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Abstract

We consider the estimation problem in Gaussian graphical models with arbitrary
structure. We analyze the Embedded Trees algorithm, which solves a sequence of
problems on tractable subgraphs thereby leading to the solution of the estimation
problem on an intractable graph. Our analysis is based on the recently developed
walk-sum interpretation of Gaussian estimation. We show that non-stationary it-
erations of the Embedded Trees algorithm usinganysequence of subgraphs con-
verge in walk-summable models. Based on walk-sum calculations, we develop
adaptive methods that optimize the choice of subgraphs used at each iteration with
a view to achieving maximum reduction in error. These adaptive procedures pro-
vide a significant speedup in convergence over stationary iterative methods, and
also appear to converge in a larger class of models.

1 Introduction

Stochastic processes defined on graphs offer a compact representation for the Markov structure in a
large collection of random variables. We consider the class of Gaussian processes defined on graphs,
or Gaussian graphical models, which are used to model natural phenomena in many large-scale ap-
plications [1, 2]. In such models, the estimation problem can be solved by directly inverting the
information matrix. However, the resulting complexity is cubic in the number of variables, thus
being prohibitively complex in applications involving hundreds of thousands of variables. Algo-
rithms such as Belief Propagation and the junction-tree method are effective for computing exact
estimates in graphical models that are tree-structured or have low treewidth [3], but for graphs with
high treewidth the junction-tree approach is intractable.

We describe a rich class of iterative algorithms for estimation in Gaussian graphical models with
arbitrary structure. Specifically, we discuss the Embedded Trees (ET) iteration [4] that solves a
sequence of estimation problems on trees, or more generally tractable subgraphs, leading to the so-
lution of the original problem on the intractable graph. We analyze non-stationary iterations of the
ET algorithm that perform inference calculations on anarbitrary sequence of subgraphs. Our anal-
ysis is based on the recently developed walk-sum interpretation of inference in Gaussian graphical
models [5]. We show that in the broad class of so-called walk-summable models, the ET algorithm
converges foranyarbitrary sequence of subgraphs used. The walk-summability of a model is easily
tested [5, 6], thus providing a simple sufficient condition for the convergence of such non-stationary
algorithms. Previous convergence results [6, 7] analyzed stationary or “cyclo-stationary” iterations
that use the same subgraph at each iteration or cycle through a fixed sequence of subgraphs. The
focus of this paper is on analyzing, and developing algorithms based on, arbitrary non-stationary
iterations that use any (non-cyclic) sequence of subgraphs, and the recently developed concept of
walk-sums appears to be critical to this analysis.
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Given this great flexibility in choosing successive iterative steps, we develop algorithms that adap-
tively optimize the choice of subgraphs to achieve maximum reduction in error. These algorithms
take advantage of walk-sum calculations, which are useful in showing that our methods minimize
an upper-bound on the error at each iteration. We develop two procedures to adaptively choose sub-
graphs. The first method finds the best tree at each iteration by solving an appropriately formulated
maximum-weight spanning tree problem, with the weight of each edge being a function of the par-
tial correlation coefficient of the edge and the residual errors at the nodes that compose the edge.
The second method, building on this first method, adds extra edges in a greedy manner to the tree
resulting from the first method to form a thin hypertree. Simulation results demonstrate that these
non-stationary algorithms provide a significant speedup in convergence over stationary and cyclic
iterative methods. Since the class of walk-summable models is broad (including attractive models,
diagonally dominant models, and so-called pairwise-normalizable models), our methods provide a
convergent, computationally attractive method for inference. We also provide empirical evidence to
show that our adaptive methods (with a minor modification) converge in many non-walk-summable
models when stationary iterations diverge. The estimation problem in Gaussian graphical models
involves solving a linear system with a sparse, symmetric, positive-definite matrix. Such systems
are commonly encountered in other areas of machine learning and signal processing as well [8, 9].
Therefore, our methods are broadly applicable beyond estimation in Gaussian models.

Some of the results presented here appear in more detail in a longer paper [10], which provides
complete proofs as well as a detailed description ofwalk-sum diagramsthat give a graphical inter-
pretation of our algorithms (we show an example in this paper). The report also considers problems
involving communication “failure” between nodes for distributed sensor network applications.

2 Background

Let G = (V, E) be a graph with verticesV , and edgesE ⊂
(
V
2

)
that link pairs of vertices together.

Here,
(
V
2

)
represents the set of all unordered pairs of vertices. Consider a Gaussian distribution in

information form[5] p(x) ∝ exp{− 1
2xT Jx+hT x}, whereJ−1 is the covariance matrix andJ−1h

is the mean. The matrixJ , also called theinformation matrix, is sparse according to graphG, i.e.
Js,t = Jt,s = 0 if and only if {s, t} /∈ E . Thus,G represents the graph with respect to whichp(x)
is Markov, i.e. p(x) satisfies the conditional independencies implied by the separators ofG. The
Gaussian mean estimation problem reduces to solving the following linear system of equations:

Jx = h, (1)
wherex is the mean vector. Convergent iterations that compute the mean can also be used in turn to
compute variances using a variety of methods [4, 11]. Thus, we focus on the problem of estimating
the mean at each node. Throughout the rest of this paper, we assume thatJ is normalized to have
1’s along the diagonal.1 Such a re-scaling does not affect the convergence results in this paper, and
our analysis and algorithms can be easily generalized to the un-normalized case [10].

2.1 Walk-sums

We give a brief overview of the walk-sum framework developed in [5]. LetJ = I − R. The off-
diagonal entries of the matrixR have the same sparsity structure as that ofJ , and consequently that
of the graphG. For Gaussian processes defined on graphs, elementRs,t corresponds to the condi-
tional correlation coefficient between the variables at verticess andt conditioned on knowledge of
all the other variables (also known as thepartial correlation coefficient[5]). A walk is a sequence of
vertices{wi}`

i=0 such that each step{wi, wi+1} ∈ E , 0 ≤ i ≤ `− 1, with no restriction on crossing
the same vertex or traversing the same edge multiple times. Theweightof a walk is the product of the
edge-wise partial correlation coefficients of the edges composing the walk:φ(w) ,

∏`−1
i=0 Rwi,wi+1 .

We then have that(R`)s,t is the sum of the weights of all length-ẁalks froms to t in G. With this
point of view, we can interpretJ−1 as follows:

(J−1)s,t = ((I −R)−1)s,t =
∞∑

`=0

(R`)s,t =
∞∑

`=0

φ(s `→ t), (2)

1This can be achieved by performing the transformationJ̃ ← D− 1
2 JD− 1

2 , whereD is a diagonal matrix
containing the diagonal entries ofJ .
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whereφ(s `→ t) represents the sum of the weights of all the length-`walks froms to t (the set
of all such walks is finite). Thus,(J−1)s,t is the length-ordered sum over all walks inG from s
to t. This, however, is a very specific way to compute the inverse that converges if the spectral
radius%(R) < 1. Other algorithms may compute walks according to different orders (rather than
length-based orders). To analyze arbitrary algorithms that submit to a walk-sum interpretation, the
following concept ofwalk-summabilitywas developed in [5]. A model is said to bewalk-summable
if for each pair of verticess, t ∈ V , the absolute sum over all walks froms to t in G converges:

φ̄(s → t) ,
∑

w∈W(s→t)

|φ(w)| < ∞. (3)

Here,W(s → t) represents the set of all walks froms to t, andφ̄(s → t) denotes the absolute
walk-sum2 over this set. Based on the absolute convergence condition, walk-summability implies
that walk-sums over a countable set of walks inG can be computed in any order. As a result, we
have the following interpretation in walk-summable models:

(J−1)s,t = φ(s → t), (4)

xt = (J−1h)t =
∑
s∈V

hsφ(s → t) , φ(h; ∗ → t), (5)

where the wildcard character∗ denotes a union over all vertices inV , andφ(h;W) denotes a re-
weighting of each walk inW by the correspondingh value at the starting node. Note that in (4) we
relax the constraint that the sum is ordered by length, and do not explicitly specify an ordering on
the walks (such as in (2)). In words,(J−1)s,t is the walk-sum over the set of all walks froms to t,
andxt is the walk-sum over all walks ending att, re-weighted byh.

As shown in [5], the walk-summability of a model is equivalent to%(R̄) < 1, whereR̄ denotes the
matrix of the absolute values of the elements ofR. Also, a broad class of models are walk-summable,
including diagonally-dominant models, so-called pairwise normalizable models, and models for
which the underlying graphG is non-frustrated, i.e. each cycle has an even number of negative
partial correlation coefficients. Walk-summability implies that a model is valid, i.e. has positive-
definite information/covariance.

Concatenation of walks We briefly describe the concatenation operation for walks and walk-sets,
which plays a key role in walk-sum analysis. Letu = u0 · · ·uend andv = vstartv1 · · · v`(v) be walks
with uend = vstart. The concatenation of these walks is defined to beu ·v , u0 · · ·uendv1 · · · v`(v).
Now consider a walk-setU with all walks ending atuend and another walk-setV with all walks
beginning atvstart. If uend = vstart, then the concatenation ofU andV is defined:

U ⊗ V , {u · v : u ∈ U , v ∈ V}.

2.2 Embedded Trees algorithm

We describe the Embedded Trees iteration that performs a sequence of updates on trees, or more
generally tractable subgraphs, leading to the solution of (1) on an intractable graph. Each iteration
involves an inference calculation on a subgraph ofall the variablesV . Let (V,S) be some subgraph
of G, i.e.S ⊂ E (see examples in Figure 1). LetJ be split according toS asJ = JS −KS , so that
the entries ofJ corresponding to edges inS are assigned toJS , and those corresponding toE\S are
part ofKS . The diagonal entries ofJ are all part ofJS ; thus,KS has zeroes along the diagonal.3

Based on this splitting, we can transform (1) toJSx = KSx+h, which suggests a natural recursion:
JS x̂(n) = KS x̂(n−1) + h. If JS is invertible, and it is tractable to applyJ−1

S to a vector, then ET
offers an effective method to solve (1) (assuming%(J−1

S KS) < 1). If the subgraph used changes
with each iteration, then we obtain the followingnon-stationaryET iteration:

x̂(n) = J−1
Sn

(KSn
x̂(n−1) + h), (6)

where{Sn}∞n=1 is any arbitrary sequence of subgraphs. An important degree of freedom is the
choice of the subgraphSn at iterationn, which forms the focus of Section 4 of this paper. In [10] we
also consider a more general class of algorithms that updatesubsetsof variables at each iteration.

2We generally denote the walk-sum of the setW(∼) by φ(∼).
3KS can have non-zero diagonal in general, but we only consider the zero diagonal case here.
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Figure 1: (Left)G and three embedded treesS1,S2,S3; (Right) Corresponding walk-sum diagram.

3 Walk-Sum Analysis and Convergence of the Embedded Trees algorithm

In this section, we provide a walk-sum interpretation for the ET algorithm. Using this analysis, we
show that the non-stationary ET iteration (6) converges in walk-summable models for an arbitrary
choice of subgraphs{Sn}∞n=1. Before proceeding with the analysis, we point out that one potential
complication with the ET algorithm is that the matrixJS corresponding to some subgraphS may be
indefinite or singular, even if the original modelJ is positive-definite. Importantly, such a problem
never arises in walk-summable models withJS being positive-definite for any subgraphS if J is
walk-summable. This is easily seen because walks in the subgraphS are a subset of the walks
in G, and thus if absolute walk-sums inG are well-defined, then so are absolute walk-sums inS.
Therefore,JS is walk-summable, and hence, positive-definite.

Consider the following recursively defined set of walks fors, t ∈ V :

Wn(s → t) =
[
∪u,v∈V Wn−1(s → u)⊗W(u

E\Sn(1)−→ v)⊗W(v Sn−→ t)
] ⋃

W(s Sn−→ t)

= Wn−1(s → ∗)⊗W(∗ E\Sn(1)−→ •)⊗W(• Sn−→ t)
⋃

W(s Sn−→ t), (7)

withW0(s → t) = ∅. Here,∗ and• are used as wildcard characters (a union over all elements inV ),
and⊗ denotes concatenation of walk-sets as described previously. The setWn−1(s → ∗) denotes

walks that start at nodes computed at the previous iteration. The middle termW(∗ E\Sn(1)−→ •)
denotes a length-1walk (called ahop) across an edge inE\Sn. Finally,W(• Sn−→ t) denotes walks
in Sn that end at nodet. Thus, the first term in (7) refers to previously computed walks starting ats,
which hop across an edge inE\Sn, and then finally propagate only inSn (ending att). The second

termW(s Sn−→ t) denotes walks froms to t that only live withinSn. The following proposition
(proved in [10]) shows that the walks contained in these walk-sets are precisely those computed by
the ET algorithm at iterationn. For simplicity, we denoteφ(Wn(s → t)) by φn(s → t).

Proposition 1 Let x̂(n) be the estimate at iterationn in the ET algorithm (6) with initial guess
x̂(0) = 0. Then,̂x(n)

t = φn(h; ∗ → t) =
∑

s∈V hsφn(s → t) in walk-summable models.

We note that the classic Gauss-Jacobi algorithm [6], a stationary iteration withJS = I andKS = R,
can be interpreted as a walk-sum algorithm:x̂

(n)
t in this method computes all walks up to lengthn

ending att. Figure 1 gives an example of awalk-sum diagram, which provides a graphical repre-
sentation of the walks accumulated by the walk-sets (7). The diagram is the three-level graph on the
right, and corresponds to an ET iteration based on the subgraphsS1,S2,S3 of the3 × 3 grid G (on
the left). Each leveln in the diagram consists of the subgraphSn used at iterationn (solid edges),
and information from the previous level (iteration)n − 1 is transmitted through the dashed edges
in E\Sn. The directed nature of these dashed edges is critical as they capture the one-directional
flow of computations from iteration to iteration, while the undirected edges within each level capture
the inference computation at each iteration. Consider a nodev at leveln of the diagram. Walks in
the diagram that start at any node and end atv at leveln, re-weighted byh, are exactly the walks
computed by the ET algorithm in̂x(n)

v . For more examples of such diagrams, see [10].

Given this walk-sum interpretation of the ET algorithm, we can analyze the walk-sets (7) to prove
the convergence of ET in walk-summable models by showing that the walk-sets eventually contain
all the walks required for the computation ofJ−1h in (5). We have the following convergence
theorem for which we only provide a brief sketch of the complete proof [10].
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Theroem 1 Let x̂(n) be the estimate at iterationn in the ET algorithm (6) with initial guesŝx(0) =
0. Then,̂x(n) → J−1h element-wise asn →∞ in walk-summable models.

Proof outline: Proving this statement is done in the following stages.

Validity: The walks inWn are valid walks inG, i.e.Wn(s → t) ⊆ W(s → t).

Nesting: The walk-setsWn(s → t) are nested, i.e.Wn−1(s → t) ⊆ Wn(s → t),∀n.

Completeness: Letw ∈ W(s → t). There exists anN > 0 such thatw ∈ WN (s → t). Using the
nesting property, we conclude that for alln ≥ N , w ∈ Wn(s → t).

These steps combined together allow us to conclude thatφn(s → t) → φ(s → t) asn → ∞. This
conclusion relies on the fact thatφ(Wn) → φ(∪nWn) asn →∞ for a sequence of nested walk-sets
Wn−1 ⊆ Wn in walk-summable models, which is a consequence of the sum-partition theorem for
absolutely summable series [5, 10, 12]. Given the walk-sum interpretation from Proposition 1, one
can check that̂x(n) → J−1h element-wise asn →∞. �

Thus, the ET algorithm converges to the correct solution of (1) in walk-summable models for any
sequence of subgraphs witĥx(0) = 0. It is then straightforward to show that convergence can be
achieved for any initial guess [10]. Note that we have taken advantage of the absolute convergence
property in walk-summable models (3) by not focusing on the order in which walks are computed,
but only that they are eventually computed. In [10], we prove that walk-summability is also a
necessarycondition for the complete flexibility in the choice of subgraphs — there exists at least
one sequence of subgraphs that results in a divergent ET iteration in non-walk-summable models.

4 Adaptive algorithms

Let e(n) = x−x̂(n) be theerror at iterationn and leth(n) = Je(n) = h−Jx̂(n) be the corresponding
residual error(which is tractable to compute). We begin by describing an algorithm to choose the
“next-best” treeSn in the ET iteration (6). The error at iterationn can be re-written as follows:

e(n) = (J−1 − J−1
Sn

)h(n−1).

Thus, we have the walk-sum interpretatione
(n)
t = φ(h(n−1); ∗ G\Sn−→ t), whereG\Sn denotes walks

that do not live entirely withinSn. Using this expression for the error, we have the following bound
that is tight for attractive models (Rs,t ≥ 0 for all s, t ∈ V ) and non-negativeh(n−1):

‖e(n)‖`1 =
∑
t∈V

|φ(h(n−1); ∗ G\Sn−→ t)|

≤ φ̄(|h(n−1)|;G\Sn)

= φ̄(|h(n−1)|;G)− φ̄(|h(n−1)|;Sn). (8)

Hence, minimizing the error at iterationn corresponds to finding the treeSn that maximizesthe
second term̄φ(|h(n−1)|;Sn). This leads us to the followingmaximum walk-sum treeproblem:

arg max
Sn a tree

φ̄(|h(n−1)|;Sn) (9)

Finding the optimal such tree is combinatorially complex. Therefore, we develop a relaxation that
minimizes a looser upper bound than (8). Specifically, consider an edge{u, v} and all the walks that
live on this single edgeW({u, v}) = {uv, vu, uvu, vuv, uvuv, vuvu, . . . }. One can check that the
contribution based on these single-edge walks can be computed as:

σu,v =
∑

w∈W({u,v})

φ̄(|h(n−1)|;w) =
(
|h(n−1)

u |+ |h(n−1)
v |

) |Ru,v|
1− |Ru,v|

. (10)

This weight provides a measure of the error-reduction capacity of edge{u, v} by itself at iteration
n. These single-edge walks for edges inSn are a subset of all the walks inSn, and consequently
provide a lower-bound on̄φ(|h(n−1)|;Sn). Therefore, the maximization

arg max
Sn a tree

∑
{u,v}∈Sn

σu,v (11)
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Figure 2: Grayscale images of residual errors in an8 × 8 grid at successive iterations, and corre-
sponding trees chosen by adaptive method.

Figure 3: Grayscale images of residual errors in an8 × 8 grid at successive iterations, and corre-
sponding hypertrees chosen by adaptive method.

is equivalent to minimizing a looser upper-bound than (8). This relaxed problem can be solved
efficiently using a maximum-weight spanning tree algorithm that has complexityO(|E| log log |V |)
for sparse graphs [13].

Given the maximum-weight spanning tree of the graph, a natural extension is to build athin hyper-
treeby adding extra “strong” edges to the tree, subject to the constraint that the resulting graph has
low treewidth. Unfortunately, to do so optimally is an NP-hard optimization problem [14]. Hence,
we settle on a simple greedy algorithm. For each edge not included in the tree, in order of decreas-
ing edge weight, we add the edge to the graph if two conditions are met: first, we are able to easily
verify that the treewidth stays less thanM , and second, the length of the unique path inSn between
the endpoints is less thanL. In order to bound the tree width, we maintain a counter at each node
of the total number of added edges that result in a path through that node. Comparing to another
method for constructing junction trees from spanning trees [15], one can check that the maximum
node count is an upper-bound on the treewidth. We note that by using an appropriate directed repre-
sentation ofSn relative to an arbitrary root, it is simple to identify the path between two nodes with
complexity linear in path length (< L).4 Hence, the additional complexity of this greedy algorithm
over that of the tree-selection procedure described previously isO(L|E|).
In Figure 2 and Figure 3 we present a simple demonstration of the tree and hypertree selection
procedures respectively, and the corresponding change in error achieved. The grayscale images
represent the residual errors at the nodes of an8 × 8 grid similar toG in Figure 1 (with white
representing1 and black representing0), and the graphs beside them show the trees/hypertrees
chosen based on these residual errors using the methods described above (the grid edge partial
correlation coefficients are the same for all edges). Notice that the first tree in Figure 2 tries to
include as many edges as possible that are incident on the nodes with high residual error. Such
edges are useful for capturing walks ending at the high-error nodes, which contribute to the set of
walks in (5). The first hypertree in Figure 3 actually includesall the edges incident on the high-
error nodes. The residual errors after inference on these subgraphs are shown next in Figure 2 and
Figure 3. As expected, the hypertree seems to achieve greater reduction in error compared to the
spanning tree. Again, at this iteration, the subgraphs chosen by our methods adapt based on the
errors at the various nodes.

5 Experimental illustration

5.1 Walk-summable models

We test the adaptive algorithms on densely connected nearest-neighbor grid-structured models (sim-
ilar to G in Figure 1). We generate random grid models — the grid edge partial correlation coef-

4One sets two pointers into the tree starting from any two nodes and then iteratively walks up the tree, always
advancing from the point that is deeper in the tree, until the nearest ancestor of the two nodes is reached.
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Figure 4: (Left) Average number of iterations required for the normalized residual to reduce by a
factor of10−6 over100 randomly generated75 × 75 grid models; (Center) Convergence plot for a
randomly generated511×511 grid model; (Right) Convergence range in terms of partial correlation
for 16-node cyclic model with edges to neighbors two steps away.

Figure 5: (Left)16-node graphical model; (Right) two embedded spanning treesT1, T2.

ficients are chosen uniformly from[−1, 1] andR is scaled so that%(R̄) = 0.99. The vectorh is
chosen to be the all-ones vector. The table on the left in Figure 4 shows the average number of

iterations required by various algorithms to reduce the normalized residual error‖h(n)‖2
‖h(0)‖2

by a factor

of 10−6. The average was computed based on100 randomly generated75 × 75 grid models. The
plot in Figure 4 shows the decrease in the normalized residual error as a function of the number of
iterations on a randomly generated511× 511 grid model. All these models are poorly conditioned
because they are barely walk-summable (%(R̄) = 0.99). The stationary one-tree iteration uses a tree
similar toS1 in Figure 1, and the two-tree iteration alternates between trees similar toS1 andS3 in
Figure 1 [4]. The adaptive hypertree method usesM = 6 andL = 8. We also note that in practice
the per-iteration costs of the adaptive tree and hypertree algorithms are roughly comparable.

These results show that our adaptive algorithms demonstrate significantly superior convergence
properties compared to stationary methods, thus providing a convergent, computationally attrac-
tive method for estimation in walk-summable models. Our methods are applicable beyond Gaussian
estimation to other problems that require solution of linear systems based on sparse, symmetric,
positive-definite matrices. Several recent papers that develop machine learning algorithms are based
on solving such systems of equations [8, 9]; in fact, both of these papers involve linear systems
based on diagonally-dominant matrices, which are walk-summable.

5.2 Non-walk-summable models

Next, we give empirical evidence that our adaptive methods provide convergence over a broader
range of models than stationary iterations. One potential complication in non-walk-summable mod-
els is that the subgraph models chosen by the stationary and adaptive algorithms may be indefinite
or singular even thoughJ is positive-definite. In order to avoid this problem in the adaptive ET
algorithm, the treesSn chosen at each iteration must be valid (i.e., have positive-definiteJSn ). A
simple modification to the maximum-weight spanning tree algorithm achieves this goal — we add
an extra condition to the algorithm to test for diagonal dominance of the chosen tree model (as
all symmetric, diagonally-dominant models are positive definite [6]). That is, at each step of the
maximum-weight spanning tree algorithm, we only add an edge if it does not create a cycleand
maintains a diagonally-dominant tractable subgraph model. Consider the16-node model on the left
in Figure 5. Let all the edge partial correlation coefficients ber. The range ofr for which J is
positive-definite is roughly(−0.46, 0.25), and the range for which the model is walk-summable is
(−0.25, 0.25) (in this range all the algorithms, both stationary and adaptive, converge). For the one-
tree iteration we use treeT1, and for the two-tree iteration we alternate between treesT1 andT2 (see
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Figure 5). As the table on the right in Figure 4 demonstrates, the adaptive tree algorithm without the
diagonal-dominance (DD) check provides convergence over a much broader range of models than
the one-tree and two-tree iterations, but not for all valid models. However, the modified adaptive
tree algorithm with the DD check appears to converge almost up to the validity threshold. We have
also observed such behavior empirically in many other (though not all) non-walk-summable models
where the adaptive ET algorithm with the DD condition converges while stationary methods diverge.
Thus, our adaptive methods, compared to stationary iterations, not only provide faster convergence
rates in walk-summable models but also converge for a broader class of models.

6 Discussion

We analyze non-stationary iterations of the ET algorithm that use any sequence of subgraphs for
estimation in Gaussian graphical models. Our analysis is based on the recently developed walk-sum
interpretation of inference in Gaussian models, and we show that the ET algorithm converges for
any sequence of subgraphs used in walk-summable models. These convergence results motivate
the development of methods to choose subgraphs adaptively at each iteration to achieve maximum
reduction in error. The adaptive procedures are based on walk-sum calculations, and minimize an
upper bound on the error at each iteration. Our simulation results show that the adaptive algorithms
provide a significant speedup in convergence over stationary methods. Moreover, these adaptive
methods also seem to provide convergence over a broader class of models than stationary algorithms.

Our adaptive algorithms are greedy in that they only choose the “next-best” subgraph. An interest-
ing question is to develop tractable methods to compute the nextK best subgraphsjointly to achieve
maximum reduction in errorafter K iterations. The experiment with non-walk-summable models
suggests that walk-sum analysis could be useful to provide convergent algorithms fornon-walk-
summablemodels, perhaps with restrictions on the order in which walk-sums are computed. Fi-
nally, subgraph preconditioners have been shown to improve the convergence rate of the conjugate-
gradient method; using walk-sum analysis to select such preconditioners is of clear interest.
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