Jurie [21] establish whether one can draw conclusions on two never seen
objects based on the similarity distances from known objects. Where they build and traverse a
randomized tree to establish region correspondence, one could alternatively use the distribution of
similarity distances to establish whether features come from the mode or the tail of the distribution.
Although this indeed only hints at an algorithm, it is likely that knowledge of the distance distribution
will considerably improve or speed-up such tasks.

As a second example, consider the clustering of features based on their distances. Better clustering
algorithms significantly boost performance for object and scene categorization [12]. Knowledge
on the distribution of distances aids in the construction of good clustering algorithms. Using this
knowledge allows for the exact distribution shape to be used to determine cluster size and centroid,
where now the Gaussian is often groundlessly assumed. We will show that in general distance
distributions will strongly deviate from the Gaussian probability distribution.

A third example is from object and scene recognition. Usually this is done by measuring invariant
feature sets [9, 13, 24] at a predefined raster of regions in the image or at selected key points in the
image [11, 13] as extensively evaluated [17]. Typically, an image contains a hundred regions or a
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thousand key points. Then, the most expensive computational step is to compare these feature sets
to the feature sets of the reference objects, object classes or scene types. Usually this is done by
going over all entries in the image to all entries in the reference set and select the best matching
pair. Knowledge of the distribution of similarity distances and having established its parameters
enables a remarkable speed-up in the search for matching reference points and hence for matching
images. When verifying that a given reference key-point or region is statistically unlikely to occur
in this image, one can move on to search in the next image. Furthermore, this knowledge can well
be applied in the construction of fast search trees, see e.g. [16].

Hence, apart from obtaining theoretical insights in the general distribution of similarities, the results
derived in this paper are directly applicable in object and scene recognition.

Intuitively one would expect that the set of all similarity values to a key-point or region in an image
would assume any distribution. One would expect that there is no preferred probability density
distribution at stake in measuring the similarities to points or regions in one image. In this paper, we
will derive the contrary. We will prove that under broad conditions the similarity values to a given
reference point or region adhere to a class of distributions known as the Weibull distribution family.
The density function has only three parameters: mean, standard deviation and skewness. We will
verify experimentally that the conditions under which this result from mathematical statistics holds
are present in common sets of images. It appears the theory predicts the resulting density functions
accurately.

Our work on density distributions of similarity values compares to the work by Pekalska and Duin
[23] assuming a Gaussian distribution for similarities. It is based on an original combination of two
facts from statistical physics. An old fact regards the statistics of extreme values [10], as generated
when considering the minima and maxima of many measurements. The major result of the field
of extreme value statistics is that the probability density in this case can only be one out of three
different types, independent of the underlying data or process. The second fact is a new result, which
links these extreme value statistics to sums of correlated variables [2, 3]. We exploit these two facts
in order to derive the distribution family of similarity measures.

This paper is structured as follows. In Section 2, we overview literature on similarity distances and
distance distributions. In Section 3, we discuss the theory of distributions of similarity distances
from one to other feature vectors. In Section 4, we validate the resulting distribution experimentally
for image feature vectors. Finally, conclusions are given in Section 5.

2 Related work

2.1 Similarity distance measures

To measure the similarity between two feature vectors, many distance measures have been proposed
[15]. A common metric class of measures is theLp-norm [1]. The distance from one reference
feature vectors to one other feature vectort can be formalized as:

d(s, t) = (

n∑

i=1

|si − ti|
p)1/p, (1)

wheren andi are the dimensionality and indices of the vectors. Let the random variableDp rep-
resent distancesd(s, t) wheret is drawn from the random variableT representing feature vectors.
Independent of the reference feature vectors, the probability density function ofLp-distances will
be denoted byf(Dp = d).

2.2 Distance distributions

Ferenczet al. [7] have considered the Gamma distribution to model theL2-distances from image
regions to one reference region:f(D2 = d) = 1

βγ Γ(γ) dγ−1 e−d/β , whereγ is the shape parameter,
andβ the scale parameter;Γ(·) denotes the Gamma function. In [7], the distance function was
fitted efficiently from few examples of image regions. Although the distribution fits were shown to
represent the region distances to some extent, the method lacks a theoretical motivation.
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Based on the central limit theorem, Pekalska and Duin [23] assumed thatLp-distances between
feature vectors are normally distributed:f(Dp = d) = 1√

2π β
e−(d2/β2)/2. As the authors argue,

the use of the central limit theorem is theoretically justified if the feature values are independent,
identically distributed, and have limited variance. Although feature values generally have limited
variance, unfortunately, they cannot be assumed to be independent and/or identically distributed as
we will show below. Hence, an alternative derivation of the distance distribution function has to be
followed.

2.3 Contribution of this paper

Our contribution is the theoretical derivation of a parameterized distribution forLp-norm distances
between feature vectors. In the experiments, we establish whether distances to image features adhere
to this distribution indeed. We consider SIFT-based features [17], computed from various interest
region types [18].

3 Statistics of distances between features

In this section, we derive the distribution function family ofLp-distances from a reference feature
vector to other feature vectors. We consider the notation as used in the previous section, witht
a feature vector drawn from the random variableT . For each vectort, we consider the value at
index i, ti, resulting in a random variableTi. The value of the reference vector at indexi, si, can
be interpreted as a sample of the random variableTi. The computation of distances from one to
other vectors involves manipulations of the random variableTi resulting in a new random variable:
Xi = |si−Ti|

p. Furthermore, the computation of the distancesD requires the summation of random
variables, and a reparameterization:D = (

∑I
i=1 Xi)

1/p. In order to derive the distribution ofD,
we start with the statistics of the summation of random variables, before turning to the properties of
Xi.

3.1 Statistics of sums

As a starting point to derive theLp-distance distribution function, we consider a lemma from statis-
tics about the sum of random variables.

Lemma 1 For non-identical and correlated random variablesXi, the sum
∑N

i=1 Xi, with finiteN ,
is distributed according to the generalized extreme value distribution, i.e. the Gumbel, Frechet or
Weibull distribution.

For a proof, see [2, 3]. Note that the lemma is an extension of the central limit theorem to non-
identically distributed random variables. And, indeed, the proof follows the path of the central
limit theorem. Hence, the resulting distribution of sums is different from a normal distribution, and
rather one of the Gumbel, Frechet or Weibull distributions instead. This lemma is important for
our purposes, as later the feature values will turn out to be non-identical and correlated indeed. To
confine the distribution function further, we also need the following lemma.

Lemma 2 If in the above lemma the random variableXi are upper-bounded, i.e.Xi < max, the
sum of the variables is Weibull distributed (and not Gumbel nor Frechet):

f(Y = y) =
γ

β
(
y

β
)γ−1 e−( y

β )γ

, (2)

with γ the shape parameter andβ the scale parameter.

For a proof, see [10]. Figure 1 illustrates the Weibull distribution for various shape parameters
γ. This lemma is equally important to our purpose, as later the feature values will turn out to be
upper-bounded indeed.

The combination of Lemmas 1 and 2 yields the distribution of sums of non-identical, correlated and
upper-bounded random variables, summarized in the following theorem.
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Figure 1: Examples of the Weibull distribution for various shape parametersγ.

Theorem 1 For non-identical, correlated and upper-bounded random variablesXi, the random
variableY =

∑N
i=1 Xi, with finiteN , adheres to the Weibull distribution.

The proof follows trivially from combining the different findings of statistics as laid down in Lem-
mas 1 and 2. Theorem 1 is the starting point to derive the distribution ofLp-norms from one
reference vector to other feature vectors.

3.2 Lp-distances from one to other feature vectors

Theorem 1 states thatY is Weibull-distributed, given that{Xi = |si − Ti|
p}i∈[1,...,I] are non-

identical, correlated and upper-bounded random variables. We transformY such that it represents
Lp-distances, achieved by the transformation(·)1/p:

Y 1/p = (

N∑

i=1

|si − Ti|
p)1/p. (3)

The consequence of the substitutionZ = Y 1/p for the distribution ofY is a change of variables
z = y1/p in Equation 2 [22]:g(Z = z) = f(zp)

(1/p−1)z(1−p) . This transformation yields a different
distribution still of the Weibull type:

g(Z = z) =
1

(1/p − 1)

γ

β1/p
(

z

β1/p
)pγ−1 e

−( z

β1/p
)pγ

, (4)

whereγ′ = pγ is the new shape parameter andβ′ = β1/p is the new scale parameter, respectively.
Thus, alsoY 1/p and henceLp-distances are Weibull-distributed under the assumed case.

We argue that the random variablesXi = |si − Ti|
p andXj (i 6= j) are indeed non-identical,

correlated and upper-bounded random variables when considering a set of values extracted from
feature vectors at indicesi andj:

• Xi andXj are upper-bounded. Features are usually an abstraction of a particular type of
finite measurements, resulting in a finite feature. Hence, for general feature vectors, the
values at indexi, Ti, are finite. And, with finitep, it follows trivially that Xi is finite.

• Xi andXj are correlated. The experimental verification of this assumption is postponed to
Section 4.1.

• Xi andXj are non-identically distributed. The experimental verification of this assumption
is postponed to Section 4.1.

We have obtained the following result.

Corollary 1 For finite-length feature vectors with non-identical, correlated and upper-bounded val-
ues,Lp distances, for limitedp, from one reference feature vector to other feature vectors adhere to
the Weibull distribution.
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3.3 Extending the class of features

We extend the class of features for which the distances are Weibull-distributed. From now on, we
allow the possibility that the vectors are preprocessed by a PCA transformation. We denote the PCA
transformg(·) applied to a single feature vector ass′ = g(s). For the random variableTi, we obtain
T ′

i . We are still dealing with upper-bounded variablesX ′
i = |s′i − T ′

i |
p as PCA is a finite transform.

The experimental verification of the assumption that PCA-transformed feature valuesT ′
i andT ′

j ,
i 6= j are non-identically distributed is postponed to Section 4.1. Our point here, is that we have
assumed originally correlating feature values, but after the decorrelating PCA transform we are no
longer dealing with correlated feature valuesT ′

i andT ′
j . In Section 4.1, we will verify experimentally

whetherX ′
i andX ′

j correlate. The following observation is hypothesized. PCA translates the data
to the origin, before applying an affine transformation that yields data distributed along orthogonal
axes. The tuples(X ′

i, X
′
j) will be in the first quadrant due to the absolute value transformation.

Obviously, variancesσ(X ′
i) andσ(X ′

j) are limited and meansµ(X ′
i) > 0 andµ(X ′

j) > 0. For
data constrained to the first quadrant and distributed along orthogonal axes, a negative covariance is
expected to be observed. Under the assumed case, we have obtained the following result.

Corollary 2 For finite-length feature vectors with non-identical, correlated and upper-bounded val-
ues, and for PCA-transformations thereof,Lp distances, for limitedp, from one to other features
adhere to the Weibull distribution.

3.4 Heterogeneous feature vector data

We extend the corollary to hold also for composite datasets of feature vectors. Consider the com-
posite dataset modelled by random variables{Tt}, where each random variableTt represents non-
identical and correlated feature values. Hence, from Corollary 2 it follows that feature vectors from
each of theTt can be fitted by a Weibull functionfβ,γ(d). However, the distances to each of the
Tt may have a different range and modus, as we will verify by experimentation in Section 4.1. For
heterogeneous distance data{Tt}, we obtain a mixture of Weibull functions [14].

Corollary 3 (Distance distribution) For feature vectors that are drawn from a mixture of datasets,
of which each results in non-identical and correlated feature values, finite-length feature vectors
with non-identical, correlated and upper-bounded values, and for PCA-transformations thereof,Lp

distances, for limitedp, from one reference feature vector to other feature vectors adhere to the
Weibull mixture distribution:f(D = d) =

∑c
i=1 ρi · f

βi,γi

i (d), wherefi are the Weibull functions
andρi are their respective weights such that

∑c
i=1 ρi = 1.

4 Experiments

In our experiments, we validate assumptions and Weibull goodness-of-fit for the region-based SIFT,
GLOH, SPIN, and PCA-SIFT features on COREL data [5]. We include these features for two
reasons as: a) they are performing well for realistic computer vision tasks and b) they provide
different mechanisms to describe an image region [17]. The region features are computed from
regions detected by the Harris- and Hessian-affine regions, maximally stable regions (MSER), and
intensity extrema-based regions (IBR) [18]. Also, we consider PCA-transformed versions for each
of the detector/feature combinations. For reason of its extensive use, the experimentation is based
on theL2-distance. We consider distances from 1 randomly drawn reference vector to 100 other
randomly drawn feature vectors, which we repeat 1,000 times for generalization. In all experiments,
the features are taken from multiple images, except for the illustration in Section 4.1.2 to show
typical distributions of distances between features taken from single images.

4.1 Validation of the corollary assumptions for image features

4.1.1 Intrinsic feature assumptions

Corollary 2 rests on a few explicit assumptions. Here we will verify whether the assumptions occur
in practice.
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Differences between feature values are correlated. We consider a set of feature vectorsTj and
the differences at indexi to a reference vectors: Xi = |si − Tji|

p. We determine the significance
of Pearson’s correlation [4] between the difference valuesXi andXj , i 6= j. We establish the
percentage of significantly correlating differences at a confidence level of0.05. We report for each
feature the average percentage of difference values that correlate significantly with difference values
at an other feature vector index.

As expected, the feature value differences correlate. For SIFT,99% of the difference values are
significantly correlated. For SPIN and GLOH, we obtain98% and96%, respectively. Also PCA-
SIFT contains significantly correlating difference values:95%. Although the feature’s name hints
at uncorrelated values, it does not achieve a decorrelation of the values in practice. For each of the
features, a low standard deviation< 5% is found. This expresses the low variation of correlations
across the random samplings and across the various region types.

We repeat the experiment for PCA-transformed feature values. Although the resulting values are
uncorrelated by construction, their differences are significantly correlated. For SIFT, SPIN, GLOH,
and PCA-SIFT, the percentages of significantly correlating difference values are:94%, 86%, 95%,
and75%, respectively.

Differences between feature values are non-identically distributed. We repeat the same proce-
dure as above, but instead of measuring the significance of correlation, we establish the percentage
of significantly differently distributed difference valuesXi by the Wilcoxon rank sum test [4] at a
confidence level of0.05. For SIFT, SPIN, GLOH, and PCA-SIFT, the percentages of significantly
differently distributed difference values are:99%, 98%, 92%, and87%. For the PCA-transformed
versions of SIFT, SPIN, GLOH, and PCA-SIFT, we find:62%, 40%, 64%, and51%, respectively.
Note that in all cases, correlation is sufficient to fulfill the assumptions of Corollary 2. We have
illustrated that feature value differences are significantly correlated and significantly non-identically
distributed. We conclude that the assumptions of Corollary 2 about properties of feature vectors are
realistic in practice, and that Weibull functions are expected to fit distance distributions well.

4.1.2 Inter-feature assumptions

In Corollary 3, we have assumed that distances from one to other feature vectors are described
well by a mixture of Weibulls, if the features are taken from different clusters in the data. Here,
we illustrate that clusters of feature vectors, and clusters of distances, occur in practice. Figure
2a shows Harris-affine regions from a natural scene which are described by the SIFT feature. The
distances are described well by a single Weibull distribution. The same hold for distances from
one to other regions computed from a man-made object, see Figure 2b. In Figure 2c, we illustrate
the distances of one to other regions computed from a composite image containing two types of
regions. This results in two modalitites of feature vectors hence of similarity distances. The distance
distribution is therefore bimodal, illustrating the general case of multimodality to be expected in
realistic, heterogeneous image data. We conclude that the assumptions of Corollary 3 are realistic
in practice, and that the Weibull function, or a mixture, fits distance distributions well.

4.2 Validation of Weibull-shaped distance distributions

In this experiment, we validate the fitting of Weibull distributions of distances from one reference
feature vector to other vectors. We consider the same data as before. Over 1,000 repetitions we
consider the goodness-of-fit ofL2-distances by the Weibull distribution. The parameters of the
Weibull distribution function are obtained by maximum likelihood estimation. The established fit is
assessed by the Anderson-Darling test at a confidence level ofα = 0.05 [20]. The Anderson-Darling
test has also proven to be suited to measure the goodness-of-fit of mixture distributions [19].

Table 1 indicates that for most of the feature types computed from various regions, more than90%
of the distance distributions is fit by a single Weibull function. As expected, distances between each
of the SPIN, SIFT, PCA-SIFT and GLOH features, are fitted well by Weibull distributions. The
exception here is the low number of fits for the SIFT and SPIN features computed from Hessian-
affine regions. The distributions of distances between these two region/feature combinations tend to
have multiple modes. Likewise, there is a low percentage of fits ofL2-distance distributions of the
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Figure 2: Distance distributions from one randomly selected image region to other regions, each
described by the SIFT feature. The distance distribution is described by a single Weibull function
for a natural scene (a) and a man-made object (b). For a composite image, the distance distribution
is bimodal (c). Samples from each of the distributions are shown in the upper images.

Table 1: Accepted Weibull fits for COREL data [5].

Harris-affine Hessian-affine MSER IBR
c = 1 c ≤ 2 c = 1 c ≤ 2 c = 1 c ≤ 2 c = 1 c ≤ 2

SIFT 95% 100% 60% 99% 98% 100% 92% 100%

SIFT (g =PCA) 95% 99% 60% 98% 98% 100% 92% 99%

PCA-SIFT 89% 100% 96% 100% 94% 100% 95% 100%

PCA-SIFT (g =PCA) 89% 100% 96% 100% 94% 100% 95% 100%

SPIN 71% 99% 12% 99% 77% 99% 45% 98%

SPIN (g =PCA) 71% 100% 12% 97% 77% 99% 45% 98%

GLOH 87% 100% 91% 100% 82% 99% 86% 100%

GLOH (g =PCA) 87% 100% 91% 99% 82% 99% 86% 100%

Percentages ofL2-distance distributions fitted by a Weibull function (c = 1) and a mixture of two Weibull
functions (c≤ 2) are given.

SPIN feature computed from IBR regions. Again, multiple modes in the distributions are observed.
For these distributions, a mixture of two Weibull functions provides a good fit (≥97%).

5 Conclusion

In this paper, we have derived that similarity distances between one and other image features in
databases are Weibull distributed. Indeed, for various types of features, i.e. the SPIN, SIFT, GLOH
and PCA-SIFT features, and for a large variety of images from the COREL image collection, we
have demonstrated that the similarity distances from one to other features, computed fromLp norms,
are Weibull-distributed. These results are established by the experiments presented in Table 1. Also,
between PCA-transformed feature vectors, the distances are Weibull-distributed. The Malahanobis
distance is very similar to theL2-norm computed in the PCA-transformed feature space. Hence,
we expect Mahalanobis distances to be Weibull distributed as well. Furthermore, when the dataset
is a composition, a mixture of few (typically two) Weibull functions suffices, as established by the
experiments presented in Table 1. The resulting Weibull distributions are distinctively different from
the distributions suggested in literature, as they are positively or negatively skewed while the Gamma
[7] and normal [23] distributions are positively and non-skewed, respectively.

We have demonstrated that the Weibull distribution is the preferred choice for estimating properties
of similarity distances. The assumptions under which the theory is valid are realistic for images. We
experimentally have shown them to hold for various popular feature extraction algorithms, and for a
diverse range of images. This fundamental insight opens new directions in the assessment of feature
similarity, with projected improvements and speed-ups in object/scene recognition algorithms.
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