
Sparse deep belief net model for visual area V2

Honglak Lee Chaitanya Ekanadham Andrew Y. Ng
Computer Science Department

Stanford University
Stanford, CA 94305

{hllee,chaitu,ang}@cs.stanford.edu

Abstract

Motivated in part by the hierarchical organization of the cortex, a number of al-
gorithms have recently been proposed that try to learn hierarchical, or “deep,”
structure from unlabeled data. While several authors have formally or informally
compared their algorithms to computations performed in visual area V1 (and the
cochlea), little attempt has been made thus far to evaluate these algorithms in terms
of their fidelity for mimicking computations at deeper levels in the cortical hier-
archy. This paper presents an unsupervised learning model that faithfully mimics
certain properties of visual area V2. Specifically, we develop a sparse variant of
the deep belief networks of Hinton et al. (2006). We learn two layers of nodes in
the network, and demonstrate that the first layer, similar to prior work on sparse
coding and ICA, results in localized, oriented, edge filters, similar to the Gabor
functions known to model V1 cell receptive fields. Further, the second layer in our
model encodes correlations of the first layer responses in the data. Specifically, it
picks up both colinear (“contour”) features as well as corners and junctions. More
interestingly, in a quantitative comparison, the encoding of these more complex
“corner” features matches well with the results from the Ito & Komatsu’s study
of biological V2 responses. This suggests that our sparse variant of deep belief
networks holds promise for modeling more higher-order features.

1 Introduction
The last few years have seen significant interest in “deep” learning algorithms that learn layered,
hierarchical representations of high-dimensional data. [1, 2, 3, 4]. Much of this work appears to
have been motivated by the hierarchical organization of the cortex, and indeed authors frequently
compare their algorithms’ output to the oriented simple cell receptive fields found in visual area V1.
(E.g., [5, 6, 2]) Indeed, some of these models are often viewed as first attempts to elucidate what
learning algorithm (if any) the cortex may be using to model natural image statistics.
However, to our knowledge no serious attempt has been made to directly relate, such as through
quantitative comparisons, the computations of these deep learning algorithms to areas deeper in the
cortical hierarchy, such as to visual areas V2, V4, etc. In this paper, we develop a sparse variant
of Hinton’s deep belief network algorithm, and measure the degree to which it faithfully mimics
biological measurements of V2. Specifically, we take Ito & Komatsu [7]’s characterization of V2 in
terms of its responses to a large class of angled bar stimuli, and quantitatively measure the degree to
which the deep belief network algorithm generates similar responses.
Deep architectures attempt to learn hierarchical structure, and hold the promise of being able to
first learn simple concepts, and then successfully build up more complex concepts by composing
together the simpler ones. For example, Hinton et al. [1] proposed an algorithm based on learning
individual layers of a hierarchical probabilistic graphical model from the bottom up. Bengio et al. [3]
proposed a similarly greedy algorithm, one based on autoencoders. Ranzato et al. [2] developed an
energy-based hierarchical algorithm, based on a sequence of sparsified autoencoders/decoders.

1

In related work, several studies have compared models such as these, as well as non-
hierarchical/non-deep learning algorithms, to the response properties of neurons in area V1. A study
by van Hateren and van der Schaaf [8] showed that the filters learned by independent components
analysis (ICA) [9] on natural image data match very well with the classical receptive fields of V1
simple cells. (Filters learned by sparse coding [10, 11] also similarly give responses similar to V1
simple cells.) Our work takes inspiration from the work of van Hateren and van der Schaaf, and
represents a study that is done in a similar spirit, only extending the comparisons to a deeper area in
the cortical hierarchy, namely visual area V2.

2 Biological comparison
2.1 Features in early visual cortex: area V1
The selectivity of neurons for oriented bar stimuli in cortical area V1 has been well documented [12,
13]. The receptive field of simple cells in V1 are localized, oriented, bandpass filters that resemble
gabor filters. Several authors have proposed models that have been either formally or informally
shown to replicate the gabor-like properties of V1 simple cells. Many of these algorithms, such
as [10, 9, 8, 6], compute a (approximately or exactly) sparse representation of the natural stimuli
data. These results are consistent with the “efficient coding hypothesis” which posits that the goal
of early visual processing is to encode visual information as efficiently as possible [14]. Some
hierarchical extensions of these models [15, 6, 16] are able to learn features that are more complex
than simple oriented bars. For example, hierarchical sparse models of natural images have accounted
for complex cell receptive fields [17], topography [18, 6], colinearity and contour coding [19]. Other
models, such as [20], have also been shown to give V1 complex cell-like properties.

2.2 Features in visual cortex area V2
It remains unknown to what extent the previously described algorithms can learn higher order fea-
tures that are known to be encoded further down the ventral visual pathway. In addition, the response
properties of neurons in cortical areas receiving projections from area V1 (e.g., area V2) are not
nearly as well documented. It is uncertain what type of stimuli cause V2 neurons to respond opti-
mally [21]. One V2 study by [22] reported that the receptive fields in this area were similar to those
in the neighboring areas V1 and V4. The authors interpreted their findings as suggestive that area
V2 may serve as a place where different channels of visual information are integrated. However,
quantitative accounts of responses in area V2 are few in number. In the literature, we identified two
sets of quantitative data that give us a good starting point for making measurements to determine
whether our algorithms may be computing similar functions as area V2.
In one of these studies, Ito and Komatsu [7] investigated how V2 neurons responded to angular stim-
uli. They summarized each neuron’s response with a two-dimensional visualization of the stimuli
set called an angle profile. By making several axial measurements within the profile, the authors
were able to compute various statistics about each neuron’s selectivity for angle width, angle ori-
entation, and for each separate line component of the angle (see Figure 1). Approximately 80% of
the neurons responded to specific angle stimuli. They found neurons that were selective for only
one line component of its peak angle as well as neurons selective for both line components. These
neurons yielded angle profiles resembling those of Cell 2 and Cell 5 in Figure 1, respectively. In
addition, several neurons exhibited a high amount of selectivity for its peak angle producing angle
profiles like that of Cell 1 in Figure 1. No neurons were found that had more elongation in a di-
agonal axis than in the horizontal or vertical axes, indicating that neurons in V2 were not selective
for angle width or orientation. Therefore, an important conclusion made from [7] was that a V2
neuron’s response to an angle stimulus is highly dependent on its responses to each individual line
component of the angle. While the dependence was often observed to be simply additive, as was
the case with neurons yielding profiles like those of Cells 1 and 2 in Figure 1(right), this was not
always the case. 29 neurons had very small peak response areas and yielded profiles like that of Cell
1 in Figure 1(right), thus indicating a highly specific tuning to an angle stimulus. While the former
responses suggest a simple linear computation of V1 neural responses, the latter responses suggest
a nonlinear computation [21]. The analysis methods adopted in [7] are very useful in characterizing
the response properties, and we use these methods to evaluate our own model.
Another study by Hegde and Van Essen [23] studied the responses of a population of V2 neurons
to complex contour and grating stimuli. They found several V2 neurons responding maximally for
angles, and the distribution of peak angles for these neurons is consistent with that found by [7]. In
addition, several V2 neurons responded maximally for shapes such as intersections, tri-stars, five-
point stars, circles, and arcs of varying length.

2

Figure 1: (Images from [7]; courtesy of Ito and Komatsu) Left: Visualization of angle profiles. The upper-right
and lower-left triangles contain the same stimuli. (A,B) Darkened squares correspond to stimuli that elicited a
large response. The peak responses are circled. (C) The arrangement of the figure is so that one line component
remains constant as one moves along any vertical or horizontal axis. (D) The angles width remains constant
as one moves along a the diagonal indicated (E) The angle orientation remains constant as one moves along
the diagonal indicated. After identifying the optimal stimuli for a neuron in the profile, the number of stimuli
along these various axes (as in C,D,E) eliciting responses larger than 80% of the peak response measure the
neuron’s tolerance to perturbations to the line components, peak angle width, and orientation, respectively.
Right: Examples of 4 typical angle profiles. As before, stimuli eliciting large responses are highlighted. Cell 1
has a selective response to a stimulus, so there is no elongation along any axis. Cell 2 has one axis of elongation,
indicating selectivity for one orientation. Cell 5 has two axes of elongation, and responds strongly so long as
either of two edge orientations is present. Cell 4 has no clear axis of elongation.
3 Algorithm
Hinton et al. [1] proposed an algorithm for learning deep belief networks, by treating each layer as a
restricted Boltzmann machine (RBM) and greedily training the network one layer at a time from the
bottom up [24, 1]. In general, however, RBMs tend to learn distributed, non-sparse representations.
Based on results from other methods (e.g., sparse coding [10, 11], ICA [9], heavy-tailed models [6],
and energy based models [2]), sparseness seems to play a key role in learning gabor-like filters.
Therefore, we modify Hinton et al.’s learning algorithm to enable deep belief nets to learn sparse
representations.

3.1 Sparse restricted Boltzmann machines
We begin by describing the restricted Boltzmann machine (RBM), and present a modified version of
it. An RBM has a set of hidden units h, a set of visible units v, and symmetric connections weights
between these two layers represented by a weight matrix W . Suppose that we want to model k
dimensional real-valued data using an undirected graphical model with n binary hidden units. The
negative log probability of any state in the RBM is given by the following energy function:1

− log P (v,h) = E(v,h) =
1

2σ2

∑
i

v2
i − 1

σ2

∑
i

civi +
∑

j

bjhj +
∑
i,j

viwijhj

 . (1)

Here, σ is a parameter, hj are hidden unit variables, vi are visible unit variables. Informally, the
maximum likelihood parameter estimation problem corresponds to learning wij , ci and bj so as to
minimize the energy of states drawn from the data distribution, and raise the energy of states that
are improbable given the data.
Under this model, we can easily compute the conditional probability distributions. Holding either h
or v fixed, we can sample from the other as follows:

P (vi|h) = N
(
ci +

∑
j wijhj , σ

2
)

, (2)

P (hj |v) = logistic
(

1
σ2 (bj +

∑
i wijvi)

)
. (3)

1Due to space constraints, we present an energy function only for the case of real-valued visible units. It is
also straightforward to formulate a sparse RBM with binary-valued visible units; for example, we can write the
energy function as E(v,h) = −1/σ2(

P
i civi +

P
j bjhj +

P
i,j viwijhj) (see also [24]).

3

Here, N (·) is the gaussian density, and logistic(·) is the logistic function.
For training the parameters of the model, the objective is to maximize the log-likelihood of the data.
We also want hidden unit activations to be sparse; thus, we add a regularization term that penalizes
a deviation of the expected activation of the hidden units from a (low) fixed level p.2 Thus, given a
training set {v(1), . . . ,v(m)} comprising m examples, we pose the following optimization problem:

minimize{wij ,ci,bj} −
∑m

l=1 log
∑

h P (v(l),h(l)) + λ
∑n

j=1 | p − 1
m

∑m
l=1 E[h(l)

j |v(l)] |2, (4)

where E[·] is the conditional expectation given the data, λ is a regularization constant, and p is
a constant controlling the sparseness of the hidden units hj . Thus, our objective is the sum of a
log-likelihood term and a regularization term. In principle, we can apply gradient descent to this
problem; however, computing the gradient of the log-likelihood term is expensive. Fortunately, the
contrastive divergence learning algorithm gives an efficient approximation to the gradient of the log-
likelihood [25]. Building upon this, on each iteration we can apply the contrastive divergence update
rule, followed by one step of gradient descent using the gradient of the regularization term.3 The
details of our procedure are summarized in Algorithm 1.
Algorithm 1 Sparse RBM learning algorithm

1. Update the parameters using contrastive divergence learning rule. More specifically,
wij := wij + α(〈vihj〉data − 〈vihj〉recon)

ci := ci + α(〈vi〉data − 〈vi〉recon)
bj := bj + α(〈bj〉data − 〈bj〉recon),

where α is a learning rate, and 〈·〉recon is an expectation over the reconstruction data, estimated
using one iteration of Gibbs sampling (as in Equations 2,3).
2. Update the parameters using the gradient of the regularization term.
3. Repeat Steps 1 and 2 until convergence.

3.2 Learning deep networks using sparse RBM
Once a layer of the network is trained, the parameters wij , bj , ci’s are frozen and the hidden unit
values given the data are inferred. These inferred values serve as the “data” used to train the next
higher layer in the network. Hinton et al. [1] showed that by repeatedly applying such a procedure,
one can learn a multilayered deep belief network. In some cases, this iterative “greedy” algorithm
can further be shown to be optimizing a variational bound on the data likelihood, if each layer has
at least as many units as the layer below (although in practice this is not necessary to arrive at a
desirable solution; see [1] for a detailed discussion). In our experiments using natural images, we
learn a network with two hidden layers, with each layer learned using the sparse RBM algorithm
described in Section 3.1.

4 Visualization
4.1 Learning “strokes” from handwritten digits

Figure 2: Bases learned from MNIST data

We applied the sparse RBM algorithm to the MNIST
handwritten digit dataset.4 We learned a sparse RBM
with 69 visible units and 200 hidden units. The learned
bases are shown in Figure 2. (Each basis corresponds to
one column of the weight matrix W left-multiplied by
the unwhitening matrix.) Many bases found by the al-
gorithm roughly represent different “strokes” of which
handwritten digits are comprised. This is consistent

2Less formally, this regularization ensures that the “firing rate” of the model neurons (corresponding to the
latent random variables hj) are kept at a certain (fairly low) level, so that the activations of the model neurons
are sparse. Similar intuition was also used in other models (e.g., see Olshausen and Field [10]).

3To increase computational efficiency, we made one additional change. Note that the regularization term is
defined using a sum over the entire training set; if we use stochastic gradient descent or mini-batches (small
subsets of the training data) to estimate this term, it results in biased estimates of the gradient. To ameliorate
this, we used mini-batches, but in the gradient step that tries to minimize the regularization term, we update
only the bias terms bj’s (which directly control the degree to which the hidden units are activated, and thus their
sparsity), instead of updating all the parameters bj and wij’s.

4Downloaded from http://yann.lecun.com/exdb/mnist/. Each pixel was normalized to the
unit interval, and we used PCA whitening to reduce the dimension to 69 principal components for computational
efficiency. (Similar results were obtained without whitening.)

4

Figure 3: 400 first layer bases learned from the van Hateren natural image dataset, using our algorithm.

Figure 4: Visualization of 200 second layer bases (model V2 receptive fields), learned from natural images.
Each small group of 3-5 (arranged in a row) images shows one model V2 unit; the leftmost patch in the group
is a visualization of the model V2 basis, and is obtained by taking a weighted linear combination of the first
layer “V1” bases to which it is connected. The next few patches in the group show the first layer bases that
have the strongest weight connection to the model V2 basis.

with results obtained by applying different algorithms to learn sparse representations of this data
set (e.g., [2, 5]).

4.2 Learning from natural images
We also applied the algorithm to a training set a set of 14-by-14 natural image patches, taken from
a dataset compiled by van Hateren.5 We learned a sparse RBM model with 196 visible units and
400 hidden units. The learned bases are shown in Figure 3; they are oriented, gabor-like bases and
resemble the receptive fields of V1 simple cells.6

4.3 Learning a two-layer model of natural images using sparse RBMs
We further learned a two-layer network by stacking one sparse RBM on top of another (see Sec-
tion 3.2 for details.)7 After learning, the second layer weights were quite sparse—most of the
weights were very small, and only a few were either highly positive or highly negative. Positive

5The images were obtained from http://hlab.phys.rug.nl/imlib/index.html. We used
100,000 14-by-14 image patches randomly sampled from an ensemble of 2000 images; each subset of 200
patches was used as a mini-batch.

6Most other authors’ experiments to date using regular (non-sparse) RBMs, when trained on such data,
seem to have learned relatively diffuse, unlocalized bases (ones that do not represent oriented edge filters).
While sensitive to the parameter settings and requiring a long training time, we found that it is possible in
some cases to get a regular RBM to learn oriented edge filter bases as well. But in our experiments, even in
these cases we found that repeating this process to build a two layer deep belief net (see Section 4.3) did not
encode a significant number of corners/angles, unlike one trained using the sparse RBM; therefore, it showed
significantly worse match to the Ito & Komatsu statistics. For example, the fraction of model V2 neurons that
respond strongly to a pair of edges near right angles (formally, have peak angle in the range 60-120 degrees)
was 2% for the regular RBM, whereas it was 17% for the sparse RBM (and Ito & Komatsu reported 22%). See
Section 5.1 for more details.

7For the results reported in this paper, we trained the second layer sparse RBM with real-valued visible
units; however, the results were very similar when we trained the second layer sparse RBM with binary-valued
visible units (except that the second layer weights became less sparse).

5

Figure 5: Top: Visualization of four learned model V2 neurons. (Visualization in each row of four or five
patches follows format in Figure 4.) Bottom: Angle stimulus response profile for model V2 neurons in the top
row. The 36*36 grid of stimuli follows [7], in which the orientation of two lines are varied to form different
angles. As in Figure 1, darkened patches represent stimuli to which the model V2 neuron responds strongly;
also, a small black square indicates the overall peak response.

weights represent excitatory connections between model V1 and model V2 units, whereas negative
elements represent inhibitory connections. By visualizing the second layer bases as shown in Fig-
ure 4, we observed bases that encoded co-linear first layer bases as well as edge junctions. This
shows that by extending the sparse RBM to two layers and using greedy learning, the model is able
to learn bases that encode contours, angles, and junctions of edges.

5 Evaluation experiments
We now more quantitatively compare the algorithm’s learned responses to biological measure-
ments.8

5.1 Method: Ito-Komatsu paper protocol
We now describe the procedure we used to compare our model with the experimental data in [7]. We
generated a stimulus set consisting of the same set of angles (pairs of edges) as [7]. To identify the
“center” of each model neuron’s receptive field, we translate all stimuli densely over the 14x14 input
image patch, and identify the position at which the maximum response is elicited. All measures are
then taken with all angle stimuli centered at this position.9

Using these stimuli, we compute the hidden unit probabilities from our model V1 and V2 neurons.
In other words, for each stimulus we compute the first hidden layer activation probabilities, then
feed this probability as data to the second hidden layer and compute the activation probabilities
again in the same manner. Following a protocol similar to [7], we also eliminate from consideration
the model neurons that do not respond strongly to corners and edges.10 Some representative results
are shown in Figure 5. (The four angle profiles shown are fairly typical of those obtained in our
experiments.) We see that all the V2 bases in Figure 5 have maximal response when its strongest
V1-basis components are aligned with the stimulus. Thus, some of these bases do indeed seem to
encode edge junctions or crossings.
We also compute similar summary statistics as [7] (described in Figure 1(C,D,E)), that more quanti-
tatively measure the distribution of V2 or model V2 responses to the different angle stimuli. Figure 6
plots the responses of our model, together with V2 data taken from [7]. Along many dimensions,
the results from our model match that from the Macaque V2 fairly well.

8The results we report below were very insensitive to the choices of σ and λ. We set σ to 0.4 and 0.05
for the first and second layers (chosen to be on the same scale as the standard deviation of the data and the
first-layer activations), and λ = 1/p in each layer. We used p = 0.02 and 0.05 for the first and second layers.

9Other details: The stimulus set is created by generating a binary-mask image, that is then scaled to nor-
malize contrast. To determine this scaling constant, we used single bar images by translating and rotating to
all possible positions, and fixed the constant such that the top 0.5% (over all translations and rotations) of the
stimuli activate the model V1 cells above 0.5. This normalization step corrects for the RBM having been trained
on a data distribution (natural images) that had very different contrast ranges than our test stimulus set.

10In detail, we generated a set of random low-frequency stimulus, by generating small random KxK
(K=2,3,4) images with each pixel drawn from a standard normal distribution, and rescaled the image using
bicubic interpolation to 14x14 patches. These stimulus are scaled such that about 5% of the V2 bases fires
maximally to these random stimuli. We then exclude the V2 bases that are maximally activated to these ran-
dom stimuli from the subsequent analysis.

6

15 45 75 105 135 165
0

0.1

0.2

0.3

0.4

0.5
peak angles

sparse DBN
Ito & Komatsu

1 2 3 4 5 6 7 8 9 1011
0

0.05

0.1

0.15

0.2
primary line axis

sparse DBN
Ito & Komatsu

1 2 3 4 5 6 7 8 9 1011
0

0.1

0.2

0.3

0.4

0.5
secondary line axis

sparse DBN
Ito & Komatsu

1 2 3 4 5 6 7 8 9 1011
0

0.2

0.4

0.6

0.8
angle width axis

sparse DBN
Ito & Komatsu

1 2 3 4 5 6 7 8 9 1011
0

0.2

0.4

0.6

0.8

1
angle orientation axis

sparse DBN
Ito & Komatsu

Figure 6: Images show distributions over stimulus response statistics (averaged over 10 trials) from our algo-
rithm (blue) and in data taken from [7] (green). The five figures show respectively (i) the distribution over peak
angle response (ranging from 0 to 180 degrees; each bin represents a range of 30 degrees), (ii) distribution over
tolerance to primary line component (Figure 1C, in dominant vertical or horizontal direction), (iii) distribution
over tolerance to secondary line component (Figure 1C, in non-dominant direction), (iv) tolerance to angle
width (Figure 1D), (v) tolerance to angle orientation (Figure 1E). See Figure 1 caption, and [7], for details.

Figure 7: Visualization of a number of model V2 neurons that maximally respond to various complex stimuli.
Each row of seven images represents one V2 basis. In each row, the leftmost image shows a linear combination
of the top three weighted V1 components that comprise the V2 basis; the next three images show the top three
optimal stiimuli; and the last three images show the top three weighted V1 bases. The V2 bases shown in the
figures maximally respond to acute angles (left), obtuse angles (middle), and tri-stars and junctions (right).

5.2 Complex shaped model V2 neurons
Our second experiment represents a comparison to a subset of the results described in Hegde and van
Essen [23]. We generated a stimulus set comprising some [23]’s complex shaped stimuli: angles,
single bars, tri-stars (three line segments that meet at a point), and arcs/circles, and measured the
response of the second layer of our sparse RBM model to these stimuli.11 We observe that many V2
bases are activated mainly by one of these different stimulus classes. For example, some model V2
neurons activate maximally to single bars; some maximally activate to (acute or obtuse) angles; and
others to tri-stars (see Figure 7). Further, the number of V2 bases that are maximally activated by
acute angles is significantly larger than the number of obtuse angles, and the number of V2 bases
that respond maximally to the tri-stars was much smaller than both preceding cases. This is also
consistent with the results described in [23].

6 Conclusions
We presented a sparse variant of the deep belief network model. When trained on natural images,
this model learns local, oriented, edge filters in the first layer. More interestingly, the second layer
captures a variety of both colinear (“contour”) features as well as corners and junctions, that in a
quantitative comparison to measurements of V2 taken by Ito & Komatsu, appeared to give responses
that were similar along several dimensions. This by no means indicates that the cortex is a sparse
RBM, but perhaps is more suggestive of contours, corners and junctions being fundamental to the
statistics of natural images.12 Nonetheless, we believe that these results also suggest that sparse

11All the stimuli were 14-by-14 pixel image patches. We applied the protocol described in Section 5.1 to the
stimulus data, to compute the model V1 and V2 responses.

12In preliminary experiments, we also found that when these ideas are applied to self-taught learning [26] (in
which one may use unlabeled data to identify features that are then useful for some supervised learning task),
using a two-layer sparse RBM usually results in significantly better features for object recognition than using
only a one-layer network.

7

deep learning algorithms, such as our sparse variant of deep belief nets, hold promise for modeling
higher-order features such as might be computed in the ventral visual pathway in the cortex.

Acknowledgments
We give warm thanks to Minami Ito, Geoffrey Hinton, Chris Williams, Rajat Raina, Narut Sereewat-
tanawoot, and Austin Shoemaker for helpful discussions. Support from the Office of Naval Research
under MURI N000140710747 is gratefully acknowledged.

References
[1] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Compu-

tation, 18(7):1527–1554, 2006.
[2] M. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations with an

energy-based model. In NIPS, 2006.
[3] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks. In

NIPS, 2006.
[4] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep

architectures on problems with many factors of variation. In ICML, 2007.
[5] G. E. Hinton, S. Osindero, and K. Bao. Learning causally linked MRFs. In AISTATS, 2005.
[6] S. Osindero, M. Welling, and G. E. Hinton. Topographic product models applied to natural scene statistics.

Neural Computation, 18:381–344, 2006.
[7] M. Ito and H. Komatsu. Representation of angles embedded within contour stimuli in area v2 of macaque

monkeys. The Journal of Neuroscience, 24(13):3313–3324, 2004.
[8] J. H. van Hateren and A. van der Schaaf. Independent component filters of natural images compared with

simple cells in primary visual cortex. Proc.R.Soc.Lond. B, 265:359–366, 1998.
[9] A. J. Bell and T. J. Sejnowski. The ‘independent components’ of natural scenes are edge filters. Vision

Research, 37(23):3327–3338, 1997.
[10] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse

code for natural images. Nature, 381:607–609, 1996.
[11] H. Lee, , A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In NIPS, 2007.
[12] D. Hubel and T. Wiesel. Receptive fields and functional architecture of monkey striate cortex. Journal of

Physiology, 195:215–243, 1968.
[13] R. L. DeValois, E. W. Yund, and N. Hepler. The orientation and direction selectivity of cells in macaque

visual cortex. Vision Res., 22:531–544, 1982a.
[14] H. B. Barlow. The coding of sensory messages. Current Problems in Animal Behavior, 1961.
[15] P. O. Hoyer and A. Hyvarinen. A multi-layer sparse coding network learns contour coding from natural

images. Vision Research, 42(12):1593–1605, 2002.
[16] Y. Karklin and M. S. Lewicki. A hierarchical bayesian model for learning non-linear statistical regularities

in non-stationary natural signals. Neural Computation, 17(2):397–423, 2005.
[17] A. Hyvarinen and P. O. Hoyer. Emergence of phase and shift invariant features by decomposition of

natural images into independent feature subspaces. Neural Computation, 12(7):1705–1720, 2000.
[18] A. Hyvärinen, P. O. Hoyer, and M. O. Inki. Topographic independent component analysis. Neural

Computation, 13(7):1527–1558, 2001.
[19] A. Hyvarinen, M. Gutmann, and P. O. Hoyer. Statistical model of natural stimuli predicts edge-like

pooling of spatial frequency channels in v2. BMC Neuroscience, 6:12, 2005.
[20] L. Wiskott and T. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural Com-

putation, 14(4):715–770, 2002.
[21] G. Boynton and J. Hegde. Visual cortex: The continuing puzzle of area v2. Current Biology,

14(13):R523–R524, 2004.
[22] J. B. Levitt, D. C. Kiper, and J. A. Movshon. Receptive fields and functional architecture of macaque v2.

Journal of Neurophysiology, 71(6):2517–2542, 1994.
[23] J. Hegde and D.C. Van Essen. Selectivity for complex shapes in primate visual area v2. Journal of

Neuroscience, 20:RC61–66, 2000.
[24] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science,

313(5786):504–507, 2006.
[25] G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation,

14:1771–1800, 2002.
[26] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Transfer learning from

unlabeled data. In ICML, 2007.

8

