
Chained Boosting

Christian R. Shelton
University of California

Riverside CA 92521
cshelton@cs.ucr.edu

Wesley Huie
University of California

Riverside CA 92521
whuie@cs.ucr.edu

Kin Fai Kan
University of California

Riverside CA 92521
kkan@cs.ucr.edu

Abstract

We describe a method to learn to make sequential stopping decisions, such as
those made along a processing pipeline. We envision a scenario in which a series
of decisions must be made as to whether to continue to process. Further processing
costs time and resources, but may add value. Our goal is to create, based on his-
toric data, a series of decision rules (one at each stage in the pipeline) that decide,
based on information gathered up to that point, whether to continue processing
the part. We demonstrate how our framework encompasses problems from manu-
facturing to vision processing. We derive a quadratic (in the number of decisions)
bound on testing performance and provide empirical results on object detection.

1 Pipelined Decisions

In many decision problems, all of the data do not arrive at the same time. Often further data collec-
tion can be expensive and we would like to make a decision without accruing the added cost.

Consider silicon wafer manufacturing. The wafer is processed in a series of stages. After each stage
some tests are performed to judge the quality of the wafer. If the wafer fails (due to flaws), then the
processing time, energy, and materials are wasted. So, we would like to detect such a failure as early
as possible in the production pipeline.

A similar problem can occur in vision processing. Consider the case of object detection in images.
Often low-level pixel operations (such as downsampling an image) can be performed in parallel by
dedicated hardware (on a video capture board, for example). However, searching each subimage
patch of the whole image to test whether it is the object in question takes time that is proportional to
the number of pixels. Therefore, we can imagine a image pipeline in which low resolution versions
of the whole image are scanned first. Subimages which are extremely unlikely to contain the desired
object are rejected and only those which pass are processed at higher resolution. In this way, we
save on many pixel operations and can reduce the cost in time to process an image.

Even if downsampling is not possible through dedicated hardware, for most object detection
schemes, the image must be downsampled to form an image pyramid in order to search for the
object at different scales. Therefore, we can run the early stages of such a pipelined detector at the
low resolution versions of the image and throw out large regions of the high resolution versions.
Most of the processing is spent searching for small faces (at the high resolutions), so this method
can save a lot of processing.

Such chained decisions also occur if there is a human in the decision process (to ask further clarifying
questions in database search, for instance). We propose a framework that can model all of these
scenarios and allow such decision rules to be learned from historic data. We give a learning algorithm
based on the minimization of the exponential loss and conclude with some experimental results.



1.1 Problem Formulation

Let there be s stages to the processing pipeline. We assume that there is a static distribution from
which the parts, objects, or units to be processed are drawn. Let p(x, c) represent this distribution in
which x is a vector of the features of this unit and c represents the costs associated with this unit. In
particular, let xi (1 ≤ i ≤ s) be the set of measurements (features) available to the decision maker
immediately following stage i. Let ci (1 ≤ i ≤ s) be the cost of rejecting (or stopping the processing
of) this unit immediately following stage i. Finally, let cs+1 be the cost of allowing the part to pass
through all processing stages.

Note that ci need not be monotonic in i. To take our wafer manufacturing example, for wafers that
are good we might let ci = i for 1 ≤ i ≤ s, indicating that if a wafer is rejected at any stage, one
unit of work has been invested for each stage of processing. For the same good wafers, we might
let cs+1 = s − 1000, indicating that the value of a completed wafer is 1000 units and therefore the
total cost is the processing cost minus the resulting value. For a flawed wafer, the values might be
the same, except for cs+1 which we would set to s, indicating that there is no value for a bad wafer.

Note that the costs may be either positive or negative. However, only their relative values are im-
portant. Once a part has been drawn from the distribution, there is no way of affecting the “base
level” for the value of the part. Therefore, we assume for the remainder of this paper that c i ≥ 0 for
1 ≤ i ≤ s + 1 and that ci = 0 for some value of i (between 1 and s + 1).

Our goal is to produce a series of decision rules f i(xi) for 1 ≤ i ≤ s. We let fi have a range of
{0, 1} and let 0 indicate that processing should continue and 1 indicate that processing should be
halted. We let f denote the collection of these s decision rules and augment the collection with an
additional rule fs+1 which is identically 1 (for ease of notation). The cost of using these rules to
halt processing an example is therefore

L(f(x), c) =
s+1∑
i=1

cifi(xi)
i−1∏
j=1

(1 − fj(xj)) .

We would like to find a set of decision rules that minimize Ep[L(f(x), c)].

While p(x, c) is not known, we do have a series of samples (training set) D =
{(x1, c1), (x2, c2), . . . , (xn, cn)} of n examples drawn from the distribution p. We use superscripts
to denote the example index and subscripts to denote the stage index.

2 Boosting Solution

For this paper, we consider constructing the rules f i from simpler decision rules, much as in the
Adaboost algorithm [1, 2]. We assume that each decision f i(xi) is computed as the threshold of
another function gi(xi): fi(xi) = I(gi(xi) > 0).1 We bound the empirical risk:

n∑
k=1

L(f(xk), ck) =
n∑

k=1

s+1∑
i=1

ck
i I(gi(xk

i ) > 0)
i−1∏
j=1

I(gj(xk
j ) ≤ 0)

≤
n∑

k=1

s+1∑
i=1

ck
i egi(x

k
i )

i−1∏
j=1

e−gj(x
k
j ) =

n∑
k=1

s+1∑
i=1

ck
i egi(x

k
i )−Pi−1

j=1 gj(x
k
j ) . (1)

Our decision to make all costs positive ensures that the bounds hold. Our decision to make the
optimal cost zero helps to ensure that the bound is reasonably tight.

As in boosting, we restrict gi(xi) to take the form
∑mi

l=1 αi,lhi,l(xi), the weighted sum of mi sub-
classifiers, each of which returns either −1 or +1. We will construct these weighted sums incremen-
tally and greedily, adding one additional subclassifier and associated weight at each step. We will
pick the stage, weight, and function of the subclassifier in order to make the largest negative change
in the exponential bound to the empirical risk. The subclassifiers, h i,l will be drawn from a small
class of hypotheses, H.

1I is the indicator function that equals 1 if the argument is true and 0 otherwise.



1. Initialize gi(x) = 0 for all stages i

2. Initialize wk
i = ck

i for all stages i and examples k.
3. For each stage i:

(a) Calculate targets for each training example, as shown in equation 5.
(b) Let h be the result of running the base learner on this set.
(c) Calculate the corresponding α as per equation 3.
(d) Score this classification as per equation 4

4. Select the stage ı̄ with the best (highest) score. Let h̄ and ᾱ be the classifier and
weight found at that stage.

5. Let gı̄(x) ← gı̄(x) + ᾱh̄(x).
6. Update the weights (see equation 2):

• ∀1 ≤ k ≤ n, multiply wk
ı̄ by eᾱh̄(xk

ı̄ ).

• ∀1 ≤ k ≤ n, j > ı̄, multiply wk
j by e−ᾱh̄(xk

ı̄ ).
7. Repeat from step 3

Figure 1: Chained Boosting Algorithm

2.1 Weight Optimization

We first assume that the stage at which to add a new subclassifier and the subclassifier to add have
already been chosen: ı̄ and h̄, respectively. That is, h̄ will become hı̄,mı̄+1 but we simplify it for
ease of expression. Our goal is to find α ı̄,mı̄+1 which we similarly abbreviate to ᾱ. We first define

wk
i = ck

i egi(x
k
i )−Pi−1

j=1 gj(xk
j ) (2)

as the weight of example k at stage i, or its current contribution to our risk bound. If we let D +
h̄

be
the set of indexes of the members of D for which h̄ returns +1, and let D−

h̄
be similarly defined for

those for which h̄ returns −1, we can further define

W+
ı̄ =

∑
k∈D+

h̄

wk
ı̄ +

∑
k∈D−

h̄

s+1∑
i=ı̄+1

wk
i W−

ı̄ =
∑

k∈D−
h̄

wk
ı̄ +

∑
k∈D+

h̄

s+1∑
i=ı̄+1

wk
i .

We interpret W +
ı̄ to be the sum of the weights which h̄ will emphasize. That is, it corresponds to

the weights along the path that h̄ selects: For those examples for which h̄ recommends termination,
we add the current weight (related to the cost of stopping the processing at this stage). For those
examples for which h̄ recommends continued processing, we add in all future weights (related to all
future costs associated with this example). W −

ı̄ can be similarly interpreted to be the weights (or
costs) that h̄ recommends skipping.

If we optimize the loss bound of Equation 1 with respect to ᾱ, we obtain

ᾱ =
1
2

log
W−

ı̄

W+
ı̄

. (3)

The more weight (cost) that the rule recommends to skip, the higher its α coefficient.

2.2 Full Optimization

Using Equation 3 it is straight forward to show that the reduction in Equation 1 due to the addition
of this new subclassifier will be

W+
ı̄ (1 − eᾱ) + W−

ı̄ (1 − e−ᾱ) . (4)

We know of no efficient method for determining ı̄, the stage at which to add a subclassifier, except
by exhaustive search. However, within a stage, the choice of which subclassifier to use becomes one



of maximizing
n∑

k=1

zk
ı̄ h̄(xk

ı̄ ) , where zk
ı̄ =

[
s+1∑

i=ı̄+1

wk
i

]
− wk

ı̄ (5)

with respect to h̄. This is equivalent to an weighted empirical risk minimization where the training
set is {x1

ı̄ , x
2
ı̄ , . . . , x

n
ı̄ }. The label of xk

ı̄ is the sign of zk
ı̄ , and the weight of the same example is the

magnitude of zk
ı̄ .

2.3 Algorithm

The resulting algorithm is only slightly more complex than standard Adaboost. Instead of a weight
vector (one weight for each data example), we now have a weight matrix (one weight for each
data example for each stage). We initialize each weight to be the cost associated with halting the
corresponding example at the corresponding stage. We start with all g i(x) = 0. The complete
algorithm is as in Figure 1.

Each time through steps 3 through 7, we complete one “round” and add one additional rule to one
stage of the processing. We stop executing this loop when ᾱ ≤ 0 or when an iteration counter
exceeds a preset threshold.

Bottom-Up Variation

In situations where information is only gained after each stage (such as in section 4), we can also
train the classifiers “bottom-up.” That is, we can start by only adding classifiers to the last stage.
Once finished with it, we proceed to the previous stage, and so on. Thus instead of selecting the
best stage, i, in each round, we systematically work our way backward through the stages, never
revisiting previously set stages.

3 Performance Bounds

Using the bounds in [3] we can provide a risk bound for this problem. We let E denote the expecta-
tion with respect to the true distribution p(x, c) and Ên denote the empirical average with respect to
the n training samples. We first bound the indicator function with a piece-wise linear function, b θ,
with a maximum slope of 1

θ :

I(z > 0) ≤ bθ(z) = max
(
min

(
1, 1 +

z

θ

)
, 0

)
.

We then bound the loss: L(f(x), c) ≤ φθ(f(x), c) where

φθ(f(x), c) =
s+1∑
i=1

ci min{bθ(gi(xi)), bθ(−gi−1(xi−1)), bθ(−gi−2(xi−2)), . . . , bθ(−g1(x1))}

=
s+1∑
i=1

ciB
i
θ(gi(xi), gi−1(xi−1), . . . , g1(x1))

We replaced the product of indicator functions with a minimization and then bounded each indicator
with bθ. Bi

θ is just a more compact presentation of the composition of the function b θ and the
minimization. We assume that the weights α at each stage have been scaled to sum to 1. This has
no affect on the resulting classifications, but is necessary for the derivation below. Before stating the
theorem, for clarity, we state two standard definition:
Definition 1. Let p(x) be a probability distribution on the set X and let {x1, x2, . . . , xn} be n
independent samples from p(x). Let σ1, σ2, . . . , σn be n independent samples from a Rademacher
random variable (a binary variable that takes on either +1 or −1 with equal probability). Let F be
a class of functions mapping X to �.

Define the Rademacher Complexity of F to be

Rn(F) = E

[
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣
]

where the expectation is over the random draws of x1 through xn and σ1 through σn.



Definition 2. Let p(x), {x1, x2, . . . , xn}, and F be as above. Let g1, g2, . . . , gn be n independent
samples from a Gaussian distribution with mean 0 and variance 1.

Analogous to the above definition, define the Gaussian Complexity of G to be

Gn(F) = E

[
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

gif(xi)

∣∣∣∣∣
]

.

We can now state our theorem, bounding the true risk by a function of the empirical risk:

Theorem 3. Let H1,H2, . . . ,Hs be the sequence of the sets of functions from which the base classi-
fier draws for chain boosting. If Hi is closed under negation for all i, all costs are bounded between
0 and 1, and the weights for the classifiers at each stage sum to 1, then with probability 1 − δ,

E [L(f(x), c)] ≤ Ên [φθ(f(x), c)] +
k

θ

s∑
i=1

(i + 1)Gn(Hi) +

√
8 ln 2

δ

n

for some constant k.

Proof. Theorem 8 of [3] states

E [L(x, c)] ≤ Ên (φθ(f(x), c)) + 2Rn(φθ ◦ F) +

√
8 ln 2

δ

n

and therefore we need only bound the Rn(φθ ◦ F) term to demonstrate our theorem. For our case,
we have

Rn(φθ ◦ F) = E sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σiφθ(f(xi), ci)

∣∣∣∣∣
= E sup

f∈F

1
n

∣∣∣∣∣∣
n∑

i=1

σi
s+1∑
j=1

ci
jB

s
θ(gj(xi

j), gj−1(xi
j−1), . . . , g1(xi

1))

∣∣∣∣∣∣
≤

s+1∑
j=1

E sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σiBs
θ(gj(xi

j), gj−1(xi
j−1), . . . , g1(xi

1))

∣∣∣∣∣ =
s+1∑
j=1

Rn(Bs
θ ◦ Gj)

where Gi is the space of convex combinations of functions from H i and Gi is the cross product of
G1 through Gi. The inequality comes from switching the expectation and the maximization and then
from dropping the ci

j (see [4], lemma 5).

Lemma 4 of [3] states that there exists a k such that Rn(Bs
θ ◦ Gj) ≤ kGn(Bs

θ ◦ Gj). Theorem 14
of the same paper allows us to conclude that Gn(Bs

θ ◦ Gj) ≤ 2
θ

∑j
i=1 Gn(Gi). (Because Bs

θ is the
minimum over a set of functions with maximum slope of 1

θ , the maximum slope of Bs
θ is also 1

θ .)
Theorem 12, part 2 states Gn(Gi) = Gn(Hi). Taken together, this proves our result.

Note that this bound has only quadratic dependence on s, the length of the chain and does not
explicitly depend on the number of rounds of boosting (the number of rounds affects φ θ which, in
turn, affects the bound).

4 Application

We tested our algorithm on the MIT face database [5]. This database contains 19-by-19 gray-scale
images of faces and non-faces. The training set has 2429 face images and 4548 non-face images.
The testing set has 472 faces and 23573 non-faces. We weighted the training set images so that the
ratio of the weight of face images to non-face images matched the ratio in the testing set.



100 200 300 400 500 700 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

number of rounds

av
er

ag
e 

co
st

/e
rr

or
 p

er
 e

xa
m

pl
e

training cost
training error
testing cost
testing error

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

False negative rate

F
al

se
 p

os
iti

ve
 r

at
e

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

A
ve

ra
ge

 n
um

be
r 

of
 p

ix
el

s

CB Global
CB Bottom−up
SVM
Boosting

(a) (b)

Figure 2: (a) Accuracy verses the number of rounds for a typical run, (b) Error rates and average
costs for a variety of cost settings.

4.1 Object Detection as Chained Boosting

Our goal is to produce a classifier that can identify non-face images at very low resolutions, thereby
allowing for quick processing of large images (as explained later). Most image patches (or sub-
windows) do not contain faces. We, therefore, built a multi-stage detection system where any early
rejection is labeled as a non-face. The first stage looks at image patches of size 3-by-3 (i.e. a lower-
resolution version of the 19-by-19 original image). The next stage looks at the same image, but at
a resolution of 6-by-6. The third stage considers the image at 12-by-12. We did not present the full
19-by-19 images as the classification did not significantly improve over the 12-by-12 versions.

We employ a simple base classifier: the set of all functions that look at a single pixel and predict the
class by thresholding the pixel’s value. The total classifier at any stage is a linear combination of
these simple classifiers. For a given stage, all of the base classifiers that target a particular pixel are
added together producing a complex function of the value of the pixel. Yet, this pixel can only take
on a finite number of values (256 in this case). Therefore, we can compile this set of base classifiers
into a single look-up function that maps the brightness of the pixel into a real number. The total
classifier for the whole stage is merely the sum of these look-up functions. Therefore, the total work
necessary to compute the classification at a stage is proportional to the number of pixels in the image
considered at that stage, regardless of the number of base classifiers used.

We therefore assign a cost to each stage of processing proportional to the number of pixels at that
stage. If the image is a face, we add a negative cost (i.e. bonus) if the image is allowed to pass
through all of the processing stages (and is therefore “accepted” as a face). If the image is a non-
face, we add a bonus if the image is rejected at any stage before completion (i.e. correctly labelled).

While this dataset has only segmented image patches, in a real application, the classifier would be
run on all sub-windows of an image. More importantly, it would also be run at multiple resolutions
in order to detect faces of different sizes (or at different distances from the camera). The classifier
chain could be run simultaneously at each of these resolutions. To wit, while running the final 12-by-
12 stage at one resolution of the image, the 6-by-6 (previous) stage could be run at the same image
resolution. This 6-by-6 processing would be the necessary pre-processing step to running the 12-by-
12 stage at a higher resolution. As we run our final scan for big faces (at a low resolution), we can
already (at the same image resolution) be performing initial tests to throw out portions of the image
as not worthy of testing for smaller faces (at a higher resolution). Most of the work of detecting
objects must be done at the high resolutions because there are many more overlapping subwindows.
This chained method allows the culling of most of this high-resolution image processing.

4.2 Experiments

For each example, we construct a vector of stage costs as above. We add a constant to this vector to
ensure that the minimal element is zero, as per section 1.1. We scale all vectors by the same amount



to ensure that the maximal value is 1.This means that the number of misclassifications is an upper
bound on the total cost that the learning algorithm is trying to minimize.

There are three flexible quantities in this problem formulation: the cost of a pixel evaluation, the
bonus for a correct face classification, and the bonus for a correct non-face classification. Changing
these quantities will control the trade-off between false positives and true positives, and between
classification error and speed.

Figure 2(a) shows the result of a typical run of the algorithm. As a function of the number of
rounds, it plots the cost (that which the algorithm is trying to minimize) and the error (number of
misclassified image patches), for both the training and testing sets (where the training set has been
reweighted to have the same proportion of faces to non-faces as the testing set).

We compared our algorithm’s performance to the performance of support vector machines (SVM)
[6] and Adaboost [1] trained and tested on the highest resolution, 12-by-12, image patches. We
employed SVM-light [7] with a linear kernels. Figure 2(b) compares the error rates for the methods
(solid lines, read against the left vertical axis). Note that the error rates are almost identical for the
methods. The dashed lines (read against the right vertical axis) show the average number of pixels
evaluated (or total processing cost) for each of the methods. The SVM and Adaboost algorithms
have a constant processing cost. Our method (by either training scheme) produces lower processing
cost for most error rates.

5 Related Work

Cascade detectors for vision processing (see [8] or [9] for example) may appear to be similar to the
work in this paper. Especially at first glance for the area of object detection, they appear almost the
same. However, cascade detection and this work (chained detection) are quite different.

Cascade detectors are built one at a time. A coarse detector is first trained. The examples which
pass that detector are then passed to a finer detector for training, and so on. A series of targets for
false-positive rates define the increasing accuracy of the detector cascade.

By contrast, our chain detectors are trained as an ensemble. This is necessary because of two dif-
ferences in the problem formulation. First, we assume that the information available at each stage
changes. Second, we assume there is an explicit cost model that dictates the cost of proceeding from
stage to stage and the cost of rejection (or acceptance) at any particular stage. By contrast, cascade
detectors are seeking to minimize computational power necessary for a fixed decision. Therefore,
the information available to all of the stages is the same, and there are no fixed costs associated with
each stage.

The ability to train all of the classifiers at the same time is crucial to good performance in our
framework. The first classifier in the chain cannot determine whether it is advantageous to send an
example further along unless it knows how the later stages will process the example. Conversely,
the later stages cannot construct optimal classifications until they know the distribution of examples
that they will see.

Section 4.1 may further confuse the matter. We demonstrated how chained boosting can be used to
reduce the computational costs of object detection in images. Cascade detectors are often used for
the same purpose. However, the reductions in computational time come from two different sources.
In cascade detectors, the time taken to evaluate a given image patch is reduced. In our chained
detector formulation, image patches are ignored completely based on analysis of lower resolution
patches in the image pyramid. To further illustrate the difference, cascade detectors can always
be used to speed up asymmetric classification tasks (and are often applied to image detection).
By contrast, in Section 4.1 we have exploited the fact that object detection in images is typically
performed at multiple scales to turn the problem into a pipeline and apply our framework.

Cascade detectors address situations in which prior class probabilities are not equal, while chained
detectors address situations in which information is gained at a cost. Both are valid (and separate)
ways of tackling image processing (and other tasks as well). In many ways, they are complementary
approaches.



Classic sequence analysis [10, 11] also addresses the problem of optimal stopping. However, it
assumes that the samples are drawn i.i.d. from (usually) a known distribution. Our problem is
quite different in that each consecutive sample is drawn from a different (and related) distribution
and our goal is to find a decision rule without producing a generative model. WaldBoost [12] is a
boosting algorithm based on this. It builds a series of features and a ratio comparison test in order
to decide when to stop. For WaldBoost, the available features (information) not change between
stages. Rather, any feature is available for selection at any point in the chain. Again, this is a
different problem than the one considered in this paper.

6 Conclusions

We feel this framework of staged decision making is useful in a wide variety of areas. This paper
demonstrated how the framework applies to one vision processing task. Obviously it also applies
to manufacturing pipelines where errors can be introduced at different stages. It should also be
applicable to scenarios where information gathering is costly.

Our current formulation only allows for early negative detection. In the face detection example
above, this means that in order to report “face,” the classifier must process each stage, even if the
result is assured earlier. In Figure 2(b), clearly the upper-left corner (100% false positives and 0%
false negatives) is reachable with little effort: classify everything positive without looking at any
features. We would like to extend this framework to cover such two-sided early decisions. While
perhaps not useful in manufacturing (or even face detection, where the interesting part of the ROC
curve is far from the upper-left), it would make the framework more applicable to information-
gathering applications.

Acknowledgements

This research was supported through the grant “Adaptive Decision Making for Silicon Wafer Test-
ing” from Intel Research and UC MICRO.

References

[1] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. In EuroCOLT, pages 23–37, 1995.

[2] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In ICML,
pages 148–156, 1996.

[3] Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: Risk bounds
and structural results. JMLR, 2:463–482, 2002.

[4] Ron Meir and Tong Zhang. Generalization error bounds for Bayesian mixture algorithms.
JMLR, 4:839–860, 2003.

[5] MIT. CBCL face database #1, 2000. http://cbcl.mit.edu/cbcl/software-
datasets/FaceData2.html.

[6] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for
optimal margin classifiers. In COLT, pages 144–152, 1992.

[7] T. Joachims. Making large-scale SVM learning practical. In B. Schlkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods — Support Vector Learning. MIT-Press, 1999.

[8] Paul A. Viola and Michael J. Jones. Rapid object detection using a boosted cascade of simple
features. In CVPR, pages 511–518, 2001.

[9] Jianxin Wu, Matthew D. Mullin, and James M. Rehg. Linear asymmetric classifier for cascade
detectors. In ICML, pages 988–995, 2005.

[10] Abraham Wald. Sequential Analysis. Chapman & Hall, Ltd., 1947.

[11] K. S. Fu. Sequential Methods in Pattern Recognition and Machine Learning. Academic Press,
1968.

[12] Jan Šochman and Jiřı́ Matas. Waldboost — learning for time constrained sequential detection.
In CVPR, pages 150–156, 2005.


