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Abstract

Kernel-based regularized learning seeks a model in a hypothesis space by mini-
mizing the empirical error and the model’s complexity. Based on the representer
theorem, the solution consists of a linear combination of translates of a kernel.
This paper investigates a generalized form of representer theorem for kernel-based
learning. After mapping predefined features and translates of a kernel simultane-
ously onto a hypothesis space by a specific way of constructing kernels, we pro-
posed a new algorithm by utilizing a generalized regularizer which leaves part of
the space unregularized. Using a squared-loss function in calculating the empiri-
cal error, a simple convex solution is obtained which combines predefined features
with translates of the kernel. Empirical evaluations have confirmed the effective-
ness of the algorithm for supervised learning tasks.

1 Introduction

Supervised learning, or learning from examples, refers to the task of training a system by a set of
examples which are specified by input-output pairs. The system is used to predict the output value
for any valid input object after training. Examples of such tasks include regression which produces
continuous values, and classification which predicts a class label for an input object.

Vapnik’s seminal work[1] shows that the key to effectively solving this problem is by controlling
the solution’s complexity, which leads to the techniques known as regularized kernel methods[1]
[2][3] and regularization networks[4]. The work championed by Poggio and other researchers[5][6]
implicitly treats learning as an approximation problem and gives a general scheme with ideas going
back to modern regularization theory[7][8][9]. For both frameworks, a solution is sought by simul-
taneously minimizing the empirical error and the complexity. More precisely, given a training set
D = (xi; yi)

m

i=1, an estimator f : X → Y , where X is a closed subset of Rd and Y ⊂ R, is given
by

min
f∈HK

1

m

m
∑

i=1

V (yi, f (xi)) + γ ‖f‖
2
K (1)

where V is a convex loss function, ‖f‖K is the norm of f in a reproducing kernel Hilbert space
(RKHS) HK induced by a positive definite function (a kernel) Kx (x′) = K (x,x′), and γ is a
regularization parameter that makes a trade-off between the empirical error and the complexity.
γ ‖f‖2

K is also called a regularizer.

According to representer theorem [10][11] [12], the minimizer of (1) admits a simple solution as a
linear combination of translates of the kernel K by the training data

f∗ =

m
∑

i=1

ciKxi
, ci ∈ R, 1 ≤ i ≤ m



for a variety of loss functions. Different loss functions lead to different learning algorithms. For
example, when used for classification, a squared-loss (y − f (x))

2 brings about the regularized
least-squares classification (RLSC) algorithm[13][14][15]; while a hinge loss (1 − yf (x))+ ≡
max (1 − yf (x) , 0) corresponds to the classical support vector machines(SVM).

Using this model, data are implicitly projected onto the hypothesis space HK via a transformation

φK : x → Kx

and a linear functional is sought by finding its representer in HK , which generally has infinite
dimensions. It is generally believed that learning problems associated with infinite dimensions are
ill-posed and need regularization. However, finite dimensional problems are often associated with
well-posedness and do not need regularization. Motivated by this, we unified these two views in
this paper. Using an existing trick in designing kernels, an RKHS is constructed which contains
a subspace spanned by some predefined features and this subspace is left unregularized during the
learning process. Empirical results have shown the embedding of these features often has the effect
of stabilizing the algorithms’s performance for different choices of kernels and prevents the results
from deteriorating for inappropriate kernels.

The paper is organized as follows. First, a generalized regularized learning model and its associated
representer theorem are studied. Then, we introduce an existing trick with which we constructed a
hypothesis space which has a subspace of the predefined features. Next, a generic learning algorithm
is proposed based on the model and especially evaluated for classification problems. Empirical
results have confirmed the benefits brought by the algorithm.

A note on notation. Throughout the paper, vectors and matrices are represented in bold notation and
scalars in normal script, e.g. x1, · · · ,xm ∈ Rd, K ∈ Rm×m, and y1, · · · , ym ∈ R. I and O are
used to denote an identity matrix and a zero matrix of appropriate sizes, respectively. For clarity, the
size of a matrix is sometimes added as a subscript, such as Om×`.

2 Generalized regularized least-squares learning model

Suppose the space HK decomposes into the direct sum: HK = H0 ⊕ H1, where H0 is spanned
by ` (≤ m) linearly independent features: H0 = span (ϕ1, · · · , ϕ`). We propose the generalized
regularized least-squares (G-RLS) learning model as

min
f∈HK

L (f) =
1

m

m
∑

i=1

(yi − f (xi))
2 + γ ‖f − Pf‖2

K , (2)

where Pf is the orthogonal projection of f onto H0.

Suppose f∗ is the minimizer of (2). For any f ∈ HK , let f = f∗ + δg where δ ∈ R and g ∈ HK .
Now take derivative w.r.t. δ and notice that ∂L

∂δ
|δ=0 = 0 . Then

−
2

m

m
∑

i=1

(yi − f∗ (xi)) g (xi) + 2γ 〈f∗ − Pf∗, g〉K = 0, (3)

where 〈·, ·〉K denotes the inner product in HK . This equation holds for any g ∈ HK . In particular,
setting g = Kx gives

f∗ − Pf∗ =

∑m

i=1 (yi − f∗ (xi)) Kxi

mγ
. (4)

Pf∗ is the orthogonal projection of f ∗ onto H0 and hence,

Pf∗ =
∑̀

p=1

λpϕp, λp ∈ R, 1 ≤ p ≤ `. (5)

So (4) is simplified to

f∗ =
∑̀

p=1

λpϕp +

m
∑

i=1

ciKxi
, (6)



where

ci =
yi − f∗ (xi)

mγ
, 1 ≤ i ≤ m. (7)

The coefficients λ1, · · · , λ`, c1, · · · , cm are uniquely specified by m + ` linear equations. The first
m equations are obtained by substituting (6) into (7). The rest ` equations are derived from the
orthogonality constraint between Pf ∗ and f − Pf∗, which can be written as

〈

ϕp,

m
∑

i=1

ciKxi

〉

K

= 0, 1 ≤ p ≤ `, (8)

or equivalently due to the property of reproducing kernels,
m
∑

i=1

ciϕp (xi) = 0, 1 ≤ p ≤ `. (9)

The solution (6) derived from (2) satisfies the reproduction property. Suppose (xi; yi)
m
i=1 comes

purely from a model which is perfectly linearly related to ϕ1, · · · , ϕ`, it is desirable to get back a
solution that is independent of the other features. As an evident result of (2), the property is satisfied.
The parameters c1, · · · , cm in the resulting estimator (6) are all zero, which makes the regularizer in
(2) equal to zero.

3 Kernel construction

By decomposing a hypothesis space HK and studying a generalized regularizer, we have proposed
the G-RLS model and derived a solution which consists of predefined features as well as translates
of a kernel function. In this section, starting with predefined features ϕ1, · · · , ϕ` and a kernel Φ, we
will construct a hypothesis space which contains the features and translates of the kernel by using
an existing trick.

3.1 A kernel construction trick

Let’s consider the following reproducing kernel

K (x,x′) = H (x,x′) +
∑̀

p=1

ϕ′
p (x) ϕ′

p (x′) (10)

where

H (x,x′) = Φ (x,x′) −
∑̀

p=1

ϕ′
p (x) Φ (xp,x

′) −
∑̀

q=1

ϕ′
q (x′) Φ (x,xq) (11)

+
∑̀

p=1

∑̀

q=1

ϕ′
p (x) ϕ′

q (x′) Φ (xp,xq) ,

Φ is any strictly positive definite function, and ϕ′
1, · · · , ϕ′

` defines a linear transformation of
ϕ1, · · · , ϕ` w.r.t. x1, · · · ,x`,

[

ϕ′
1 (x)
· · ·

ϕ′
` (x)

]

=

[

ϕ1 (x1) · · · ϕ1 (x`)
· · · · · ·

ϕ` (x1) · · · ϕ` (x`)

]−1 [
ϕ1 (x)
· · ·

ϕ` (x)

]

(12)

which satisfies

ϕ′
q (xp) =

{

1
0

1 ≤ p = q ≤ `
1 ≤ p 6= q ≤ `

. (13)

This trick is studied in [16] to provide an alternative basis for radial basis functions and first used in
a fast RBF interpolation algorithm[17]. A sketch of properties which are peripheral to our concerns
in this paper are given below.

Kxp
= ϕ′

p, 1 ≤ p ≤ ` (14)



〈

ϕ′
p, ϕ

′
q

〉

K
=

{

1
0

1 ≤ p = q ≤ `
1 ≤ p 6= q ≤ `

(15)

Hxp
= H (xp, ·) = 0, 1 ≤ p ≤ ` (16)

〈

Hxi
, ϕ′

p

〉

K
=
〈

H (xi, ·) , ϕ′
p

〉

K
= 0, ` + 1 ≤ i ≤ m, 1 ≤ p ≤ ` (17)

〈

Hxi
, Hxj

〉

K
= H (xi,xj) , ` + 1 ≤ i, j ≤ m (18)

Another property is that the matrix H = (H (xi,xj))
m

i,j=`+1 is strictly positive definite, which will
be used in the computations below.

By constructing a kernel K using this trick, predefined features ϕ1, · · · , ϕ` are explicitly mapped
onto HK which has a subspace H0 = span (ϕ′

1, · · · , ϕ′
`) = span (ϕ1, · · · , ϕ`). By property (15),

we can see that ϕ′
1, · · · , ϕ′

` also forms an orthonormal basis of H0.

3.2 Computation

After projecting the features ϕ1, · · · , ϕ` onto an RKHS HK , let’s study the regularized minimiza-
tion problem in (2). As shown in (6), the minimizer has a form of a linear combination of predefined
features and translates of a kernel. By the properties of K in (14)-(17), the minimizer can be rewrit-
ten as:

f∗ =
∑̀

p=1

λpϕp +

m
∑

i=1

ciKxi

=
∑̀

p=1

λ′
pϕ

′
p +

(

∑̀

i=1

ciϕ
′
i +

m
∑

i=`+1

ci

(

Hxi
+
∑̀

p=1

ϕ′
p (xi) ϕ′

p

))

=
∑̀

p=1

(

λ′
p + cp +

m
∑

i=`+1

ciϕ
′
p (xi)

)

ϕ′
p +

m
∑

i=`+1

ciHxi

=
∑̀

p=1

λ̃pϕ
′
p +

m
∑

i=`+1

c̃iHxi
(19)

where λ̃1, · · · , λ̃`, c̃`+1, · · · , c̃m are m parameters to be determined. Furthermore, from the orthog-
onal property between ϕ′

p and Hxi
in (17), we have

f∗ − Pf∗ =
m
∑

i=`+1

c̃iHxi
. (20)

To determine the values of λ̃ =
(

λ̃1, · · · , λ̃`

)T

and c̃ = (c̃`+1, · · · , c̃m)
T , we need

‖f∗ − Pf∗‖
2
K =

m
∑

i,j=`+1

c̃ic̃jH (xi,xj) =

(

λ̃
c̃

)T

H̃

(

λ̃
c̃

)

(21)

where H̃ =

(

O`×` O`×(m−`)

O(m−`)×` H

)

. Substituting (21) into (2), we have

L =
1

m

(

y − K̃

(

λ̃
c̃

))T (

y − K̃

(

λ̃
c̃

))

+ γ

(

λ̃
c̃

)T

H̃

(

λ̃
c̃

)

(22)

where K̃ =

(

I`×` O`×(m−`)

ET H

)

and E =
(

ϕ′
p (xi)

)`,m

p=1,i=`+1
. Take derivative w.r.t.

(

λ̃
c̃

)

and set the derivative to zero, and we get

K̃2

(

λ̃
c̃

)

+ γmH̃

(

λ̃
c̃

)

= K̃y. (23)



Since K̃−1 =

(

I`×` O(m−`)×`

−H−1ET H−1

)

and K̃−1H̃ = Ĩ =

(

O`×` O`×(m−`)

O(m−`)×` I(m−`)×(m−`)

)

,

we have
(

K̃ + γmĨ
)

(

λ̃
c̃

)

= y, (24)

i.e.
(

I`×` O`×(m−`)

ET H + γmI

)(

λ̃
c̃

)

=

(

y1

y2

)

, (25)

where y1 = (y1, · · · , y`)
T and y2 = (y`+1, · · · , ym)

T . Equation (25) uniquely specifies λ̃ by

λ̃ = y1, (26)

and c̃ by
(H + γmI) c̃ = y2 − ET λ̃. (27)

H+γmI is a strictly positive definite matrix. The equation can be efficiently solved either by conju-

gate gradient or by Cholesky factorization. The worst case complexity is O
(

(m − `)
3
)

≈ O
(

m3
)

.

It is also possible to investigate iterative methods for solving linear systems coupled with recent ad-
vances in fast matrix-vector multiplication methods (e.g. fast multipole method), and the complexity
reduces to nearly O (m logm), which provides the potential to solve large scale problems.

4 A generic learning algorithm

Based on the discussions above, a generic learning algorithm (G-RLS algorithm) is summarized
below.

1. Start with data (xi; yi)
m

i=1.

2. For ` (≤ m) predefined linearly independent features ϕ1, · · · , ϕ` of the data, define
ϕ′

1, · · · , ϕ′
` according to equation (12).

3. Choose a symmetric, strictly positive definite function Φx (x′) = Φ (x,x′) which is con-
tinuous on X ×X . Define H according to equation (11).

4. The estimator f : X → Y is given by

f (x) =
∑̀

p=1

λ̃pϕ
′
p (x) +

m
∑

i=`+1

c̃iHxi
(x) (28)

where λ̃1, · · · , λ̃`, c̃`+1, · · · , c̃m are obtained by solving equations (26) and (27).

The algorithm can be applied to a number of applications including regression and binary classi-
fication. As a simple example for regression, noisy points were randomly generated via a func-
tion y = |5 − x|, and we fitted the data by a curve. Polynomial features up to the second degree
(ϕ1 = 1, ϕ2 = x, ϕ3 = x2) were used for G-RLS algorithm along with a Gaussian RBF kernel

Φx (·) = e−
‖x−·‖2

σ2 .

We selected ridge regression with the Gaussian RBF kernel for a comparison, which can be regarded
as an implementation of standard regularized least-squares model for regression tasks. For both
algorithms, three trials were made in which the parameter σ was set to a large value, to a small
value, and by cross validation respectively. For each σ, the parameter γ was set by cross validation.
Comparing with ridge regression in figure 1(b), the existence of polynomial features in G-RLS has
the effect of stabilizing the results, as shown in figure 1(a). Varying σ, different fitting results were
obtained by ridge regression. However, for G-RLS algorithm, the difference was not evident.

In the case of generalized regularized least-squares classification (G-RLSC), each yi of the training
set takes the values {−1, 1}. The predicted label of any x depends on the sign of (28)

y =

{

1,
−1

f (x) > 0
otherwise

.

G-RLSC uses the ”classical” squared-loss as a classification loss criterion. The effectiveness of this
criterion has been reported by the empirical results[13][14][15].
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(a) G-RLS Regression
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(b) Ridge Regression

Figure 1: A Regression Example. The existence of polynomial features in G-RLS helped to improve
the stability of the algorithm.

5 Experiments

To evaluate the performance of G-RLS algorithm, empirical results are reported on text categoriza-
tion tasks using the three datasets from CMU text mining group1. The 7-sectors dataset has 4, 573
web pages belonging to seven economic sectors, with each sector containing pages varying from
300 to 1, 099. The 4-universities dataset consists of 8, 282 webpages collected mainly from four
universities, in which the pages belong to seven classes and each class has 137 to 3, 764 pages.
The 20-newsgroups dataset collects UseNet postings into twenty newsgroups and each group has
about 1, 000 messages. We experimented with its four major subsets. The first subset has 5 groups
(comp.*), the second 4 groups (rec.*), the third 4 groups (sci.*) and the last 4 groups (talk.*).

For each dataset, we removed all but the 2, 000 words with highest mutual information with the
class variable by rainbow package[18]. The document was represented as bag-of-words with linear
normalization into [−1, 1]. Probabilistic latent semantic analysis[19] (pLSA) was used to get ten
latent features ϕ1, · · · , ϕ10 out of the data. Experiments were carried out with different number
(100˜3, 200) of data for training and the rest for testing. Each experiment consisted of ten runs
and the average accuracy is reported. In each run, the data were separated by the xval-prep utility
accompanied in C4.5 package2.

Figure 2 compares the performance of G-RLSC, RLSC and SVM. It is shown that G-RLSC reports
improved results on most of the datasets except on 4-universities. Moreover, an insightful observa-
tion may find that although SVM excels on the dataset when the number of training data increases,
G-RLSC shows better performance than standard RLSC. A possible reason is that the hinge loss
used by SVM is more appropriate than the squared-loss used by RLSC and G-RLSC on this dataset;
while the embedding of pLSA features still improves the accuracy.

6 Conclusion

In this paper, we first proposed a generic G-RLS learning model. Unlike the standard kernel-based
methods which only consider the translates of a kernel for model learning, the new model takes
predefined features into special consideration. A generalized regularizer is studied which leaves
part of the hypothesis space unregularized. Similar ideas were explored in spline smoothing[9] in
which low degree polynomials are not regularized. Another example is semi-parametric SVM[2],
which considers the addition of some features to the kernel expansion for SVM. However, to our
knowledge, few learning algorithms and applications have been studied along this line from a unified
RKHS regularization point of view, or investigated for empirical evaluations.

The second part of our work presented a practical computation method based on the model. An
RKHS that contains the combined solutions is explicitly constructed based on a special trick in
designing kernels. (The idea of a conditionally positive definite function[20] is lurking in the back-

1http://www.cs.cmu.edu/˜TextLearning/datasets.html
2http://www.rulequest.com/Personal/c4.5r8.tar.gz.



Figure 2: Classification accuracies on CMU text datasets with different number of training samples.
Ten pLSA features along with a linear kernel Φ were used for G-RLSC. Both bag-of-words (BoW)
and pLSA representations of documents were experimented for RLSC and SVM with a linear kernel.
The parameter γ was selected via cross validation. For multi-classification, G-RLSC and RLSC used
one-versus-all strategy. SVM used one-versus-one strategy.

ground of this trick, which goes beyond the discussion of this paper.) With the construction of the
RKHS, the computation is further optimized and the theoretical analysis of such algorithms is also
potentially facilitated.

We evaluated G-RLS learning algorithm in text categorization. The empirical results from real-world
applications have confirmed the effectiveness of the algorithm.
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