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Abstract

Geometrically based methods for various tasks of machine learning have
attracted considerable attention over the last few years. In this paper we
show convergence of eigenvectors of the point cloud Laplacian to the eigen-
functions of the Laplace-Beltrami operator on the underlying manifold, thus
establishing the first convergence results for a spectral dimensionality re-
duction algorithm in the manifold setting.

1 Introduction

The last several years have seen significant activity in geometrically motivated approaches
to data analysis and machine learning. The unifying premise behind these methods is
the assumption that many types of high-dimensional natural data lie on or near a low-
dimensional manifold. Collectively this class of learning algorithms is often referred to as
manifold learning algorithms. Some recent manifold algorithms include Isomap [14] and
Locally Linear Embedding (LLE) [13].

In this paper we provide a theoretical analysis for the Laplacian Eigenmaps introduced in [2],
a framework based on eigenvectors of the graph Laplacian associated to the point-cloud data.
More specifically, we prove that under certain conditions, eigenvectors of the graph Laplacian
converge to eigenfunction of the Laplace-Beltrami operator on the underlying manifold.
We note that in mathematics the manifold Laplacian is a classical object of differential
geometry with a rich tradition of inquiry. It is one of the key objects associated to a general
differentiable Riemannian manifold. Indeed, several recent manifold learning algorithms are
closely related to the Laplacian. The eigenfunction of the Laplacian are also eigenfunctions
of heat diffusions, which is the point of view explored by Coifman and colleagues at Yale
University in a series of recent papers on data analysis (e.g., [6]). Hessian Eigenmaps
approach which uses eigenfunctions of the Hessian operator for data representation was
proposed by Donoho and Grimes in [7]. Laplacian is the trace of the Hessian. Finally, as
observed in [2], the cost function that is minimized to obtain the embedding of LLE is an
approximation to the squared Laplacian.

In the manifold learning setting, the underlying manifold is usually unknown. Therefore
functional maps from the manifold need to be estimated using point cloud data. The com-
mon approximation strategy in these methods is to construct an adjacency graph associated
to a point cloud. The underlying intuition is that since the graph is a proxy for the manifold,
inference based on the structure of the graph corresponds to the desired inference based on
the geometric structure of the manifold. Theoretical results to justify this intuition have
been developed over the last few years. Building on recent results on functional convergence
of approximation for the Laplace-Beltrami operator using heat kernels and results on consis-
tency of eigenfunctions for empirical approximations of such operators, we show convergence
of the Laplacian Eigenmaps algorithm. We note that in order to prove convergence of a



spectral method, one needs to demonstrate convergence of the empirical eigenvalues and
eigenfunctions. To our knowledge this is the first complete convergence proof for a spectral
manifold learning method.

1.1 Prior and Related Work

This paper relies on results obtained in [3, 1] for functional convergence of operators. It
turns out, however, that considerably more careful analysis is required to ensure spectral
convergence, which is necessary to guarantee convergence of the corresponding algorithms.
To the best of our knowledge previous results are not sufficient to guarantee convergence
for any spectral method in the manifold setting.

Lafon in [10] generalized pointwise convergence results from [1] to the important case of
an arbitrary probability distribution on the manifold. We also note [4], where a similar
result is shown for the case of a domain in R

n. Those results were further generalized and
presented with an empirical pointwise convergence theorem for the manifold case in [9]. We
observe that the arguments in this paper are likely to allow one to use these results to show
convergence of eigenfunctions for a wide class of probability distributions on the manifold.
Empirical convergence of spectral clustering for a fixed kernel parameter t was analyzed
in [11] and is used in this paper. However the geometric case requires t → 0. The results in
this paper as well as in [3, 1] are for the case of a uniform probability distribution on the
manifold. Recently [8] provided deeper probabilistic analysis in that case.

Finally we point out that while the analogies between the geometry of manifolds and the ge-
ometry of graphs are well-known in spectral graph theory and in certain areas of differential
geometry (see, e.g., [5]) the exact nature of that parallel is usually not made precise.

2 Main Result

The main result of this paper is to show convergence of eigenvectors of graph Laplacian
associated to a point cloud dataset to eigenfunctions of the Laplace-Beltrami operator when
the data is sampled from a uniform probability distribution on an embedded manifold.

In what follows we will assume that the manifold M is a compact infinitely differentiable
Riemannian submanifold of R

N without boundary. Recall now that the Laplace-Beltrami
operator ∆ on M is a differential operator ∆ : C2 → L2 defined as

∆f = −div (∇f)

where ∇f is the gradient vector field and div denotes divergence.

∆ is a positive semi-definite self-adjoint operator and has a discrete spectrum on a compact
manifold. We will generally denote its ith smallest eigenvalue by λi and the corresponding
eigenfunction by ei. See [12] for a thorough introduction to the subject.

We define the operator Lt : L2(M) → L2(M) as follows (µ is the standard measure):

Lt(f)(p) = (4πt)−
k+2

2

(
∫

M
e−

‖p−q‖2

4t f(p) dµq −
∫

M
e−

‖p−q‖2

4t f(q) dµq

)

If xi are the data points, the corresponding empirical version is given by

L̂t
n(f)(p) =

(4πt)−
k+2

2

n

(

∑

i

e−
‖p−xi‖2

4t f(p) −
∑

i

e−
‖p−xi‖2

4t f(xi)

)

The operator L̂t
n is (the extension of) the point cloud Laplacian that forms the basis of

the Laplacian Eigenmaps algorithm for manifold learning. It is easy to see that it acts by
matrix multiplication on functions restricted to the point cloud, with the matrix being the
corresponding graph Laplacian. We will assume that xi are randomly i.i.d. sampled from
M according to the uniform distribution.

Our main theorem shows that that there is a way to choose a sequence tn, such that the
eigenfunctions of the empirical operators L̂tn

n converge to the eigenfunctions of the Laplace-
Beltrami operator ∆ in probability.



Theorem 2.1 Let λt
n,i be the ith eigenvalue of L̂t

n and et
n,i be the corresponding eigenfunc-

tion (which, for each fixed i, will be shown to exist for t sufficiently small). Let λi and ei

be the corresponding eigenvalue and eigenfunction of ∆ respectively. Then there exists a
sequence tn → 0, such that

lim
n→∞

λtn

n,i = λi

lim
n→∞

‖etn

n,i(x) − ei(x)‖2 = 0

where the limits are in probability.

3 Overview of the proof

The proof of the main theorem consists of two main parts. One is spectral convergence of
the functional approximation Lt to ∆ as t → 0 and the other is spectral convergence of the
empirical approximation L̂t

n to Lt as the number of data points n tends to infinity. These
two types of convergence are then put together to obtain the main Theorem 2.1.

Part 1. The more difficult part of the proof is to show convergence of eigenvalues and
eigenfunctions of the functional approximation Lt to those of ∆ as t → 0. To demonstrate

convergence we will take a different functional approximation 1−H
t

t
of ∆, where Ht is the

heat operator. While 1−H
t

t
does not converge uniformly to ∆ they share an eigenbasis and

for each fixed i the ith eigenvalue of 1−H
t

t
converges to the ith eigenvalue of ∆. We will then

consider the operator Rt = 1−H
t

t
−Lt. A careful analysis of this operator, which constitutes

the bulk of the proof paper, shows that Rt is a small relatively bounded perturbation of 1−H
t

t
,

in the sense that for any function f we have ‖Rtf‖2

‖ 1−Ht

t
f‖2

≪ 1 as t → 0. This will imply spectral

convergence and lead to the following

Theorem 3.1 Let λi, λ
t
i, ei, e

t
i be the ith smallest eigenvalues and the corresponding eigen-

functions of ∆ and Lt respectively. Then

lim
t→0

|λi − λt
i| = 0

lim
t→0

‖ei − et
i‖2 = 0

Part 2. The second part is to show that the eigenfunctions of the empirical operator L̂t
n

converge to eigenfunctions of Lt as n → ∞ in probability. That result follows readily from
the previous work in [11] together with the analysis of the essential spectrum of Lt. The
following theorem is obtained:

Theorem 3.2 For a fixed sufficiently small t, let λt
n,i and λt

i be the ith eigenvalue of L̂t
n

and Lt respectively. Let et
n,i and et

i be the corresponding eigenfunctions. Then

lim
n→∞

λt
n,i = λt

i

lim
n→∞

‖et
n,i(x) − et

i(x)‖2 = 0

assuming that λt
i ≤ 1

2t
. The convergence is almost sure.

Observe that this implies convergence for any fixed i as soon as t is sufficiently small.

Symbolically these two theorems can be represented by top line of the following diagram:

Eig L̂t
n

Eig ∆Eig Lt............................................................................................................................................................................... ............
n → ∞

............................................................................................................................................................................... ............

probabilistic
............................................................................................................................................................................... ............

t → 0
............................................................................................................................................................................... ............

deterministic
.........................

...................
................
..............
.............
............
...........
..........
..........
.........
........
.............
............

n → ∞ tn → 0



After demonstrating two types of convergence results in the top line of the diagram a simple
argument shows that a sequence tn can be chosen to guarantee convergence as in the final
Theorem 2.1 and provides the bottom arrow.

4 Spectral Convergence of Functional Approximations.

4.1 Main Objects and the Outline of the Proof

Let M be a compact smooth smoothly embedded k-dimensional manifold in R
N with the

induced Riemannian structure and the corresponding induced measure µ.

As above, we define the operator Lt : L2(M) → L2(M) as follows:

Lt(f)(x) = (4πt)−
k+2

2

(
∫

M
e−

‖x−y‖2

4t f(x) dµy −
∫

M
e−

‖x−y‖2

4t f(y) dµy

)

As shown in previous work, this operator serves as a functional approximation to the
Laplace-Beltrami operator on M. The purpose of this paper is to extend the previous results
to the eigenvalues and eigenfunctions, which turn out to need some careful estimates.

We start by reviewing certain properties of the Laplace-Beltrami operator and its connection
to the heat equation. Recall that the heat equation on the manifold M is given by

∆h(x, t) =
∂h(x, t)

∂t

where h(x, t) is the heat at time t at point x. Let f(x) = h(x, 0) be the initial heat
distribution. We observe that from the definition of the derivative

∆f = lim
t→0

1

t
(h(x, t) − f(x))

It is well-known (e.g., [12]) that the solution to the heat equation at time t can be written
as

Htf(x) := h(x, t) =

∫

M
Ht(x, y)f(y)dµy

Here Ht is the heat operator and Ht(x, y) is the heat kernel of M. It is also well-known
that the heat operator Ht can be written as Ht = e−t∆. We immediately see that ∆ =

limt→0
1−H

t

t
and that eigenfunctions of Ht and hence eigenfunction of 1−H

t

t
coincide with

eigenfunctions of the Laplace operator. The ith eigenvalue of 1−H
t

t
is equal to 1−e−tλi

t
,

where λi as usual is the ith eigenvalue of ∆.

It is easy to observe that once the heat kernel Ht(x, y) is known, finding the Laplace operator
poses no difficulty:

∆f = lim
t→0

1

t

(

f(x) −
∫

M
Ht(x, y)f(y) dµy

)

= lim
t→0

(

1 − Ht

t

)

f (1)

Reconstructing the Laplacian from a point cloud is possible because of the fundamental fact
that the manifold heat kernel Ht(x, y) can be approximated by the ambient space Gaussian

and hence Lt is an approximation to 1−H
t

t
and can be shown to converge for a fixed f to

∆. This pointwise operator convergence is discussed in [10, 3, 1].

To obtain convergence of eigenfunctions, however, one typically needs the stronger uniform
convergence. If An is a sequence of operators, we say that An → A uniformly in L2 if
sup‖f‖2=1 ‖Anf −Af‖2 → 0. This is sufficient for convergence of eigenfunctions and other
spectral properties.

It turns out that this type of convergence does not hold for functional approximation Lt

as t → 0, which presents a serious technical obstruction to proving convergence of spectral

properties. To observe that Lt does not converge uniformly to ∆, observe that while 1−H
t

t



converges to ∆ for each fixed function f , even this convergence is not uniform. Indeed,
for a small t, we can always choose a sufficiently large λi ≫ 1/t and the corresponding
eigenfunction ei of ∆, s.t.

∥

∥

∥

∥

(

1 − Ht

t
− ∆

)

ei

∥

∥

∥

∥

2

=

∣

∣

∣

∣

1

t
(1 − e−tλi) − λi

∣

∣

∣

∣

≈
∣

∣

∣

∣

1

t
− λi

∣

∣

∣

∣

≫ 1

Since Lt is an approximation to 1−H
t

t
, uniform convergence cannot be expected and the

standard perturbation theory techniques do not apply. To overcome this obstacle we need
the two following key ingredients:

Observation 1. Eigenfunctions of 1−H
t

t
coincide with eigenfunctions of ∆.

Observation 2. Lt is a small relatively bounded perturbation of 1−H
t

t
.

While the first of these observations is immediate, the second is the technical core of this
work. The relative boundedness of the perturbation will imply convergence of eigenfunctions

of Lt to those of 1−H
t

t
and hence, by the Observation 1, to eigenfunctions of ∆.

We now define the perturbation operator

Rt =
1 − Ht

t
− Lt

The relative boundedness of the self-adjoint perturbation operator Rt is formalized as fol-
lows:

Theorem 4.1 For any 0 < ǫ < 2

k+2
there exists a constant C, such that for all t sufficiently

small
|〈Rtf, f〉|
〈1−Ht

t
f, f〉

≤ C max
(

t
2

k+2
−ǫ, t

k+2

2
ǫ
)

In particular

lim
t→0

sup
‖f‖2=1

〈Rtf, f〉
〈1−Ht

t
f, f〉

= 0

and hence Rt is dominated by 1−H
t

t
on L2 as t tends to 0.

This result implies that for small values of t, bottom eigenvalues and eigenfunction of Lt

are close to those of 1−H
t

t
, which in turn implies convergence. To establish this result, we

will need two key estimates on the size of the perturbation Rt in two different norms.

Proposition 4.2 Let f ∈ L2. There exists C ∈ R, such that for all sufficiently small values
of t

‖Rtf‖2 ≤ C‖f‖2

Proposition 4.3 Let f ∈ H
k
2
+1, where H

k
2
+1 is a Sobolev space. Then there is C ∈ R,

such that for all sufficiently small values of t

‖Rtf‖2 ≤ C
√

t‖f‖
H

k
2

+1

In what follows we give the proof of the Theorem 4.1 assuming the two Propositions above.
The proof of the Propositions requires technical estimates of the heat kernel and can be
found the longer version of the paper enclosed.

4.2 Proof of Theorem 4.1.

Lemma 4.4 Let e be an eigenvector of ∆ with the eigenvalue λ. Then for some universal
constant C

‖e‖
H

k
2

+1 ≤ Cλ
k+2

4 (2)



The details can be found in the long version. Now we can proceed with the

Proof: [Theorem 4.1]

Let ei(x) be the ith eigenfunction of ∆ and let λi be the corresponding eigenvalue. Recall
that ei form an orthonormal basis of L2(M). Thus any function f ∈ L2(M) can be written
uniquely as f(x) =

∑∞
i=0

aiei(x) where
∑

a2
i < ∞. For technical resons we will assume that

all our functions are perpendicular to the constant and the lowest eigenvalue is nonzero.

Recall also that

Htf = exp(−t∆)f, Htei = exp(−tλi)ei,
1 − Ht

t
ei =

1 − e−λit

t
ei (3)

Now let us fix t and consider the function φ(x) = 1−e−xt

t
for positive x. It is easy to check

that φ is a concave and increasing function of x.

Put x0 = 1/
√

t. We have:

φ(0) = 0 φ(x0) =
1 − e−

√
t

t

φ(x0)

x0

=
1 − e−

√
t

√
t

Splitting the positive real line in two intervals [0, x0], [x0,∞) and using concavity and
monotonicity we observe that

φ(x) ≥ min

(

1 − e−
√

t

√
t

x,
1 − e−

√
t

t

)

Note that limt→0
1−e−

√
t

√
t

= 1.

Therefore for t sufficiently small

φ(x) ≥ min

(

1

2
x,

1

2
√

t

)

Thus
〈

1 − Ht

t
ei, ei

〉

=
1 − e−λit

t
≥ 1

2
min

(

λi,
1√
t

)

(4)

Now take f ∈ L2, f(x) =
∑∞

1
aiei(x). Without a loss of generality we can assume that

‖f‖2 = 1. Taking α > 0, we split f as a sum of f1 and f2 as following:

f1 =
∑

λi≤α

aiei, f2 =
∑

λi>α

aiei

It is clear that f = f1 + f2 and, since f1 and f2 are orthogonal, ‖f‖2
2 = ‖f1‖2

2 + ‖f2‖2
2. We

will now deal separately with f1 and with f2.

From the inequality (4) above, we observe that
〈

1 − Ht

t
f, f

〉

≥ 1

2
λ1

On the other hand, from the inequality (2), we see that if ei is a basis element present in
the basis expansion of f1,

‖ei‖
k
2
+1

H ≤ Cα
k+2

4

Since ∆ acts by rescaling basis elements, we have ‖f1‖
H

k
2

+1 ≤ Cα
k+2

4 .

Therefore by Proposition 4.3 for t sufficiently small and some constant C ′

‖Rtf1‖2 ≤ C ′√tα
k+2

4 (5)



Hence we see that
‖Rtf1‖2

〈1−Ht

t
f, f〉

≤ 2C ′

λ1

√
t α

k+2

4 (6)

Consider now the second summand f2. Recalling that f2 only has basis components with
eigenvalues greater than α and using the inequality (4) we see that

〈

1 − Ht

t
f, f

〉

≥
〈

1 − Ht

t
f2, f2

〉

≥ 1

2
min

(

α,
1√
t

)

‖f2‖2
2 (7)

On the other hand, by Proposition 4.2

‖Rtf2‖2 ≤ C1‖f2‖2
2 (8)

Thus
|〈Rtf2, f2〉|
〈1−Ht

t
f, f〉

≤ ‖Rtf2‖2

〈1−Ht

t
f2, f2〉

≤ C ′
1 max

(

1

α
,
√

t

)

(9)

Finally, collecting inequalities 6 and 9 we see:

|〈Rtf, f〉|
〈1−Ht

t
f, f〉

≤ ‖Rtf1‖ + ‖Rtf2‖
〈1−Ht

t
f, f〉

≤ C

(

max

(

1

α
,
√

t

)

+
√

t α
k+2

4

)

(10)

where C is a constant independent of t and α.

Choosing α = t−
2

k+2
+ǫ where 0 < ǫ < 2

k+2
yields the desired result. �

5 Spectral Convergence of Empirical Approximation

Proposition 5.1 For t sufficiently small

SpecEss (Lt) ⊂
(

1

2
t−1,∞

)

where SpecEss denotes the essential spectrum of the operator.

Proof: As noted before Ltf is a difference of a multiplication operator and a compact
operator

Ltf(p) = g(p)f(p) − Kf (11)

where

g(p) = (4πt)−
k+2

2

∫

M
e−

‖p−q‖2

4t dµq

and Kf is a convolution with a Gaussian. As noted in [11], it is a fact in basic perturbation
theory SpecEss (Lt) = rg g where rg g is the range of the function g : M → R. To estimate
rg g observe first that

lim
t→∞

(4πt)−
k
2

∫

M
e−

‖p−q‖2

4t dµq = 1

We thus see that for t sufficiently small

(4πt)−
k
2

∫

M
e−

‖p−y‖2

4t dµy >
1

2

and hence g(t) > 1

2
t−1. �

Lemma 5.2 Let et be an eigenfunction of Lt, Ltet = λtet, λt < 1

2
t−1. Then et ∈ C∞.

We see that Theorem 3.2 follows easily:

Proof: [Theorem 3.2] By the Proposition 5.1 we see that the part of the spectrum of Lt

between 0 and 1

2
t−1 is discrete. It is a standard fact of functional analysis that such points

are eigenvalues and there are corresponding eigenspaces of finite dimension. Consider now
λt

i ∈ [0, 1

2
t−1] and the corresponding eigenfunction et

i. The Theorem 4 then follows from
Theorem 23 and Proposition 25 in [11], which show convergence of spectral properties for
the empirical operators. �



6 Main Theorem

We are finally in position to prove the main Theorem 4.1: Proof: [Theorem 4.1] From
Theorems 3.2 and 3.1 we obtain the following convergence results:

Eig L̂t
n

Eig ∆Eig Lt..................................................................................................................................... ............
n → ∞

..................................................................................................................................... ............
t → 0

where the first convergence is almost surely for λi ≤ 1

2
t−1. Given any i ∈ N and any ǫ > 0,

we can choose t′ < 2λ−1
i , s.t. for all t < t′ we have ‖ei − et

i‖2 < ǫ
2
. On the other hand, by

using the first arrow, we see that

lim
n→∞ P

{

‖et
n,i − et

i‖2 ≥ ǫ

2

}

= 0

Thus for any p > 0 and for each t there exists an N , s.t. P {‖et
n,i − ei‖2 > ǫ} < p Inverting

this relationship, we see that for any N and for any probability p(N) there exists a tN , s.t.

∀n>N P {‖etN

n,i − ei‖2 > ǫ} < p(N)

Making p(N) tend to zero, we obtain convergence in probability. �
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