
Using Deep Belief Nets to Learn Covariance Kernels
for Gaussian Processes

Ruslan Salakhutdinov and Geoffrey Hinton
Department of Computer Science, University of Toronto

6 King’s College Rd, M5S 3G4, Canada
rsalakhu,hinton@cs.toronto.edu

Abstract
We show how to use unlabeled data and a deep belief net (DBN) to learn a good
covariance kernel for a Gaussian process. We first learn a deep generative model
of the unlabeled data using the fast, greedy algorithm introduced by [7]. If the
data is high-dimensional and highly-structured, a Gaussian kernel applied to the
top layer of features in the DBN works much better than a similar kernel applied
to the raw input. Performance at both regression and classification can then be
further improved by using backpropagation through the DBN to discriminatively
fine-tune the covariance kernel.

1 Introduction
Gaussian processes (GP’s) are a widely used method for Bayesian non-linear non-parametric re-
gression and classification [13, 16]. GP’s are based on defining a similarity or kernel function that
encodes prior knowledge of the smoothness of the underlying process that is being modeled. Be-
cause of their flexibility and computational simplicity, GP’s have been successfully used in many
areas of machine learning.

Many real-world applications are characterized by high-dimensional, highly-structured data with a
large supply of unlabeled data but a very limited supply of labeled data. Applications such as infor-
mation retrieval and machine vision are examples where unlabeled data is readily available. GP’s
are discriminative models by nature and within the standard regression or classification scenario,
unlabeled data is of no use. Given a set ofi.i.d. labeled input vectorsXl = {xn}N

n=1 and their
associated target labels{yn}N

n=1 ∈ R or {yn}N
n=1 ∈ {−1, 1} for regression/classification, GP’s

modelp(yn|xn) directly. Unless some assumptions are made about the underlying distribution of
the input dataX = [Xl,Xu], unlabeled data,Xu, cannot be used. Many researchers have tried to
use unlabeled data by incorporating a model ofp(X). For classification tasks, [11] modelp(X) as
a mixture

∑

yn
p(xn|yn)p(yn) and then inferp(yn|xn), [15] attempts to learn covariance kernels

based onp(X), and [10] assumes that the decision boundaries should occur in regions where the
data density,p(X), is low. When faced with high-dimensional, highly-structured data, however,
none of the existing approaches have proved to be particularly successful.

In this paper we exploit two properties of DBN’s. First, they can be learned efficiently from unla-
beled data and the top-level features generally capture significant, high-order correlations in the data.
Second, they can be discriminatively fine-tuned using backpropagation. We first learn a DBN model
of p(X) in an entirely unsupervised way using the fast, greedy learning algorithm introduced by [7]
and further investigated in [2, 14, 6]. We then use this generative model to initialize a multi-layer,
non-linear mappingF (x|W ), parameterized byW , with F : X → Z mapping the input vectors in
X into a feature spaceZ. Typically the mappingF (x|W ) will contain millions of parameters. The
top-level features produced by this mapping allow fairly accurate reconstruction of the input, so they
must contain most of the information in the input vector, but they express this information in a way
that makes explicit a lot of the higher-order structure in the input data.

After learning F (x|W ), a natural way to define a kernel function is to setK(xi,xj) =
exp (−||F (xi|W ) − F (xj |W )||2). Note that the kernel is initialized in an entirely unsupervised
way. The parametersW of the covariance kernel can then be fine-tuned using the labeled data by

1



maximizing the log probability of the labels with respect toW . In the final model most of the in-
formation for learning a covariance kernel will have come from modeling the input data. The very
limited information in the labels will be used only to slightly adjust the layers of features already
discovered by the DBN.

2 Gaussian Processes for Regression and Binary Classification
For a regression task, we are given a data setD of i .i .d . labeled input vectorsXl = {xn}N

n=1 and
their corresponding target labels{yn}

N
n=1 ∈ R. We are interested in the following probabilistic

regression model:
yn = f(xn) + ǫ, ǫ ∼ N (ǫ|0, σ2) (1)

A Gaussian process regression places a zero-mean GP prior over the underlying latent functionf
we are modeling, so that a-priorip(f |Xl) =N (f |0, K), wheref = [f(x1), ..., f(xn)]T andK is the
covariance matrix, whose entries are specified by the covariance functionKij = K(xi,xj). The
covariance function encodes our prior notion of the smoothness off , or the prior assumption that
if two input vectors are similar according to some distance measure, their labels should be highly
correlated. In this paper we will use the spherical Gaussian kernel, parameterized byθ = {α, β}:

Kij = α exp
(

−
1

2β
(xi − xj)

T (xi − xj)
)

(2)

Integrating out the function valuesf , the marginal log-likelihood takes form:

L = log p(y|Xl) = −
N

2
log 2π −

1

2
log |K + σ2I| −

1

2
yT (K + σ2I)−1y (3)

which can then be maximized with respect to the parametersθ andσ. Given a new test pointx∗, a
prediction is obtained by conditioning on the observed data andθ. The distribution of the predicted
valuey∗ atx∗ takes the form:

p(y∗|x∗,D, θ, σ2) = N (y∗|k
T
∗ (K + σ2I)−1y, k∗∗ − kT

∗ (K + σ2I)−1k∗ + σ2) (4)
wherek∗ = K(x∗,Xl), andk∗∗ = K(x∗,x∗).

For a binary classification task, we similarly place a zero mean GP prior over the underlying latent
functionf , which is then passed through the logistic functiong(x) = 1/(1 + exp(−x)) to define a
prior p(yn = 1|xn) = g(f(xn)). Given a new test pointx∗, inference is done by first obtaining the
distribution over the latent functionf∗ = f(x∗):

p(f∗|x∗,D) =

∫

p(f∗|x∗,Xl, f)p(f |Xl,y)df (5)

which is then used to produce a probabilistic prediction:

p(y∗ = 1|x∗,D) =

∫

g(f∗)p(f∗|x∗,D)df∗ (6)

The non-Gaussian likelihood makes the integral in Eq. 5 analytically intractable. In our experiments,
we approximate the non-Gaussian posteriorp(f |Xl,y) with a Gaussian one using expectation prop-
agation [12]. For more thorough reviews and implementation details refer to [13, 16].

3 Learning Deep Belief Networks (DBN’s)
In this section we describe an unsupervised way of learning a DBN model of the input dataX =
[Xl,Xu], that contains both labeled and unlabeled data sets. A DBN can be trained efficiently by
using a Restricted Boltzmann Machine (RBM) to learn one layer of hidden features at a time [7].
Welling et. al. [18] introduced a class of two-layer undirected graphical models that generalize
RBM’s to exponential family distributions. This framework will allow us to model real-valued
images of face patches and word-count vectors of documents.

3.1 Modeling Real-valued Data
We use a conditional Gaussian distribution for modeling observed “visible” pixel valuesx (e.g.
images of faces) and a conditional Bernoulli distribution for modeling “hidden” featuresh (Fig. 1):

p(xi = x|h) = 1√
2πσi

exp(−
(x−bi−σi

∑

j
hjwij)

2

2σ2

i

) (7)

p(hj = 1|x) = g
(

bj +
∑

i wij
xi

σi

)

(8)

2



h

W

Binary
Hidden Features

x
Gaussian
Visible
Units

W

W

W

W

W

W

GP

Input X

target y

Feature
Representation
F(X|W)

1

RBM

1000 RBM

1000

1000

1000

2

3

1000

1000

3

RBM

1000

2

T

T

T

1000
1

Figure 1:Left panel: Markov random field of the generalized RBM. The top layer represents stochastic binary
hidden featuresh and and the bottom layer is composed of linear visible unitsx with Gaussian noise. When
using a Constrained Poisson Model, the top layer represents stochastic binary latent topic featuresh and the
bottom layer represents the Poisson visible word-count vectorx. Middle panel: Pretraining consists of learning
a stack of RBM’s. Right panel: After pretraining, the RBM’s are used to initialize a covariance function of the
Gaussian process, which is then fine-tuned by backpropagation.

whereg(x) = 1/(1+exp(−x)) is the logistic function,wij is a symmetric interaction term between
input i and featurej, σ2

i is the variance of inputi, andbi, bj are biases. The marginal distribution
over visible vectorx is:

p(x) =
∑

h

exp (−E(x,h))
∫

u

∑

g exp (−E(u,g))du
(9)

whereE(x,h) is an energy term:E(x,h) =
∑

i
(xi−bi)

2

2σ2

i

−
∑

j bjhj −
∑

i,j hjwij
xi

σi
. The param-

eter updates required to perform gradient ascent in the log-likelihood is obtained from Eq. 9:

∆wij = ǫ
∂ log p(x)

∂wij

= ǫ(<zihj>data − <zihj>model) (10)

whereǫ is the learning rate,zi = xi/σi, < ·>data denotes an expectation with respect to the data
distribution and< ·>model is an expectation with respect to the distribution defined by the model.
To circumvent the difficulty of computing<·>model, we use 1-step Contrastive Divergence [5]:

∆wij = ǫ(<zihj>data − <zihj>recon) (11)

The expectation<zihj >data defines the expected sufficient statistics of the data distribution and
is computed aszip(hj = 1|x) when the features are being driven by the observed data from the
training set using Eq. 8. After stochastically activating the features, Eq. 7 is used to “reconstruct”
real-valued data. Then Eq. 8 is used again to activate the features and compute<zihj>recon when
the features are being driven by the reconstructed data. Throughout our experiments we set variances
σ2

i = 1 for all visible unitsi, which facilitates learning. The learning rule for the biases is just a
simplified version of Eq. 11.

3.2 Modeling Count Data with the Constrained Poisson Model
We use a conditional “constrained” Poisson distribution for modeling observed “visible” word count
datax and a conditional Bernoulli distribution for modeling “hidden” topic featuresh:

p(xi = n|h) = Pois

(

n,
exp (λi +

∑

j hjwij)
∑

k exp
(

λk +
∑

j hjWkj

) × N

)

, p(hj = 1|x) = g(bj +
∑

i

wijxi) (12)

where Pois
(

n, λ
)

= e−λλn/n!, wij is a symmetric interaction term between wordi and feature
j, N =

∑

i xi is the total length of the document,λi is the bias of the conditional Poisson model
for word i, andbj is the bias of featurej. The Poisson rate, whose log is shifted by the weighted
combination of the feature activations, is normalized and scaled up byN . We call this the “Con-
strained Poisson Model” since it ensures that the mean Poisson rates across all words sum up to the
length of the document. This normalization is significant because it makes learning stable and it
deals appropriately with documents of different lengths.

3



The marginal distribution over visible count vectorsx is given in Eq. 9 with an “energy” given by

E(x,h) = −
∑

i

λixi +
∑

i

log (xi!) −
∑

j

bjhj −
∑

i,j

xihjwij (13)

The gradient of the log-likelihood function is:

∆wij = ǫ
∂ log p(v)

∂wij

= ǫ(<xihj>data − <xihj>model) (14)

3.3 Greedy Recursive Learning of Deep Belief Nets

A single layer of binary features is not the best way to capture the structure in the input data. We
now describe an efficient way to learn additional layers of binary features.

After learning the first layer of hidden features we have an undirected model that definesp(v,h)
by defining a consistent pair of conditional probabilities,p(h|v) andp(v|h) which can be used to
sample from the model distribution. A different way to express what has been learned isp(v|h) and
p(h). Unlike a standard, directed model, thisp(h) does not have its own separate parameters. It is a
complicated, non-factorial prior onh that is defined implicitly byp(h|v) andp(v|h). This peculiar
decomposition intop(h) andp(v|h) suggests a recursive algorithm: keep the learnedp(v|h) but
replacep(h) by a better prior overh, i.e. a prior that is closer to the average, over all the data
vectors, of the conditional posterior overh. So after learning an undirected model, the part we keep
is part of a multilayerdirected model.

We can sample from this average conditional posterior by simply usingp(h|v) on the training data
and these samples are then the “data” that is used for training the next layer of features. The only
difference from learning the first layer of features is that the “visible” units of the second-level RBM
are also binary [6, 3]. The learning rule provided in the previous section remains the same [5].
We could initialize the new RBM model by simply using the existing learned model but with the
roles of the hidden and visible units reversed. This ensures thatp(v) in our new model starts out
being exactly the same asp(h) in our old one. Provided the number of features per layer does not
decrease, [7] show that each extra layer increases a variational lower bound on the log probability
of data. To suppress noise in the learning signal, we use the real-valued activationprobabilities for
the visible units of every RBM, but to prevent hidden units from transmitting more than one bit of
information from the data to its reconstruction, the pretraining always uses stochastic binary values
for the hidden units.

The greedy, layer-by-layer training can be repeated several times to learn a deep, hierarchical model
in which each layer of features captures strong high-order correlations between the activities of
features in the layer below.

4 Learning the Covariance Kernel for a Gaussian Process
After pretraining, the stochastic activities of the binary features in each layer are replaced by deter-
ministic, real-valued probabilities and the DBN is used to initialize a multi-layer, non-linear map-
ping f(x|W ) as shown in figure 1. We define a Gaussian covariance function, parameterized by
θ = {α, β} andW as:

Kij = α exp
(

−
1

2β
||F (xi|W ) − F (xj |W )||2

)

(15)

Note that this covariance function is initialized in an entirely unsupervised way. We can now maxi-
mize the log-likelihood of Eq. 3 with respect to the parameters of the covariance function using the
labeled training data[9]. The derivative of the log-likelihood with respect to the kernel function is:

∂L

∂Ky

=
1

2

(

K−1
y yyT K−1

y − K−1
y

)

(16)

whereKy = K +σ2I is the covariance matrix. Using the chain rule we readily obtain the necessary
gradients:

∂L

∂θ
=

∂L

∂Ky

∂Ky

∂θ
and

∂L

W
=

∂L

∂Ky

∂Ky

∂F (x|W )

∂F (x|W )

∂W
(17)

4



32.99 −41.15 66.38−22.07 27.49 Unlabeled
Training Data Test Data

A

B

Figure 2:Top panelA: Randomly sampled examples of the training and test data. Bottom panelB: The same
sample of the training and test images but with rectangular occlusions.

Training GPstandard GP-DBNgreedy GP-DBNfine GPpca
labels Sph. ARD Sph. ARD Sph. ARD Sph. ARD

A 100 22.24 28.57 17.94 18.37 15.28 15.01 18.13 (10) 16.47 (10)
500 17.25 18.16 12.71 8.96 7.25 6.84 14.75 (20) 10.53 (80)
1000 16.33 16.36 11.22 8.77 6.42 6.31 14.86 (20) 10.00 (160)

B 100 26.94 28.32 23.15 19.42 19.75 18.59 25.91 (10) 19.27 (20)
500 20.20 21.06 15.16 11.01 10.56 10.12 17.67 (10) 14.11 (20)
1000 19.20 17.98 14.15 10.43 9.13 9.23 16.26 (10) 11.55 (80)

Table 1:Performance results on the face-orientation regression task. The root mean squared error (RMSE) on
the test set is shown for each method using spherical Gaussian kernel and Gaussian kernel with ARD hyper-
parameters. By row: A) Non-occluded face data, B) Occluded face data. For the GPpca model, the number of
principal components that performs best on the test data is shown in parenthesis.

where∂F (x|W )/∂W is computed using standard backpropagation. We also optimize the observa-
tion noiseσ2. It is necessary to compute the inverse ofKy, so each gradient evaluation hasO(N3)
complexity whereN is the number of the labeled training cases. When learning the restricted Boltz-
mann machines that are composed to form the initial DBN, however, each gradient evaluation scales
linearly in time and space with the number of unlabeled training cases. So the pretraining stage
can make efficient use of very large sets of unlabeled data to create sensible, high-level features and
when the amount of labeled data is small. Then the very limited amount of information in the labels
can be used to slightly refine those features rather than to create them.

5 Experimental Results
In this section we present experimental results for several regression and classification tasks that
involve high-dimensional, highly-structured data. The first regression task is to extract the orienta-
tion of a face from a gray-level image of a large patch of the face. The second regression task is
to map images of handwritten digits to a single real-value that is as close as possible to the integer
represented by the digit in the image. The first classification task is to discriminate between images
of odd digits and images of even digits. The second classification task is to discriminate between
two different classes of news story based on the vector of word counts in each story.

5.1 Extracting the Orientation of a Face Patch
The Olivetti face data set contains ten 64×64 images of each of forty different people. We con-
structed a data set of 13,000 28×28 images by randomly rotating (−90◦ to +90◦), cropping, and
subsampling the original 400 images. The data set was then subdivided into 12,000 training images,
which contained the first 30 people, and 1,000 test images, which contained the remaining 10 peo-
ple. 1,000 randomly sampled face patches from the training set were assigned an orientation label.
The remaining 11,000 training images were used as unlabeled data. We also made a more difficult
version of the task by occluding part of each face patch with randomly chosen rectangles. Panel A
of figure 2 shows randomly sampled examples from the training and test data.

For training on the Olivetti face patches we used the 784-1000-1000-1000 architecture shown in
figure 1. The entire training set of 12,000 unlabeled images was used for greedy, layer-by-layer
training of a DBN model. The 2.8 million parameters of the DBN model may seem excessive for
12,000 training cases, but each training case involves modeling 625 real-values rather than just a
single real-valued label. Also, we only train each layer of features for a few passes through the
training data and we penalize the squared weights.

5



Feature 992

F
ea

tu
re

 3
12

 0  0.2 0.4 0.6 0.8 1.0 

1.0 

0.8 

0.6 

0.4 

0.2 

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

log β

−1 0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

log β

More Relevant

Input Pixel Space

Feature Space

Figure 3: Left panel shows a scatter plot of the two most relevant features, with each point replaced by the
corresponding input test image. For better visualization, overlapped images are not shown. Right panel displays
the histogram plots of the learned ARD hyper-parameterslog β.

After the DBN has been pretrained on the unlabeled data, a GP model was fitted to the labeled
data using the top-level features of the DBN model as inputs. We call this modelGP-DBNgreedy.
GP-DBNgreedy can be significantly improved by slightly altering the weights in the DBN. The
GP model gives error derivatives for its input vectors which are the top-level features of the DBN.
These derivatives can be backpropagated through the DBN to allow discriminative fine-tuning of
the weights. Each time the weights in the DBN are updated, the GP model is also refitted. We call
this modelGP-DBNfine. For comparison, we fitted a GP model that used the pixel intensities of
the labeled images as its inputs. We call this modelGPstandard. We also used PCA to reduce the
dimensionality of the labeled images and fitted several different GP models using the projections
onto the firstm principal components as the input. Since we only want a lower bound on the error
of this model, we simply use the value ofm that performs best on thetest data. We call this model
GPpca. Table 1 shows the root mean squared error (RMSE) of the predicted face orientations using
all four types of GP model on varying amounts of labeled data. The results show that both GP-
DBNgreedy and GP-DBNfine significantly outperform a regular GP model. Indeed, GP-DBNfine
with only 100 labeled training cases outperforms GPstandard with 1000.

To test the robustness of our approach to noise in the input we took the same data set and created
artificial rectangular occlusions (see Fig. 2, panel B). The number of rectangles per image was
drawn from a Poisson withλ = 2. The top-left location, length and width of each rectangle was
sampled from a uniform [0,25]. The pixel intensity of each occluding rectangle was set to the mean
pixel intensity of the entire image. Table 1 shows that the performance of all models degrades, but
their relative performances remain the same and GP-DBNfine on occluded data is still much better
than GPstandard on non-occluded data.

We have also experimented with using a Gaussian kernel with ARD hyper-parameters, which is a
common practice when the input vectors are high-dimensional:

Kij = α exp
(

−
1

2
(xi − xj)

T D(xi − xj)
)

(18)

whereD is the diagonal matrix withDii = 1/βi, so that the covariance function has a separate
length-scale parameter for each dimension. ARD hyper-parameters were optimized by maximizing
the marginal log-likelihood of Eq. 3. Table 1 shows that ARD hyper-parameters do not improve
GPstandard, but they do slightly improve GP-DBNfine and they strongly improve GP-DBNgreedy
and GPpca when there are 500 or 1000 labeled training cases.

The histogram plot oflog β in figure 3 reveals that there are a few extracted features that are very
relevant (smallβ) to our prediction task. The same figure (left panel) shows a scatter plot of the two
most relevant features of GP-DBNgreedy model, with each point replaced by the corresponding in-
put test image. Clearly, these two features carry a lot of information about the orientation of the face.

6



Train GPstandard GP-DBNgreedy GP-DBNfine GPpca
labels Sph. ARD Sph. ARD Sph. ARD Sph. ARD

A 100 1.86 2.27 1.68 1.61 1.63 1.58 1.73 (20) 2.00 (20)
500 1.42 1.62 1.19 1.27 1.16 1.22 1.32 (40) 1.36 (20)
1000 1.25 1.36 1.07 1.14 1.03 1.10 1.19 (40) 1.22 (80)

B 100 0.0884 0.1087 0.0528 0.0597 0.0501 0.0599 0.0785 (10) 0.0920 (10)
500 0.0222 0.0541 0.0100 0.0161 0.0055 0.0104 0.0160 (40) 0.0235 (20)
1000 0.0129 0.0385 0.0058 0.0059 0.0050 0.0100 0.0091 (40) 0.0127 (40)

Table 2:Performance results on the digit magnitude regression task (A) and and discriminating odd vs. even
digits classification task (B). The root mean squared error for regression task on the test set is shown for each
method. For classification task the area under the ROC (AUROC) metric is used. For each method we show
1-AUROC on the test set. All methods were tried using both spherical Gaussian kernel, and a Gaussian kernel
with ARD hyper-parameters. For the GPpca model, the number of principal components that performs best on
the test data is shown in parenthesis.

Number of labeled GPstandard GP-DBNgreedy GP-DBNfine
cases (50% in each class)
100 0.1295 0.1180 0.0995
500 0.0875 0.0793 0.0609
1000 0.0645 0.0580 0.0458

Table 3: Performance results using the area under the ROC (AUROC) metric on the text classification task.
For each method we show 1-AUROC on the test set.

We suspect that the GP-DBNfine model does not benefit as much from the ARD hyper-parameters
because the fine-tuning stage is already capable of turning down the activities of irrelevant top-level
features.

5.2 Extracting the Magnitude Represented by a Handwritten Digit and Discriminating
between Images of Odd and Even Digits

The MNIST digit data set contains 60,000 training and 10,000 test 28×28 images of ten handwritten
digits (0 to 9). 100 randomly sampled training images of each class were assigned a magnitude label.
The remaining 59,000 training images were used as unlabeled data. As in the previous experiment,
we used the 784-1000-1000-1000 architecture with the entire training set of 60,000 unlabeled digits
being used for greedily pretraining the DBN model. Table 2, panel A, shows that GP-DBNfine and
GP-DBNgreedy perform considerably better than GPstandard both with and without ARD hyper-
parameters. The same table, panel B, shows results for the classification task of discriminating be-
tween images of odd and images of even digits. We used the same labeled training set, but with each
digit categorized into an even or an odd class. The same DBN model was used, so the Gaussian co-
variance function was initialized in exactly the same way for both regression and classification tasks.
The performance of GP-DBNgreedy demonstrates that the greedily learned feature representation
captures a lot of structure in the unlabeled input data which is useful for subsequent discrimination
tasks, even though these tasks are unknown when the DBN is being trained.

5.3 Classifying News Stories
The Reuters Corpus Volume II is an archive of 804,414 newswire stories The corpus covers four
major groups: Corporate/Industrial, Economics, Government/Social, and Markets. The data was
randomly split into 802,414 training and 2000 test articles. The test set contains 500 articles of each
major group. The available data was already in a convenient, preprocessed format, where common
stopwords were removed and all the remaining words were stemmed. We only made use of the 2000
most frequently used word stems in the training data. As a result, each document was represented
as a vector containing 2000 word counts. No other preprocessing was done.

For the text classification task we used a 2000-1000-1000-1000 architecture. The entire unlabeled
training set of 802,414 articles was used for learning a multilayer generative model of the text docu-
ments. The bottom layer of the DBN was trained using a Constrained Poisson Model. Table 3 shows
the area under the ROC curve for classifying documents belonging to the Corporate/Industrial vs.
Economics groups. As expected, GP-DBNfine and GP-DBNgreedy work better than GPstandard.
The results of binary discrimination between other pairs of document classes are very similar to the
results presented in table 3. Our experiments using a Gaussian kernel with ARD hyper-parameters
did not show any significant improvements. Examining the histograms of the length-scale parame-

7



tersβ, we found that most of the input word-counts as well as most of the extracted features were
relevant to the classification task.

6 Conclusions and Future Research
In this paper we have shown how to use Deep Belief Networks to greedily pretrain and discrimina-
tively fine-tune a covariance kernel for a Gaussian Process. The discriminative fine-tuning produces
an additional improvement in performance that is comparable in magnitude to the improvement pro-
duced by using the greedily pretrained DBN. For high-dimensional, highly-structured data, this is
an effective way to make use of large unlabeled data sets, especially when labeled training data is
scarce. Greedily pretrained DBN’s can also be used to provide input vectors for other kernel-based
methods, including SVMs [17, 8] and kernel regression [1], and our future research will concentrate
on comparing our method to other kernel-based semi-supervised learning algorithms [4, 19].

Acknowledgments
We thank Radford Neal for many helpful suggestions. This research was supported by NSERC, CFI
and OTI. GEH is a fellow of CIAR and holds a CRC chair.

References

[1] J. K. Benedetti. On the nonparametric estimation of regression functions.Journal of the Royal Statistical
Society series B, 39:248–253, 1977.

[2] Y. Bengio and Y. Le Cun. Scaling learning algorithms towards AI. In L. Bottou, O. Chapelle, D. DeCoste,
and J. Weston, editors,Large-Scale Kernel Machines. MIT Press, 2007.

[3] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks. In
Advances in Neural Information Processing Systems, 2006.

[4] O. Chapelle, B. Schölkopf, and A. Zien.Semi-Supervised Learning. MIT Press, 2006.

[5] G. E. Hinton. Training products of experts by minimizing contrastive divergence.Neural Computation,
14(8):1711–1800, 2002.

[6] G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks.Science,
313, 2006.

[7] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief nets.
Neural Computation, 18(7):1527–1554, 2006.

[8] F. Lauer, C. Y. Suen, and G. Bloch. A trainable feature extractor for handwritten digit recognition.Pattern
Recognition, 40(6):1816–1824, 2007.

[9] N. D. Lawrence and J. Quiñonero Candela. Local distance preservation in the GP-LVM through back
constraints. In William W. Cohen and Andrew Moore, editors,ICML, volume 148, pages 513–520.
ACM, 2006.

[10] N. D. Lawrence and M. I. Jordan. Semi-supervised learning via gaussian processes. InNIPS, 2004.

[11] N. D. Lawrence and B. Schölkopf. Estimating a kernel Fisher discriminant in the presence of label
noise. InProc. 18th International Conf. on Machine Learning, pages 306–313. Morgan Kaufmann, San
Francisco, CA, 2001.

[12] T. P. Minka. Expectation propagation for approximate bayesian inference. In Jack Breese and Daphne
Koller, editors,UAI, pages 362–369, San Francisco, CA, 2001. Morgan Kaufmann Publishers.

[13] C. E. Rasmussen and C. Williams.Gaussian Processes for Machine Learning. The MIT Press, 2006.

[14] R. Salakhutdinov and G. E. Hinton. Learning a nonlinear embedding by preserving class neighbourhood
structure. InAI and Statistics, 2007.

[15] M. Seeger. Covariance kernels from bayesian generative models. In Thomas G. Dietterich, Suzanna
Becker, and Zoubin Ghahramani, editors,NIPS, pages 905–912. MIT Press, 2001.

[16] M. Seeger. Gaussian processes for machine learning.Int. J. Neural Syst, 14(2):69–106, 2004.

[17] V. Vapnik. Statistical Learning Theory. Wiley, 1998.

[18] M. Welling, M. Rosen-Zvi, and G. Hinton. Exponential family harmoniums with an application to infor-
mation retrieval. InNIPS 17, pages 1481–1488, Cambridge, MA, 2005. MIT Press.

[19] Xiaojin Zhu, Jaz S. Kandola, Zoubin Ghahramani, and John D. Lafferty. Nonparametric transforms of
graph kernels for semi-supervised learning. InNIPS, 2004.

8


