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A Influence of the Adjacency Matrices

An observation of our experiments is that MUHSIC considerably improves the embedding of the
newsgroups and NIPS papers datasets, but its improvement over MVU on USPS digits dataset seems
to be minor. Except for clearer separation between classes and an embedding with lower dimension,
the overall visualization remains very similar to that by MVU and PCA. To investigate this, we
plotted the adjacency matrix of the corresponding nearest neighbor graph in Figure 1.

We find that the nearest neighbor graphs for newsgroups and NIPS papers datasets are noisier with
no clear block-diagonal structure, whereas the USPS digits dataset has an almost block-diagonal
form. Also note that for newsgroups and NIPS papers dataset, several data points almost have
all other data points as nearest neighbors. Second, while we have ordered data points from the
same class in contiguous places for both USPS digits and newsgroups datasets, only the adjacency
matrix of USPS digits dataset show clear correspondence with the class labels, that is, only the
USPS digits dataset exhibits a clear block structure. In this case clearly the additional labels do not
convey much additional information over the similarity matrix between observations and it is not too
surprising that in this case MUSIC generates results not much different from MVU. This suggests
that MUHSIC may provide improvement in cases where:

1. The nearest neighbor information is inexact.
2. The side information provides complementary information.

It also indicates that wherever the dominant features of the data are present in the nearest neighbor
graph MVU will be able to recover them. However, in general, it is not clear that the desired
properties are necessarily those which are dominant. For instance a linguist might care more about
the date, length and vocabulary diversity of the documents rather than their topics (or vice versa).

B Influence of the Local Refinement Step

As pointed out [1] it is preferable to perform gradient descent on the embedding after solving the
low-dimensional approximation of the overall optimization problem. The latter allows for visually
more appealing low-dimensional representations. In this sense, our implementation (which is based
on that by [1]) shares the same properties. Figures 2 and 3 visualize this fact quite clearly.

The experiments show that while both MVU and MUHSIC strive to generate a low-dimensional
embedding which preserves local distance information, explicit side-information used for MUHSIC
ensures that after the initial guess of the subspace which is used to keep optimization tractable,
the algorithm finds the more representative subspace suitable for visualization. Note that while
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Figure 1: Adjacency matrices of the nearest neighbor graphs for the three datasets. We used the
Euclidean distance between the vector space representations of the USPS digits, and the TF.IDF
representations of the Newsgroups and NIPS papers datasets. 1% of the data were chosen as nearest
neighbors and the graphs were symmetrized subsequently.

the full semidefinite program and the low-dimensional semidefinite program are both convex, a
dimensionality-constrainedersion of the full problem is clearly not, hence the need for a local
refinement step. (We will refer to the initial solutions of the unfolding algorithms before the gradient
refinement as MUHSIC and MVU~ respectively.)

C Comparison to Other Methods

[2] propose Neighborhood Component Analysis (NCA) for extracting low-dimensional representa-
tions of data which is optimized for classification. More specifically they minimize a smoothed-out
variant of thek-nearest neighbor classification error (the exacearest neighbor error is a piece-
wise constant function and hence intractable for optimization). That is, the optimization is carried
outdirectlyon the features of the data. This is advantageous insofar as it generates a direct projection
of the data onto a lower-dimensional space which is thought to be representative for the problem.
Such a representation can be very convenient at test time.

At the same time, this setting has several drawbacks: firstly, it is restricted to Euclidean spaces
underpinning the space of observations, which makes nontrivial Banach space distances, such as
[3] inapplicable. Secondly, it being a nonconvex method, optimization may become stuck in local
optima, thereby rendering the generation of a specific representation somewhat irreproducible. The
main drawback, however, is that computational cost increases with the dimensionality of the data.
In practice this means that we were unable to apply NCA to datasets other than the USPS digits
dataset, since the dimensionality of the features and the sample size were just tbo high.

Two other algorithms used for comparison purposes were Relevant Component Analysis (RCA) by
[4] and Linear Discriminant Analysis (LDA) by [5]. Examples of their performance on the USPS
dataset are given in Figure 4. Arguably NCA performs best on this dataset.

To obtain a more quantifiable measure of the performance of low-dimensional representations of
the data we computed the nearest neighbor scores produced by various embedding algorithms (the
nearest neighbor score computes the percentage of the data points in the embedding that has data
point from the same class as the nearest neighbor). The performance is given in Table 1 below.
We can see that (not very surprisingly) MUHSIC outperforms MVU. More surprising is that it also
outperforms RCA and NCA in most problems.

We visualize the embeddings generated by the different methods on two datasets (DNA and
SVMguide2) in Figures 5 and 6. These are further examples where MUHSIC manages to sepa-
rate different classes particularly well.

The algorithm kindly provided by [2] did not run successfully on the newsgroups dataset.



Table 1: Nearest neighbor scores in % for various multiclass datasets produced by various methods.
The sizes of the datasets are listed as triples: (size of dataset, number of dimensions, number of
classes). We typically usdd=1% of the data points as nearest neighbor for MVU and MUHSIC.

In the case that the resulting nearest neighbor graph is not connected, we increase the neighbor size
to 2%. Furthermore, we typically used the tap=10 eigenvectors of the graph Laplacian as the
bases for optimizing MVU and MUHSIC. In the case that the dimension of the data is siidlD],

we decrease the number of bases used to 5.

Dataset Size k (%)| n |[PCALDA |[RCAINCA|MVU MVU™ [MUHSICIMUHSIC™

USPS (2007, 256, 10) 1 |10[43.9/50.2/50.0|66.2| 49.8| 59.4 59.4 71.2
Wine (178,13,3) | 2 [5]96.697.2/97.2{97.2| 95.5| 93.8 93.8 94.4
Satimage | (1331,36,6)| 1 |5(75.7/77.3/77.177.1| 78.4| 79.0 79.1 78.4
Segment | (2310,19,7)| 2 |5|77.9/82.6/83.3/83.3| 82.6| 87.8 84.5 87.1
Vehicle (846,10,11)| 1 |5|51.945.7/46.2/46.2| 42.7| 50.1 57.7 54.0
DNA (2000, 180,3) 1 |10/70.5/88.9/88.9/92.4| 54.4| 60.8 95.6 63.9
Vowel (528,10,11)| 2 |5|52.8/67.1/65.3/65.3| 72.5| 66.5 70.1 44.9
1

SVMguide2 (391, 20, 3) 5156.0,70.1|67.5|67.5| 61.4| 62.9 79.0 60.1

D Embedding this Paper among other NIPS Papers

We also embedded the current paper into the visualization of the NIPS papers in the main text.
Basically, we represent the current paper as a TF.IDF vector and then place it in the location of its
nearest neighbor among the NIPS papers.

To do this, we first represent this paper using the TF.IDF vector with the model we obtained from the
NIPS papers dataset (We produced the TF vector for the main text, and then computed the TF.IDF
presentation using the vocabulary and IDF obtained from the NIPS paper dataset). Since the nearest
neighbor graph of the NIPS paper dataset is noisy (some data points have almost all other papers as
neighbors), we excluded those papers which have more than 3% of the papers as neighbors (Note
when we build the nearest neighbor graph, we only require 1% of the data points).

E A General Feature Selection Framework

Below we give a short list of some more feature selection and generation algorithms which can be
viewed as special instances of the dependence maximization framework.

Principal Component Analysis Assume that we want to findé&dimensional Euclidean embed-
ding of the data by means of a projection matrix. That is, we want to find an idempBightf K)
positive semidefinite matriK with rankK = d. In this case the optimization problem

max}i{mize tr HKHL subject toKK = K and rank K = d Q)

is solved by choosing the subspace of the leadireigenvectors oHLH. Since PCA requires
centering of the data firs, is naturally centered, which means that PCA and feature extraction
subject to rank constraints are equivalent.

Kernel Principal Component Analysis A simple modification allows us to recover kernel-PCA:
simply allow arbitrary kernels faokL in the above optimization problem, sinkewill always choose
the leading? principal components of the corresponding matrix.

Clustering If we restrictK to be of the formil " DII, whereD € R*** is a diagonal matrix with

D > 0 andII € {0, 1}ka is an assignment matrix, i.el" 1 = 1, we have a clustering problem.

In fact, this problem is well studied in theoretical computer science [6, 7] as the so-called multicut
problem. A simplified version of this is known in machine learning as the min-cut and normalized
min-cut problem [8, 9]. What HSIC does is provide an information-theoretical footing for these
problems.
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Figure 2: Embedding of the three datasets produced by MUM&I®uUtthe refinement via gradient

descent¥IUHSIC™). Colors of the dots are used to denote digits from different classes. The color
bar below each figure shows the eigenspectrum of the learned kernel Batrix
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Figure 3: Embedding of the three datasets produced by Mitbout the refinement via gradient
descent¥IVU™). Colors of the dots are used to denote digits from different classes. The color bar
below each figure shows the eigenspectrum of the learned kernel Hatrix
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Figure 4. Embedding of 2007 USPS digits produced by LDA, RCA and NCA methods. The same
color scheme is used as that for MUHSIC. These methods directly learn a 2 dimensional projection,
so no eigenspectrum & is shown.
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Figure 5: The embeddings of the DNA dataset produced by various methods.
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Figure 6: The embeddings of the SVMguide2 dataset produced by various methods.



