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Abstract

We propose a generic algorithm for computation of similarity measures for se-
quential data. The algorithm uses generalized suffix trees for efficient calculation
of various kernel, distance and non-metric similarity functions. Its worst-case
run-time is linear in the length of sequences and independent of the underlying
embedding language, which can cover words,k-grams or all contained subse-
quences. Experiments with network intrusion detection, DNA analysis and text
processing applications demonstrate the utility of distances and similarity coeffi-
cients for sequences as alternatives to classical kernel functions.

1 Introduction

The ability to operate on sequential data is a vital prerequisite for application of machine learning
techniques in many challenging domains. Examples of such applications are natural language pro-
cessing (text documents), bioinformatics (DNA and protein sequences) and computer security (byte
streams or system call traces). A key instrument for handling such data is the efficient computation
of pairwise similarity between sequences. Similarity measures can be seen as an abstraction between
particular structure of data and learning theory.

One of the most successful similarity measures thoroughly studied in recent years is the kernel
function [e.g. 1–3]. Various kernels have been developed for sequential data, starting from the
original ideas of Watkins [4] and Haussler [5] and extending to application-specific kernels such
as the ones for text and natural language processing [e.g. 6–8], bioinformatics [e.g. 9–14], spam
filtering [15] and computer security [e.g. 16; 17].

Although kernel-based learning has gained a major focus in machine learning research, a kernel
function is obviously only one of various possibilities for measuring similarity between objects.
The choice of a similarity measure is essentially determined by (a) understanding of a problem and
(b) properties of the learning algorithm to be applied. Some algorithms operate in vector spaces,
others in inner product, metric or even non-metric feature spaces. Investigation of techniques for
learning in spaces other than RKHS is currently one of the active research fields in machine learning
[e.g. 18–21].

The focus of this contribution lies on general similarity measures for sequential data, especially on
efficient algorithms for their computation. A large number of such similarity measures can be ex-
pressed in a generic form so that a simple linear-time algorithm can be applied for computation ofa
wide class of similarity measures. This algorithm enables the investigation of alternative represen-
tations of problem domain knowledge other than kernel functions. As an example, two applications
are presented for which replacement of a kernel – or equivalently, the Euclidean distance – with a
different similarity measure yields a significant improvement of accuracy in an unsupervised learn-
ing scenario.



The rest of the paper is organized as follows. Section 2 provides a brief review of common simi-
larity measures for sequential data and introduces a generic form in which a large variety of them
can be cast. The generalized suffix tree and a corresponding algorithm for linear-time computation
of similarity measures are presented in Section 3. Finally, the experiments in Section 4 demon-
strate efficiency and utility of the proposed algorithm on real-world applications: network intrusion
detection, DNA sequence analysis and text processing.

2 Similarity measures for sequences

2.1 Embedding of sequences

A common way to define similarity measures for sequential data is via explicit embedding into a
high-dimensional feature space. A sequencex is defined as concatenation of symbols from a finite
alphabetΣ. To model the content of a sequence, we consider a languageL ⊆ Σ∗ comprising subse-
quencesw ∈ L. We refer to these subsequences aswords, even though they may not correspond to
a natural language. Typical examples forL are a “bag of words” [e.g. 22], the set of all sequences of
fixed length (k-grams ork-mers) [e.g. 10; 23] or the set of all contained subsequences [e.g. 8; 24].

Given a languageL, a sequencex can be mapped into an|L|-dimensional feature space by calcu-
lating an embedding functionφw(x) for everyw ∈ L appearing inx. The funcionφw is defined as
follows

φw : Σ∗ → R
+ ∪ {0}, φw(x) := ψ(occ(w,x)) · Ww (1)

whereocc(w,x) is the number of occurrences ofw in x, ψ a numerical transformation, e.g. a
conversion to frequencies, andW a weighting assigned to individual words, e.g. length-dependent
or position-dependent weights [cf. 3; 24]. By employing the feature space induced throughL and
φ, one can adapt many vectorial similarity measures to operate on sequences.

The feature space defined via explicit embedding is sparse, since the number of non-zero dimensions
for each feature vector is bounded by the sequence length. Thus the essential parameter for measur-
ing complexity of computation is the sequence length, denoted hereinafter asn. Furthermore, the
length of a word|w| or in case of a set of words the maximum length is denoted byk.

2.2 Vectorial similarity measures

Several vectorial kernel and distance functions can be applied to the proposed embedding of sequen-
tial data. A list of common functions in terms ofL andφ is given in Table 1.

Kernel function k(x,y)

Linear
∑

w∈L φw(x)φw(y)

Polynomial
(
∑

w∈L φw(x)φw(y) + θ
)d

RBF exp
(

−d(x,y)2

σ

)

Distance function d(x,y)

Manhattan
∑

w∈L |φw(x) − φw(y)|

Canberra
∑

w∈L
|φw(x)−φw(y)|
φw(x)+φw(y)

Minkowski
k

√

∑

w∈L |φw(x) − φw(y)|k

Hamming
∑

w∈L sgn |φw(x) − φw(y)|

Chebyshev maxw∈L |φw(x) − φw(y)|

Table 1: Kernels and distances for sequential data



Similarity coefficient s(x,y)

Simpson a/min(a+ b, a+ c)

Jaccard a/(a+ b+ c)

Braun-Blanquet a/max(a+ b, a+ c)

Czekanowski, Sorensen-Dice 2a/(2a+ b+ c)

Sokal-Sneath, Anderberg a/(a+ 2(b+ c))

Kulczynski (1st) a/(b+ c)

Kulczynski (2nd) 1
2 (a/(a+ b) + a/(a+ c))

Otsuka, Ochiai a/
√

(a+ b)(a+ c)

Table 2: Similarity coefficients for sequential data

Beside kernel and distance functions, a set of rather exotic similarity coefficients is also suitable for
application to sequential data [25]. The coefficients are constructed using three summation variables
a, b andc, which in the case of binary vectors correspond to the number of matching component
pairs (1-1), left mismatching pairs (0-1) and right mismatching pairs (1-0) [cf. 26; 27] Common
similarity coefficients are given in Table 2. For application to non-binary data these summation
variables can be extended as proposed in [25]:

a =
∑

w∈L

min(φw(x), φw(y))

b =
∑

w∈L

[φw(x) − min(φw(x), φw(y))]

c =
∑

w∈L

[φw(y) − min(φw(x), φw(y))]

2.3 A generic representation

One can easily see that the presented similarity measures can be cast in a generic form that consists
of an outer function⊕ and an inner functionm:

s(x,y) =
⊕

w∈L

m(φw(x), φw(y)) (2)

Given this definition, the kernel and distance functions presented in Table 1 can be re-formulated
in terms of⊕ andm. Adaptation of similarity coefficients to the generic form (2) involves a re-
formulation of the summation variablesa, b andc. The particular definitions of outer and inner
functions for the presented similarity measures are given in Table 3. The polynomial and RBF ker-
nels are not shown since they can be expressed in terms of a linear kernel or a distance respectively.

Kernel function ⊕ m(x, y)

Linear + x · y

Similarity coef. ⊕ m(x, y)

Variablea + min(x, y)

Variableb + x− min(x, y)

Variablec + y − min(x, y)

Distance function ⊕ m(x, y)

Manhattan + |x− y|

Canberra + |x− y|/(x+ y)

Minkowskik + |x− y|k

Hamming + sgn |x− y|

Chebyshev max |x− y|

Table 3: Generalized formulation of similarity measures



3 Generalized suffix trees for comparison of sequences

The key to efficient comparison of two sequences lies in considering only the minimum of words
necessary for computation of the generic form (2) of similarity measures. In the case of kernels
only theintersection of wordsin both sequences needs to be considered, while theunion of words
is needed for calculating distances and non-metric similarity coefficients. A simple and well-known
approach for such comparison is representing the words of each sequence in a sorted list. For words
of maximum lengthk such a list can be constructed inO(kn logn) using general sorting orO(kn)
using radix-sort. If the length of wordsk is unbounded, sorted lists are no longer an option as the
sorting time becomes quadratic.

Thus, special data structures are needed for efficient comparison of sequences. Two data structures
previously used for computation of kernels are tries [28; 29] and suffix trees [30]. Both have been
applied for computation of a variety of kernel functions inO(kn) [3; 10] and also inO(n) run-time
using matching statistics [24]. In this contribution we will argue that a generalized suffix tree is
suitable for computation ofall similarity measuresof the form (2) inO(n) run-time.

A generalized suffix tree(GST) is a tree containing all suffixes of a set of stringsx1, . . . ,xl [31]. The
simplest way to construct a generalized suffix tree is to extend each stringxi with a delimiter$i and
to apply a suffix tree construction algorithm [e.g. 32] to the concatenation of stringsx1$1 . . .xl$l.
In the remaining part we will restrict ourselves to the case of two stringsx andy delimited by
# and$, computation of an entire similarity matrix using a single GST for a set of strings being
a straightforward extension. An example of a generalized suffix tree for the strings “aab#” and
“babab$” is shown in Fig. 1(a).
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Figure 1: Generalized suffix tree for “aab#” and “babab$” and a snapshot of its traveral

Once a generalized suffix tree is constructed, it remains to determine the number of occurences
occ(w,x) andocc(w,y) of each wordw present in the sequencesx andy. Unlike the case for
kernels for which only nodes corresponding to both sequences need to be considered [24], the con-
tributions must be correctly computed forall nodes in the generalized suffix tree. The following
simple recursive algorithm computes a generic similarity measure between the sequencex andy in
one depth-first traversal of the generalized suffix tree (cf. Algorithm 1).

The algorithm exploits the fact that a leaf in a GST representing a suffix ofx contributes exactly 1 to
occ(w,x) if w is the prefix of this suffix – and similarly fory andocc(w,y). As the GST contains
all suffixes ofx andy, every wordw in x andy is represented by at least one leaf. Whether a leaf
contributes tox or y can be determined by considering the edge at the leaf. Due to the uniqueness
of the delimiter#, no branching nodes can occur below an edge containing#, thus a leaf node
at an edge starting before the index of# must contain a suffix ofx; otherwise it contains a suffix
of y. The contributions of all leaves are aggregated in two variablesx andy during a post-order
traversal. At each node the inner functionm of (2) is calculated usingψ(x) andψ(y) according to
the embeddingφ in (1). A snapshot of the traversal procedure is illustrated in Fig. 1(b).

To account implicit nodes along the edges of the GST and to support weighted embeddingsφ, the
weighting function WEIGHT introduced in [24] is employed. At a nodev the function takes the
beginning (begin[v]) and the end (end[v]) of the incoming edge and the depth of node (depth[v]) as
arguments to determine how much the node and edge contribute to the similarity measure, e.g. for
k-gram models only nodes up to a path depth ofk need to be considered.



Algorithm 1 Suffix tree comparison
1: function COMPARE(x,y)
2: S ← SUFFIXTREE(x # y $)
3: (x, y, s)← MATCH(root[S])
4: return s
5:
6: function MATCH(v)
7: if v is leaf then
8: s← 0
9: if begin[v] ≤ index# then

10: (x, y)← (1, 0) ⊲ Leaf of a suffix ofx
11: j ← index# − 1
12: else
13: (x, y)← (0, 1) ⊲ Leaf of a suffix ofy
14: j ← index$ − 1

15: else
16: (x, y, s)← (0, 0, 0)
17: for all c in children[v] do
18: (x̂, ŷ, ŝ)← MATCH(c) ⊲ Traverse GST
19: (x, y, s)← (x+ x̂, y + ŷ, s⊕ ŝ)

20: j ← end[v]

21: W ← WEIGHT(begin[v], j, depth[v])
22: s← s⊕m(ψ(x)W, ψ(y)W) ⊲ Cf. definitions in (1) and (2)
23: return (x, y, s)

Similarly to the extension of string kernels proposed in [33], the GST traversal can be performed on
an enhanced suffix array [34] for further run-time and space reduction.

To prove correctness of our algorithm, a different approach must be taken than the one in [24]. We
cannot claim that the computed similarity value is equivalent to the one returned by the matching
statistic algorithm, since the latter is restricted to kernel functions. Instead we show that at each
recursive call to the MATCH function correct numbers of occurences are maintained.

Theorem 1. A wordw occursocc(w,x) andocc(w,y) times inx andy if and only ifMATCH(w̄)
returnsx = occ(w,x) andy = occ(w,y), wherew̄ is the node at the end of a path from the root
reassemblingw in the generalized suffix tree ofx andy .

Proof. If w occursm times inx, there exist exactlym suffixes ofx with w as prefix. Sincew
corresponds to a path from the root of the GST to a nodew̄ all m suffixes must pass̄w. Due to
the unique delimiters# each suffix ofx corresponds to one leaf node in the GST whose incoming
edge contains#. Hencem equalsocc(w,x) and is exactly the aggregated quantityx returned by
MATCH(w̄). Likewise,occ(w,y) is the number of suffixes beginning after # and having a prefixw,
which is computed byy.

4 Experimental Results

4.1 Run-time experiments

In order to illustrate the efficiency of the proposed algorithm, we conducted run-time experiments on
three benchmark data sets for sequential data: network connection payloads from the DARPA 1999
IDS evaluation [35], news articles from the Reuters-21578 data set [36] and DNA sequences from
the human genome [14]. Table 4 gives an overview of the data sets and their specific properties.
We compared the run-time of the generalized suffix tree algorithm with a recent trie-based method
supporting computation of distances. Tries yield better or equal run-time complexity for computa-
tion of similarity measures overk-grams than algorithms using indexed arrays and hash tables. A
detailed description of the trie-based approach is given in [25]. Note that in all of the following
experiments tries were generated in a pre-processing step and the reported run-time corresponds to
the comparison procedure only.

For each of the three data sets, we implemented the following experimental protocol: the Manhattan
distances were calculated for 1000 pairs of randomly selected sequences usingk-grams as an em-



Name Type Alphabet Min. length Max. length
DNA Human genome sequences 4 2400 2400
NIDS TCP connection payloads 108 53 132753
TEXT Reuters Newswire articles 93 43 10002

Table 4: Sequential data sets

bedding language. The procedure was repeated 10 times for various values ofk, and the run-time
was averaged over all runs. Fig. 2 compares the run-time of sequence comparison algorithms using
the generalized suffix trees and tries. On all three data sets the trie-based comparison has a low
run-time for small values ofn but grows linearly withk. The algorithm using a generalized suffix
tree is independent from complexity of the embedding language, although this comes at a price of
higher constants due to a more complex data structure. It is obvious that a generalized suffix tree is
the algorithm of choice for higher values ofk.
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(b) TEXT data set
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Figure 2: Run-time performance for varyingk-gram lengths

4.2 Applications

As a second part of our evaluation, we show that the ability of our approach to compute diverse sim-
ilarity measures pays off when it comes to real applications, especially in an unsupervised learning
scenario. The experiments were performed for (a) intrusion detection in real network traffic and (b)
transcription start site (TSS) recognition in DNA sequences.

For the first application, network data was generated by members of our laboratory using virtual
network servers. Recent attacks were injected by a penetration-testing expert. The distance-based
anomaly detection method Zeta [17] was applied to 5-grams extracted from byte sequences of TCP
connections using different similarity measures: the linear kernel, the Manhattan distance and the
Kulczynski coefficient. The results on network data from the HTTP protocol are shown in Fig. 3(a).
Application of the Kulczynski coefficient yields the highest detection accuracy. Over 78% of all
attacks are identified with no false-positives in an unsupervised setup. In comparison, the linear
kernel yields roughly 30% lower detection rates.

The second application focused on TSS recognition in DNA sequences. The data set comprises fixed
length DNA sequences that either cover the TSS of protein coding genes or have been extracted ran-
domly from the interior of genes [14]. We evaluated three methods on this data: an unsupervised
k-nearest neighbor (kNN) classifier, a supervised and bagged kNN classifier and a Support Vec-
tor Machine (SVM). Each method was trained and tested using a linear kernel and the Manhattan
distance as a similarity measure over 4-grams. Fig. 3(b) shows the performance achieved by the
unsupervised and supervised versions of the kNN classifier1. Even though the linear kernel and
the Manhattan distance yield similar accuracy in a supervised setup, their performance differs sig-
nificantly in unsupervised application. In the absence of prior knowledge of labels the Manhattan

1Results for the SVM are similar to the supervised kNN and have been omitted.
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Figure 3: Comparison of similarity measures on the network and DNA data

distance expresses better discriminative properties for TSS recognition than the linear kernel. For the
supervised application the classication performance is bounded for both similarity measures, since
only some discriminative features for TSS recognition are encapsulated inn-gram models [14].

5 Conclusions

Kernel functions for sequences have recently gained strong attention in many applications of ma-
chine learning, especially in bioinformatics and natural language processing. In this contribution
we have shown that other similarity measures such as metric distances or non-metric similarity co-
efficients can be computed with the same run-time complexity as kernel functions. The proposed
algorithm is based on a post-order traversal of a generalized suffix tree of two or more sequences.
During the traversal, the counts of matching and mismatching words from an embedding language
are computed in time linear in sequence length – regardless of the particular kind of chosen lan-
guage: words,k-grams or even all consecutive subsequences. By using a generic representation of
the considered similarity measures based on an outer and inner function, the same algorithm can be
applied for various kernel, distance and similarity functions on sequential data.

Our experiments demonstrate that the use of general similarity measures can bring significant im-
provement to learning accuracy – in our case observed for unsupervised learning – and emphasize
importance of further investigation of distance- and similarity-based learning algorithms.
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