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Abstract

Despite all the attention paid to variational methods based on sum-product mes-
sage passing (loopy belief propagation, tree-reweighted sum-product), these meth-
ods are still bound to inference on a small set of probabilistic models. Mean field
approximations have been applied to a broader set of problems, but the solutions
are often poor. We propose a new class ofconditionally-specifiedvariational ap-
proximations based on mean field theory. While not usable on their own, com-
bined with sequential Monte Carlo they produce guaranteed improvements over
conventional mean field. Moreover, experiments on a well-studied problem—
inferring the stable configurations of the Ising spin glass—show that the solutions
can be significantly better than those obtained using sum-product-based methods.

1 Introduction

Behind all variational methods for inference in probabilistic models lies a basic principle: treat
the quantities of interest, which amount to moments of the random variables, as the solution to an
optimization problem obtained via convex duality. Since optimizing the dual is rarely an ameliora-
tion over the original inference problem, various strategies have arisen out of statistical physics and
machine learning for making principled (and unprincipled) approximations to the objective.

One such class of techniques,mean field theory, requires that the solution define a distribution that
factorizes in such a way that the statistics of interest are easily derived. Mean field remains a popular
tool for statistical inference, mainly because it applies to a wide range of problems. As remarked by
Yedidia in [17], however, mean field theory often imposes unrealistic or questionable factorizations,
leading to poor solutions. Advances have been made in improving the quality of mean field ap-
proximations [17, 22, 26], but their applicability remains limited to specific models. Bethe-Kikuchi
approximations overcome some of the severe restrictions on factorizability by decomposing the en-
tropy according to a junction graph [1], for which it is well established that generalized belief prop-
agation updates converge to the stationary points of the resulting optimization problem (provided
they converge at all). Related variational approximations based on convex combinations of tree-
structured distributions [24] have the added advantage that they possess a unique global optimum
(by contrast, we can only hope to discover a local minimum of the Bethe-Kikuchi and mean field
objectives). However, both these methods rely on tractable sum-product messages, hence are limited
to Gaussian Markov random fields or discrete random variables. Expectation propagation projec-
tions and Monte Carlo approximations to the sum-product messages get around these limitations,
but can be unsuitable for dense graphs or can introduce extraordinary computational costs [5, 23].
Thus, there still exist factorized probabilistic models, such as sigmoid belief networks [21] and latent
Dirichlet allocation [5], whereby mean field remains to date the tractable approximation of choice.

Several Monte Carlo methods have been proposed to correct for the discrepancy between the fac-
torized variational approximations and the target distribution. These methods include importance
sampling [8, 14] and adaptive Markov Chain Monte Carlo (MCMC) [6]. However, none of these
techniques scale well to general, high-dimensional state spaces because the variational approxi-



mations tend to be too restrictive when used as a proposal distribution. This is corroborated by
experimental results in those papers as well as theoretical results [20]. We propose an entirely new
approach that overcomes the problems of the aforementioned methods by constructing a sequence
of variational approximations that converges to the target distribution. To accomplish this, we derive
a new class ofconditionally-specifiedmean field approximations, and use sequential Monte Carlo
(SMC) [7] to obtain samples from them. SMC acts as a mechanism to migrate particles from an
easy-to-sample distribution (naive mean field) to a difficult-to-sample one (the distribution of inter-
est), through a sequence of artificial distributions. Each artificial distribution is aconditional mean
field approximation, designed in such a way that it is at least as sensible as its predecessor because
it recovers dependencies left out by mean field. Sec. 4 explains these ideas thoroughly.

The idea of constructing a sequence of distributions has a strong tradition in the literature, dating
back to work on simulating the behaviour of polymer chains [19] and counting and integration
problems [12]. Recent advances in stochastic simulation have allowed practitioners to extend these
ideas to general probabilistic inference [7, 11, 15]. However, very little is known as to how to come
up with a good sequence of distributions. Tempering is perhaps the most widely used strategy, due
to its ease of implementation and intuitive appeal. At early stages, high global temperatures smooth
the modes and allow easy exploration of the state space. Afterward, the temperature is progressively
cooled until the original distribution is recovered. The problem is that the variance of the importance
weights tends to degenerate around a system’s critical range of temperatures, as observed in [9].
An entirely different approach is to remove constraints (or factors) from the original model, then
incrementally reintroduce them. This has been a fruitful approach for approximate counting [12],
simulation of protein folding, and inference in the Ising model [9]. If, however, a reintroduced
constraint has a large effect on the distribution, the particles may again rapidly deterioriate.

We limit our study to the Ising spin glass model [16]. Ernst Ising developed his model in order
to explain the phenomenon of “spontaneous magnetization” in magnets. Here, we use it as a test
bed to investigate the viability or our proposed algorithm. Our intent isnot to design an algorithm
tuned to sampling the states of the Ising model, but rather to tackle factorized graphical models with
arbitrary potentials. Conditional mean field raises many questions, and since we can only hope to
answer some in this study, the Ising model represents a respectable first step. We hint at how our
ideas might generalize in Sec. 6.

The next two sections serve as background for the presentation of our main contribution in Sec. 4.

2 Mean field theory

In this study, we restrict our attention to random vectorsX = (X1, . . . , Xn)T , with possible con-
figurationsx = (x1, . . . , xn)T ∈ Ω, that admit a distribution belonging to the standard exponential
family [25]. A member of this family has a probability density of the form

p(x; θ) = exp
{
θT φ(x)−Ψ(θ)

}
, (1)

whereθ is the canonical vector of parameters, andφ(x) is the vector ofsufficient statistics[25]. The
log-partition functionΨ(θ) ensures thatp(x; θ) defines a valid probability density, and is given by

Ψ(θ) = log
∫

exp
{
θT φ(x)

}
dx.

DenotingEπ{f(X)} to be the expected value of a functionf(x) with respect to distributionπ,
Jensen’s inequality states thatf(Eπ{X}) ≤ Eπ{f(X)} for any convex functionf(x) and distribu-
tion π onX. Using the fact that− log(x) is convex, we obtain the variational lower bound

Ψ(θ) = log Ep( · ;α)

{
exp(θT φ(X))

p(X;α)

}
≥ θT µ(α)−

∫
p(x;α) log p(x;α) dx, (2)

where themean statisticsare defined byµ(α) ≡ Ep( · ;α){φ(X)}. The second term on the right-
hand side of (2) is the Boltzmann-Shannon entropy ofp(x;α), which we denote byH(α). Clearly,
some lower bounds of the form (2) are better than others, so the optimization problem is to find a set
of parametersα that leads to the tightest bound on the log-partition function. This defines thevari-
ational principle. We emphasize that this lower bound holds foranychoice ofα. A more rigorous
treatment follows from analyzing the conjugate of the convex, differentiable functionΨ(θ) [25].

As it is presented here, the variational principle is of little practical use because no tractable expres-
sions exist for the entropy and mean statistics. There do, however, exist particular choices of the



variational parametersα where it is possible to compute them both. We shall examine one particular
set of choices,naive mean field, in the context of the Ising spin glass model.

At each sitei ∈ {1, . . . , n}, the random variableXi is defined to bexi = +1 if the magnetic dipole
in the “up” spin position, orxi = −1 if it is “down”. Each scalarθij defines the interaction between
sitesi andj. Settingθij > 0 causes attraction between spins, andθij < 0 induces repulsion. Scalars
θi define the effect of the external magnetic field on the energy of the system. We use the undirected
labelled graphG = (V,E), whereV = {1, . . . , n}, to represent the conditional independence
structure of the probability measure (there is no edge betweeni and j if and only if Xi andXj

are conditionally independent given values at all other points of the graph). Associating singleton
factors with nodes ofG and pairwise factors with its edges, and setting the entries of the sufficient
statistics vector to bexi,∀ i ∈ V andxixj ,∀ (i, j)∈E, we can write the probability density as

p(x; θ) = exp
{∑

i∈V θixi +
∑

(i,j)∈Eθijxixj −Ψ(θ)
}

. (3)

The corresponding variational lower bound on the log-partition functionΨ(θ) then decomposes as

F (α) ≡
∑

i∈V θiµi(α) +
∑

(i,j)∈Eθijµij(α) + H(α), (4)

whereµi(α) andµij(α) are the expectations of single spinsi and pairs of spins(i, j), respectively.

Naive mean field restricts the variational parametersα to belong to{α | ∀ (i, j) ∈ E,αij = 0}.
We can compute the lower bound (4) for anyα belonging to this subset because we have tractable
expressions for the mean statistics and entropy. For the Ising spin glass, the mean statistics are

µi(α) ≡
∫

xi p(x;α) dx = tanh(αi) (5)

µij(α) ≡
∫

xi xj p(x;α) dx = µi(α)µj(α), (6)

and the entropy is derived to be

H(α) = −
∑
i∈V

(
1−µi(α)

2

)
log

(
1−µi(α)

2

)
−

∑
i∈V

(
1+µi(α)

2

)
log

(
1+µi(α)

2

)
. (7)

The standard way to proceed [17, 25] is to derive coordinate ascent updates by equating the deriva-
tives∂F/∂µi to zero and solving forµi. Since the variablesµi must be valid mean statistics, they are
constrained to lie within an envelope known as themarginal polytope[25]. Alternatively, one can
solve the optimization problem with respect to the unconstrained variational parametersα. Since it
is not possible to obtain the fixed-point equations by isolating eachαi, instead one can easily derive
expressions for the gradient∇F (α) and Hessian∇2F (α) and run a nonlinear optimization routine.
This approach, as we will see, is necessary for optimizing the conditional mean field objective.

3 Sequential Monte Carlo

Consider a sequence of two distributions,π(x) andπ?(x), where the second represents the target.
Assuming familiarity with importance sampling, this will be sufficient to explain key concepts un-
derlying SMC, and does not overwhelm the reader with subscripts. See [7] for a detailed description.

In the first step, samplesx(s) ∈ Ω are drawn from some proposal densityq(x) and assigned impor-
tance weightsw(x) = π(x)/q(x). In the second step, a Markov transition kernelK?(x′ |x) shifts
each sample towards the target, and the importance weightsw̃(x, x′) compensate for any failure to
do so. In effect, the second step consists of extending the path of each particle onto the joint space
Ω× Ω. The unbiased importance weights on the joint space are given by

w̃(x, x′) =
π̃(x, x′)
q̃(x, x′)

=
L(x |x′)π?(x′)
K?(x′ |x)π(x)

× w(x), (8)

where π̃(x, x′) = L(x |x′) π?(x′) is the artificial distribution over the joint space,q̃(x, x′) =
K?(x′ |x) q(x) is the corresponding importance distribution, and the “backward-in-time” kernel
L(x |x′) is designed so that it admitsπ(x) as its invariant distribution. Our expectation is that
K?(x′ |x) have invariant distributionπ?(x), though it is not required. To prevent potential particle
degeneracy in the marginal space, we adopt the standard stratified resampling algorithm [13].

Choice of backward-in-time kernel. Mean field tends to be overconfident in its estimates (although
not necessarily so). Loosely speaking, this means that ifπ(x) were to be a mean field approximation,



then it would likely have lighter tails than the target distributionπ?(x). If we were to use a sub-
optimal backward kernel [7, Sec. 3.3.2.3], the importance weights would simplify to

w̃(x, x′) = π?(x) / π(x)× w(x). (9)

Implicitly, this is the choice of backward kernel made in earlier sequential frameworks [11, 15].
Since the mean field approximationπ(x) might very well fail to “dominate” the targetπ?(x), the
expression (9) risks having unbounded variance. This is a problem because the weights may change
abruptly from one iteration to the next, or give too much importance to too few valuesx [18]. Instead,
Del Moralet alsuggest approximating the optimal backward-in-time kernel [7, Sec. 3.3.2.1] by

L(x |x′) =
K?(x′ |x)π(x)∫
K?(x′ |x)π(x) dx

. (10)

It offers some hope because the resulting importance weights on the joint space, following (8), are

w̃(x, x′) =
π?(x′)∫

K?(x′ |x)π(x) dx
× w(x). (11)

If the transition kernel increases the mass of the proposal in regions whereπ(x) is weak relative to
π?(x), the backward kernel (10) will rectify the problems caused by an overconfident proposal.

Choice of Markov transition kernel. The drawback of the backward kernel (10) is that it limits
the choice of transition kernelK?(x′ |x), a crucial ingredient to a successful SMC simulation. For
instance, we can’t use the Metropolis-Hastings algorithm because its transition kernel involves an
integral that does not admit a closed form [18]. One transition kernel which fits our requirements and
is widely applicable is a mixture of kernels based on the random-scan Gibbs sampler [18]. Denoting
δy(x) to be the Dirac measure at locationy, the transition kernel with invariant distributionπ?(x) is

K?(x′ |x) =
∑

k ρkπ?(x′k |x−k) δx−k
(x′−k), (12)

whereπ(xk|x−k) is the conditional density ofxk given values at all other sites, andρk is the proba-
bility of shifting the samples according to the Gibbs kernel at sitek. Following (11) and the identity
for conditional probability, we arrive at the expression for the importance weights,

w̃(x, x′) =
π?(x′)
π(x′)

{ ∑
k

ρk

π?(x′k |x′−k)
π(x′k |x′−k)

}−1

× w(x). (13)

Normalized estimator. For almost all problems in Bayesian analysis (and certainly the one con-
sidered in this paper), the densities are only known up to a normalizing constant. That is, only
f(x) andf?(x) are known pointwise, whereπ(x) = f(x)/Z andπ?(x) = f?(x)/Z?. The nor-
malized importance sampling estimator [18] yields (asymptotically unbiased) importance weights
w̃(x, x′) ∝ ŵ(x, x′), where theunnormalized importance weightŝw(x, x′) in the joint space remain
the same as (13), except that we substituteπ(x) for f(x), andπ?(x) for f?(x). The normalized es-
timator can recover a Monte Carlo estimate of the normalizing constantZ? via the recursion

Z? ≈ Z ×
∑

sŵ
(s), (14)

provided we already have a good estimate ofZ [7].

4 Conditional mean field

We start with a partitionR (equivalence relation) of the set of verticesV . Elements ofR, which
we denote with the capital lettersA and B, are disjoint subsets ofV . Our strategy is to come
up with a good naive mean field approximation to the conditional densityp(xA |x−A; θ) for every
equivalence classA ∈ R, and then again for every configurationx−A. Here, we denotexA to be
the configurationx restricted to setA ⊆ V , andx−A to be the restriction ofx to V \ A. The crux
of the matter is that for any pointα, the functionsp(xA |x−A;α) only represent valid conditional
densities if they correspond to some unique joint, as discussed in [2]. Fortunately, under the Ising
model the termsp(xA |x−A;α) represent valid conditionals forany α. What we have is a slight
generalization of the auto-logistic model [3], for which the joint is always known. As noted by
Besag, “although this is derived classically from thermodynamic principles, it is remarkable that the
Ising model follows necessarily as the very simplest non-trivial binary Markov random field [4].”



Conditional mean field forces each conditionalp(xA |x−A;α) to decompose as a product of
marginalsp(xi |x−A;α), for all i ∈ A. As a result,αij must be zero for every edge(i, j) ∈ E(A),
where we defineE(A) ≡ {(i, j) | i ∈ A, j ∈ A} to be the set of edges contained by the ver-
tices in subsetA. Notice that we have a set of free variational parametersαij defined on the
edges(i, j) that straddle subsets of the partition. Formally, these are the edges that belong to
CR ≡ {(i, j) | ∀A ∈ R, (i, j) /∈ E(A)}. We callCR the set of “connecting edges”.

Our variational formulation consists of competing objectives, since the conditionalsp(xA |x−A;α)
share a common set of parameters. We formulate the final objective function as a linear combination
of conditional objectives. A conditional mean field optimization problem with respect to graph
partitionR and linear weightsλ is of the form

maximize FR,λ(α) ≡
∑

A∈R

∑
xN(A)

λA(xN(A))FA(α, xN(A))
subject to αij = 0, for all (i, j) ∈ E \ CR.

(15)

We extend the notion of neighbours to sets, so thatN(A) is theMarkov blanketof A. The non-
negative scalarsλA(xN(A)) are defined for every equivalence classA ∈ R and configurationxN(A).
Each conditional objectiveFA(α, xN(A)) represents a naive mean field lower bound to the log-
partition function of the conditional densityp(xA |x−A; θ) = p(xA |xN(A); θ). For the Ising model,
FA(α, xN(A)) follows from the exact same steps used in the derivation of the naive mean field lower
bound in Sec. 2, except thatwe replace the joint by a conditional. We obtain the expression

FA(α, xN(A)) =
∑

i∈Aθiµi(α, xN(A)) +
∑

(i,j)∈E(A) θijµij(α, xN(A))

+
∑

i∈A

∑
j ∈ (N(i)∩N(A))θijxjµi(α, xN(A)) + HA(α, xN(A)), (16)

with theconditional mean statisticsfor i ∈ A, j ∈ A given by

µi(α, xN(A)) ≡
∫

xi p(xA |xN(A);α) dx = tanh
(
αi +

∑
j ∈ (N(i)∩N(A))αijxj

)
(17)

µij(α, xN(A)) ≡
∫

xi xj p(xA |xN(A);α) dx = µi(α, xN(A)) µj(α, xN(A)). (18)

The entropy is identical to (7), with the mean statistics replaced with their conditional counterparts.
Notice the appearance of the new terms in (16). These terms account for the interaction between the
random variables on the border of the partition. We can no longer optimizeµ following the standard
approach; we cannot treat theµi(α, xN(A)) as independent variables for allxN(A), as the solution
would no longer define an Ising model (or even a valid probability density, as we discussed). Instead,
we optimize with respect to the parametersα, taking derivatives∇FR,λ(α) and∇2FR,λ(α).

We have yet to address the question: how to select the scalarsλ? It stands to reason that we should
place greater emphasis on those conditionals that are realised more often, and setλA(xN(A)) ∝
p(xN(A); θ). Of course, these probabilities aren’t available! Equally problematic is the fact that (15)
may involve nearly as many terms as there are possible worlds, hence offering little improvement
over the naive solution. As it turns out, a greedy choice resolves both issues. Supposing that we
are at some intermediate stage in the SMC algorithm (see Sec. 4.1), a greedy but not unreasonable
choice is to setλA(xN(A)) to be the current Monte Carlo estimate of the marginalp(xN(A); θ),

λA(xN(A)) =
∑

sw
(s)δ

x
(s)
N(A)

(xN(A)). (19)

Happily, the number of terms in (15) is now on the order of the number of the particles.

Unlike standard naive mean field, conditional mean field optimizes over the pairwise interactions
αij defined on the connecting edges(i, j) ∈ CR. In our study, we fix these parameters toαij = θij .
This choice is convenient for two reasons. First, the objective is separable on the subsets of the
partition. Second, the conditional objective of a singleton subset has a unique maximum atαi = θi,
so any solution to (15) is guaranteed to recover the original distribution when|R| = n.

4.1 The Conditional mean field algorithm

We propose an SMC algorithm that produces progressively refined particle estimates of the mean
statistics, in which conditional mean field acts in a supporting role. The initial SMC distribution
is obtained by solving (15) forR = {V }, which amounts to the mean field approximation derived
in Sec. 2. In subsequent steps, we iteratively solve (15), update the estimates of the mean statistics
by reweighting (see (20)) and occasionally resampling the particles, then we split the partition until
we cannot split it anymore, at which point|R| = n and we recover the targetp(x; θ). It is easy to



Figure 1: The graphs on the left depict the Markov properties of the conditional mean field approxi-
mations in steps 1 to 4. Graph #4 recovers the target. In the right plot, the solid line is the evolution
of the estimate of the log-partition function in SMC steps 1 to 4. The dashed line is the true value.

draw samples from the initial fully-factorized distribution. It is also easy to compute its log-partition
function, asΨ(α) =

∑
i∈V log(2 cosh(αi)). Note that this estimate isnota variational lower bound.

Let’s now suppose we are at some intermediate step in the algorithm. We currently have a parti-
cle estimate of theR-partition conditional mean field approximationp(x;α) with samplesx(s) and
marginal importance weightsw(s). To construct the next artificial distributionp(x;α?) in the se-
quence, we choose a finer partitioning of the graph,R?, set the weightsλ? according to (19), and
use a nonlinear solver to find a local minimumα? to (15). The solver is initialized toα?

i = θi. We
require that the new graph partition satisfy that for everyB ∈ R?, B ⊆ A for someA ∈ R. In
this manner, we ensure that the sequence is progressing toward the target (providedR 6= R?), and
that it is always possible to evaluate the importance weights. It is not understood how to tractably
choose a good sequence of partitions, so we select them in an arbitrary manner. Next, we use the
random-scan Gibbs sampler (12) to shift the particles toward the new distribution, where the Gibbs
sitesk correspond to the subsetsB ∈ R?. We set the mixture probabilities of the Markov transition
kernel toρB = |B|/n. Following (13), the expression for the unnormalized importance weights is

ŵ(x, x′) =
exp

( ∑
i α?

i x
′
i +

∑
(i,j) α?

ijx
′
ix

′
j

)
exp

( ∑
i αix

′
i +

∑
(i,j) αijx

′
ix

′
j

) { ∑
B∈R?

ρB

∏
i∈B

π(x′i |x′N(B);α
?)

π(x′i |x′N(A);α)

}−1

× w(x), (20)

where the single-site conditionals areπ(xi |xN(A);α) = (1 + xiµi(α, xN(A)))/2 andA ∈ R is the
unique subset containingB ∈ R?. The new SMC estimate of the log-partition function isΨ(α?) ≈
Ψ(α) + log

∑
s ŵ(s). To obtain the particle estimate of the new distribution, we normalize the

weightsw̃(s) ∝ ŵ(s), assign the marginal importance weightsw(s) ← w̃(s), and setx(s) ← (x′)(s).
We are now ready to move to the next iteration. Let’s look at a small example to see how this works.

Example. Consider an Ising model withn=4 and parametersθ1:4 = 1
10 (4, 3,−5,−2), θ13 = θ24 =

θ34 = + 1
2 andθ12 =− 1

2 . We assume we have enough particles to recover the distributions almost
perfectly. SettingR = {{1, 2, 3, 4}}, the first artificial distribution is the naive mean field solution
α1:4 = (0.09, 0.03,−0.68,−0.48) with Ψ(α) = 3.10. Knowing that the true mean statistics are
µ1:4 =(0.11, 0.07,−0.40,−0.27), andVar(Xi)=1 − µ2

i , it is easy to see naive mean field largely
underestimates the variance of the spins. In step 2, we split the partition intoR = {{1, 2}, {3, 4}},
and the new conditional mean field approximation is given byα1:4 = (0.39, 0.27,−0.66,−0.43),
with potentialsα13 = θ13, α24 = θ24 on the connecting edgesCR. The second distribution recovers
the two dependencies between the subsets, as depicted in Fig. 1. Step 3 then splits subset{1, 2}, and
we getα=(0.40, 0.30,−0.64,−0.42) by settingλ according to the weighted samples from step 2.
Notice thatα1 = θ1, α2 = θ2. Step 4 recovers the original distribution, at which point the estimate
of the log-partition function comes close to the exact solution, as shown in Fig. 1. In this example,
Ψ(α) happens to underestimateΨ(θ), but in other examples we may get overestimates.

The random-scan Gibbs sampler can mix poorly, especially on a fine graph partition. Gradually
changing the parameters with tempered artificial distributions [7, Sec. 2.3.1]p(x;α)1−γp(x;α?)γ

gives the transition kernel more opportunity to correctly migrate the samples to the next distribution.

To optimize (15), we used a stable modification to Newton’s method that maintains a quadratic
approximation to the objective with a positive definite Hessian. In light of our experiences, a better
choice might have been to sacrifice the quadratic convergence rate for a limited-memory Hessian
approximation or conjugate gradient; the optimization routine was the computational bottleneck on
dense graphs. Even though the solver is executed at every iteration of SMC, the separability of the
objective (15) means that the computational expense decreases significantly at every iteration. To
our knowledge, this is the only SMC implementation in which the next distribution in the sequence
is constructed dynamically according to the particle approximation from the previous step.



  

Figure 2:(a) Estimate of the12×12 grid log-partition function for each iteration of SMC.(c) Same,
for the fully-connected graph with 26 nodes. We omitted the tree-reweighted upper bound because
it is way off the map. Note that these plots will vary slightly for each simulation.(b) Average error
of the mean statistics according to the hot coupling (HC), conditional mean field algorithm (CMF),
Bethe-Kikuchi variational approximation (B-K), and tree-reweighted upper bound (TRW) estimates.
The maximum possible average error is 2. For the HC and CMF algorithms, 95% of the estimates
fall within the shaded regions according to a sample of 10 simulations.

5 Experiments

We conduct experiments on two Ising models, one defined on a12×12 grid, and the other on a fully-
connected graph with 26 nodes. The model sizes approach the limit of what we can compute exactly
for the purposes of evaluation. The magnetic fields are generated by drawing eachθi uniformly
from [−1, 1] and drawingθij uniformly from{− 1

2 ,+ 1
2}. Both models exhibit strong and conflicting

pairwise interactions, so it is expected that rudimentary MCMC methods such as Gibbs sampling
will get “stuck” in local modes [9]. Our algorithm settings are as follows. We use 1000 particles
(as with most particle methods, the running time is proportional to the number of particles), and we
temper across successive distributions with a linear inverse temperature schedule of length 100. The
particles are resampled when the effective sample size [18] drops below1

2 . We compare our results
with the “hot coupling” SMC algorithm described in [9] (appropriately, using the same algorithm
settings), and with two sum-product methods based on Bethe-Kikuchi approximations [1] and tree-
reweighted upper bounds [24]. We adopt the simplest formulation of both methods in which the
regions (or junction graph nodes) are defined as the edgesE. Since loopy belief propagation failed
to converge for the complete graph, we implemented the convergent double-loop algorithm of [10].

The results of the experiments are summarized in Fig. 2. The plots on the left and right show that the
estimate of the log-partition function, for the most part, moves to the exact solution as the graph is
partitioned into smaller and smaller pieces. Both Bethe-Kikuchi approximations and tree-reweighted
upper bounds provide good approximations to the grid model. Indeed, the former recovers the log-
partition function almost perfectly. However, these approximations break down as soon as they
encounter a dense, frustrated model. This is consistent with the results observed in other experi-
ments [9, 24]. The SMC algorithms proposed here and in [9], by contrast, produce significantly
improved estimates of the mean statistics. It is surprising that we achieve similar performance with
hot coupling [9], given that we do not exploit the tractability of sum-product messages in the Ising
model (which would offer guaranteed improvements due to the Rao-Blackwell theorem).

6 Conclusions and discussion

We presented a sequential Monte Carlo algorithm in which each artificial distribution is the solution
to a conditionally-specified mean field optimization problem. We believe that the extra expense of
nonlinear optimization at each step may be warranted in the long run as our method holds promise
in solving more difficult inference problems, problems where Monte Carlo and variational methods
alone perform poorly. We hypothesize that our approach is superior methods that “prune” constraints
on factors, but further exploration in other problems is needed to verify this theory.

Beyond mean field.As noted in [22], naive mean field implies complete factorizability, which is
not necessary under the Ising model. A number of refinements are possible. However, this is not
a research direction we will pursue. Bethe-Kikuchi approximations based on junction graphs have
many merits, but they cannot be considered candidates for our framework because they produce



estimates of local mean statistics without defining a joint distribution. Tree-reweighted upper bounds
are appealing because they tend to be underconfident, but again we have the same difficulty.

Extending to other members of the exponential family.In general, the joint is not available in
analytic form given expressions for the conditionals, but there are still some encouraging signs.
For one, we can use Brook’s lemma [3, Sec. 2] to derive an expression for the importance weights
that does not involve the joint. Furthermore, conditions for guaranteeing the validity of conditional
densities have been extensively studied in multivariate [2] and spatial statistics [3].
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