
Graph Laplacian Regularization for Large-Scale
Semidefinite Programming

Kilian Q. Weinberger
Dept of Computer and Information Science
U of Pennsylvania, Philadelphia, PA 19104

kilianw@seas.upenn.edu

Fei Sha
Computer Science Division

UC Berkeley, CA 94720
feisha@cs.berkeley.edu

Qihui Zhu
Dept of Computer and Information Science
U of Pennsylvania, Philadelphia, PA 19104

qihuizhu@seas.upenn.edu

Lawrence K. Saul
Dept of Computer Science and Engineering

UC San Diego, La Jolla, CA 92093
saul@cs.ucsd.edu

Abstract

In many areas of science and engineering, the problem arises how to discover low
dimensional representations of high dimensional data. Recently, a number of re-
searchers have converged on common solutions to this problem using methods
from convex optimization. In particular, many results have been obtained by con-
structing semidefinite programs (SDPs) with low rank solutions. While the rank
of matrix variables in SDPs cannot be directly constrained, it has been observed
that low rank solutions emerge naturally by computing high variance or maximal
trace solutions that respect local distance constraints. In this paper, we show how
to solve very large problems of this type by a matrix factorization that leads to
much smaller SDPs than those previously studied. The matrix factorization is de-
rived by expanding the solution of the original problem in terms of the bottom
eigenvectors of a graph Laplacian. The smaller SDPs obtained from this matrix
factorization yield very good approximations to solutions of the original problem.
Moreover, these approximations can be further refined by conjugate gradient de-
scent. We illustrate the approach on localization in large scale sensor networks,
where optimizations involving tens of thousands of nodes can be solved in just a
few minutes.

1 Introduction

In many areas of science and engineering, the problem arises how to discover low dimensional repre-
sentations of high dimensional data. Typically, this high dimensional data is represented in the form
of large graphs or matrices. Such data arises in many applications, including manifold learning [12],
robot navigation [3], protein clustering [6], and sensor localization [1]. In all these applications, the
challenge is to compute low dimensional representations that are consistent with observed measure-
ments of local proximity. For example, in robot path mapping, the robot’s locations must be inferred
from the high dimensional description of its state in terms of sensorimotor input. In this setting,
we expect similar state descriptions to map to similar locations. Likewise, in sensor networks, the
locations of individual nodes must be inferred from the estimated distances between nearby sensors.
Again, the challenge is to find a planar representation of the sensors that preserves local distances.

In general, it is possible to formulate these problems as simple optimizations over the low dimen-
sional representations !xi of individual instances (e.g., robot states, sensor nodes). The most straight-



forward formulations, however, lead to non-convex optimizations that are plagued by local minima.
For this reason, large-scale problems cannot be reliably solved in this manner.

A more promising approach reformulates these problems as convex optimizations, whose global
minima can be efficiently computed. Convexity is obtained by recasting the problems as optimiza-
tions over the inner product matrices Xij = !xi · !xj . The required optimizations can then be relaxed
as instances of semidefinite programming [10], or SDPs. Two difficulties arise, however, from this
approach. First, only low rank solutions for the inner product matrices X yield low dimensional
representations for the vectors !xi. Rank constraints, however, are non-convex; thus SDPs and other
convex relaxations are not guaranteed to yield the desired low dimensional solutions. Second, the
resulting SDPs do not scale very well to large problems. Despite the theoretical guarantees that fol-
low from convexity, it remains prohibitively expensive to solve SDPs over matrices with (say) tens
of thousands of rows and similarly large numbers of constraints.

For the first problem of “rank regularization”, an apparent solution has emerged from recent work in
manifold learning [12] and nonlinear dimensionality reduction [14]. This work has shown that while
the rank of solutions from SDPs cannot be directly constrained, low rank solutions often emerge nat-
urally by computing maximal trace solutions that respect local distance constraints. Maximizing the
trace of the inner product matrix X has the effect of maximizing the variance of the low dimensional
representation {!xi}. This idea was originally introduced as “semidefinite embedding” [12, 14], then
later described as “maximum variance unfolding” [9] (and yet later as “kernel regularization” [6, 7]).
Here, we adopt the name maximum variance unfolding (MVU) which seems to be currently ac-
cepted [13, 15] as best capturing the underlying intuition.

This paper addresses the second problem mentioned above: how to solve very large problems in
MVU. We show how to solve such problems by approximately factorizing the large n×n matrix X
as X ≈ QYQ! where Q is a pre-computed n×m rectangular matrix with m#n. The factorization
leaves only the much smaller m ×m matrix Y to be optimized with respect to local distance con-
straints. With this factorization, and by collecting constraints using the Schur complement lemma,
we show how to rewrite the original optimization over the large matrix X as a simple SDP involving
the smaller matrix Y. This SDP can be solved very quickly, yielding an accurate approximation to
the solution of the original problem. Moreover, if desirable, this solution can be further refined [1]
by (non-convex) conjugate gradient descent in the vectors {!xi}.

The main contribution of this paper is the matrix factorization that makes it possible to solve large
problems in MVU. Where does the factorization come from? Either implicitly or explicitly, all
problems of this sort specify a graph whose nodes represent the vectors {!xi} and whose edges
represent local distance constraints. The matrix factorization is obtained by expanding the low
dimensional representation of these nodes (e.g., sensor locations) in terms of the m # n bottom
(smoothest) eigenvectors of the graph Laplacian. Due to the local distance constraints, one expects
the low dimensional representation of these nodes to vary smoothly as one traverses edges in the
graph. The presumption of smoothness justifies the partial orthogonal expansion in terms of the
bottom eigenvectors of the graph Laplacian [5]. Similar ideas have been widely applied in graph-
based approaches to semi-supervised learning [4]. Matrix factorizations of this type have also been
previously studied for manifold learning; in [11, 15], though, the local distance constraints were
not properly formulated to permit the large-scale applications considered here, while in [8], the
approximation was not considered in conjunction with a variance-maximizing term to favor low
dimensional representations.

The approach in this paper applies generally to any setting in which low dimensional representa-
tions are derived from an SDP that maximizes variance subject to local distance constraints. For
concreteness, we illustrate the approach on the problem of localization in large scale sensor net-
works, as recently described by [1]. Here, we are able to solve optimizations involving tens of
thousands of nodes in just a few minutes. Similar applications to the SDPs that arise in manifold
learning [12], robot path mapping [3], and protein clustering [6, 7] present no conceptual difficulty.

This paper is organized as follows. Section 2 reviews the problem of localization in large scale
sensor networks and its formulation by [1] as an SDP that maximizes variance subject to local
distance constraints. Section 3 shows how we solve large problems of this form—by approximating
the inner product matrix of sensor locations as the product of smaller matrices, by solving the smaller
SDP that results from this approximation, and by refining the solution from this smaller SDP using



local search. Section 4 presents our experimental results on several simulated networks. Finally,
section 5 concludes by discussing further opportunities for research.

2 Sensor localization via maximum variance unfolding

Figure 1: Sensors distributed over US cities. Dis-
tances are estimated between nearby cities within
a fixed radius.

The problem of sensor localization is best il-
lustrated by example; see Fig. 1. Imagine that
sensors are located in major cities throughout
the continental US, and that nearby sensors can
estimate their distances to one another (e.g., via
radio transmitters). From only this local infor-
mation, the problem of sensor localization is to
compute the individual sensor locations and to
identify the whole network topology. In purely
mathematical terms, the problem can be viewed
as computing a low rank embedding in two or
three dimensional Euclidean space subject to
local distance constraints.

We assume there are n sensors distributed
in the plane and formulate the problem as
an optimization over their planar coordinates
!x1, . . . , !xn ∈ %2. (Sensor localization in three
dimensional space can be solved in a similar
way.) We define a neighbor relation i ∼ j if
the ith and jth sensors are sufficiently close to
estimate their pairwise distance via limited-range radio transmission. From such (noisy) estimates
of local pairwise distances {dij}, the problem of sensor localization is to infer the planar coordi-
nates {!xi}. Work on this problem has typically focused on minimizing the sum-of-squares loss
function [1] that penalizes large deviations from the estimated distances:

min
!x1,...,!xn

∑

i∼j

(
‖!xi − !xj‖2 − d2

ij

)2 (1)

In some applications, the locations of a few sensors are also known in advance. For simplicity, in
this work we consider the scenario where no such “anchor points” are available as prior knowledge,
and the goal is simply to position the sensors up to a global rotation, reflection, and translation.
Thus, to the above optimization, without loss of generality we can add the centering constraint:

∥∥∥
∑

i
!xi

∥∥∥
2

= 0. (2)

It is straightforward to extend our approach to incorporate anchor points, which generally leads to
even better solutions. In this case, the centering constraint is not needed.

The optimization in eq. (1) is not convex; hence, it is likely to be trapped by local minima. By relax-
ing the constraint that the sensor locations !xi lie in the %2 plane, we obtain a convex optimization
that is much more tractable [1]. This is done by rewriting the optimization in eqs. (1–2) in terms of
the elements of the inner product matrix Xij =!xi · !xj . In this way, we obtain:

Minimize:
∑

i∼j

(
Xii − 2Xij + Xjj − d2

ij

)2

subject to: (i)
∑

ij
Xij = 0 and (ii) X ) 0. (3)

The first constraint centers the sensors on the origin, as in eq. (2), while the second constraint
specifies that X is positive semidefinite, which is necessary to interpret it as an inner product matrix
in Euclidean space. In this case, the vectors {!xi} are determined (up to rotation) by singular value
decomposition.

The convex relaxation of the optimization in eqs. (1–2) drops the constraint that that the vectors
!xi lie in the %2 plane. Instead, the vectors will more generally lie in a subspace of dimensionality



equal to the rank of the solution X. To obtain planar coordinates, one can project these vectors into
their two dimensional subspace of maximum variance, obtained from the top two eigenvectors of
X. Unfortunately, if the rank of X is high, this projection loses information. As the error of the
projection grows with the rank of X, we would like to enforce that X has low rank. However, the
rank of a matrix is not a convex function of its elements; thus it cannot be directly constrained as
part of a convex optimization.

Mindful of this problem, the approach to sensor localization in [1] borrows an idea from recent work
in unsupervised learning [12, 14]. Very simply, an extra term is added to the loss function that favors
solutions with high variance, or equivalently, solutions with high trace. (The trace is proportional
to the variance assuming that the sensors are centered on the origin, since tr(X) =

∑
i ‖!xi‖2.)

The extra variance term in the loss function favors low rank solutions; intuitively, it is based on
the observation that a flat piece of paper has greater diameter than a crumpled one. Following this
intuition, we consider the following optimization:

Maximize: tr(X)− ν
∑

i∼j

(
Xii − 2Xij + Xjj − d2

ij

)2

subject to: (i)
∑

ij
Xij = 0 and (ii) X ) 0. (4)

The parameter ν > 0 balances the trade-off between maximizing variance and preserving local
distances. This general framework for trading off global variance versus local rigidity has come to
be known as maximum variance unfolding (MVU) [9, 15, 13].

As demonstrated in [1, 9, 6, 14], these types of optimizations can be written as semidefinite programs
(SDPs) [10]. Many general-purpose solvers for SDPs exist in the public domain (e.g., [2]), but even
for systems with sparse constraints, they do not scale very well to large problems. Thus, for small
networks, this approach to sensor localization is viable, but for large networks (n∼104), exact
solutions are prohibitively expensive. This leads us to consider the methods in the next section.

3 Large-scale maximum variance unfolding

Most SDP solvers are based on interior-point methods whose time-complexity scales cubically in
the matrix size and number of constraints [2]. To solve large problems in MVU, even approximately,
we must therefore reduce them to SDPs over small matrices with small numbers of constraints.

3.1 Matrix factorization

To obtain an optimization involving smaller matrices, we appeal to ideas in spectral graph theory [5].
The sensor network defines a connected graph whose edges represent local pairwise connectivity.
Whenever two nodes share an edge in this graph, we expect the locations of these nodes to be
relatively similar. We can view the location of the sensors as a function that is defined over the
nodes of this graph. Because the edges represent local distance constraints, we expect this function
to vary smoothly as we traverse edges in the graph. The idea of graph regularization in this context is
best understood by analogy. If a smooth function is defined on a bounded interval of %1, then from
real analysis, we know that it can be well approximated by a low order Fourier series. A similar type
of low order approximation exists if a smooth function is defined over the nodes of a graph. This
low-order approximation on graphs will enable us to simplify the SDPs for MVU, just as low-order
Fourier expansions have been used to regularize many problems in statistical estimation.

Function approximations on graphs are most naturally derived from the eigenvectors of the graph
Laplacian [5]. For unweighted graphs, the graph Laplacian L computes the quadratic form

f!Lf =
∑

i∼j

(fi − fj)2 (5)

on functions f ∈ %n defined over the nodes of the graph. The eigenvectors of L provide a set of
basis functions over the nodes of the graph, ordered by smoothness. Thus, smooth functions f can
be well approximated by linear combinations of the bottom eigenvectors of L.

Expanding the sensor locations !xi in terms of these eigenvectors yields a compact factorization
for the inner product matrix X. Suppose that !xi ≈

∑m
α=1 Qiα!yα, where the columns of the n×m



rectangular matrix Q store the m bottom eigenvectors of the graph Laplacian (excluding the uniform
eigenvector with zero eigenvalue). Note that in this approximation, the matrix Q can be cheaply pre-
computed from the unweighted connectivity graph of the sensor network, while the vectors !yα play
the role of unknowns that depend in a complicated way on the local distance estimates dij . Let Y
denote the m ×m inner product matrix of these vectors, with elements Yαβ = !yα · !yβ . From the
low-order approximation to the sensor locations, we obtain the matrix factorization:

X ≈ QYQ!. (6)
Eq. (6) approximates the inner product matrix X as the product of much smaller matrices. Using this
approximation for localization in large scale networks, we can solve an optimization for the much
smaller m×m matrix Y, as opposed to the original n×n matrix X.

The optimization for the matrix Y is obtained by substituting eq. (6) wherever the matrix X appears
in eq. (4). Some simplifications occur due to the structure of the matrix Q. Because the columns
of Q store mutually orthogonal eigenvectors, it follows that tr(QYQ!)= tr(Y). Because we do not
include the uniform eigenvector in Q, it follows that QYQ! automatically satisfies the centering
constraint, which can therefore be dropped. Finally, it is sufficient to constrain Y)0, which implies
that QYQ!)0. With these simplifications, we obtain the following optimization:

Maximize: tr(Y)− ν
∑

i∼j

[
(QYQ!)ii−2(QYQ!)ij +(QYQ!)jj − d2

ij

]2

subject to: Y ) 0 (7)

Eq. (6) can alternately be viewed as a form of regularization, as it constrains neighboring sensors
to have nearby locations even when the estimated local distances dij suggest otherwise (e.g., due to
noise). Similar forms of graph regularization have been widely used in semi-supervised learning [4].

3.2 Formulation as SDP

As noted earlier, our strategy for solving large problems in MVU depends on casting the required
optimizations as SDPs over small matrices with few constraints. The matrix factorization in eq. (6)
leads to an optimization over the m × m matrix Y, as opposed to the n × n matrix X. In this
section, we show how to cast this optimization as a correspondingly small SDP. This requires us to
reformulate the quadratic optimization over Y ) 0 in eq. (4) in terms of a linear objective function
with linear or positive semidefinite constraints.

We start by noting that the objective function in eq. (7) is a quadratic function of the elements of the
matrix Y. Let Y ∈ %m2

denote the vector obtained by concatenating all the columns of Y. With
this notation, the objective function (up to an additive constant) takes the form

b!Y − Y!AY, (8)

where A ∈ %m2×m2
is the positive semidefinite matrix that collects all the quadratic coefficients in

the objective function and b ∈ %m2
is the vector that collects all the linear coefficients. Note that

the trace term in the objective function, tr(Y), is absorbed by the vector b.

With the above notation, we can write the optimization in eq. (7) as an SDP in standard form. As in
[8], this is done in two steps. First, we introduce a dummy variable # that serves as a lower bound
on the quadratic piece of the objective function in eq. (8). Next, we express this bound as a linear
matrix inequality via the Schur complement lemma. Combining these steps, we obtain the SDP:

Maximize: b!Y − #

subject to: (i) Y ) 0 and (ii)

[
I A

1
2Y

(A
1
2Y)! #

]
) 0. (9)

In the second constraint of this SDP, we have used I to denote the m2×m2 identity matrix and A
1
2

to denote the matrix square root. Thus, via the Schur lemma, this constraint expresses the lower
bound # ≥ Y!AY , and the SDP is seen to be equivalent to the optimization in eqs. (7–8).

The SDP in eq. (9) represents a drastic reduction in complexity from the optimization in eq. (7).
The only variables of the SDP are the m(m + 1)/2 elements of Y and the unknown scalar #. The



only constraints are the positive semidefinite constraint on Y and the linear matrix inequality of size
m2×m2. Note that the complexity of this SDP does not depend on the number of nodes or edges in
the network. As a result, this approach scales very well to large problems in sensor localization.

In the above formulation, it is worth noting the important role played by quadratic penalties. The
use of the Schur lemma in eq. (9) was conditioned on the quadratic form of the objective function
in eq. (7). Previous work on MVU has enforced the distance constraints as strict equalities [12],
as one-sided inequalities [9, 11], and as soft constraints with linear penalties [14]. Expressed as
SDPs, these earlier formulations of MVU involved as many constraints as edges in the underlying
graph, even with the matrix factorization in eq. (6). Thus, the speed-ups obtained here over previous
approaches are not merely due to graph regularization, but more precisely to its use in conjunction
with quadratic penalties, all of which can be collected in a single linear matrix inequality via the
Schur lemma.

3.3 Gradient-based improvement

While the matrix factorization in eq. (6) leads to much more tractable optimizations, it only provides
an approximation to the global minimum of the original loss function in eq. (1). As suggested in [1],
we can refine the approximation from eq. (9) by using it as initial starting point for gradient descent
in eq. (1). In general, gradient descent on non-convex functions can converge to undesirable local
minima. In this setting, however, the solution of the SDP in eq. (9) provides a highly accurate
initialization. Though no theoretical guarantees can be made, in practice we have observed that this
initialization often lies in the basin of attraction of the true global minimum.

Our most robust results were obtained by a two-step process. First, starting from the m-dimensional
solution of eq. (9), we used conjugate gradient methods to maximize the objective function in eq. (4).
Though this objective function is written in terms of the inner product matrix X, the hill-climbing in
this step was performed in terms of the vectors !xi ∈ %m. While not always necessary, this first step
was mainly helpful for localization in sensor networks with irregular (and particularly non-convex)
boundaries. It seems generally difficult to representation such boundaries in terms of the bottom
eigenvectors of the graph Laplacian. Next, we projected the results of this first step into the %2

plane and use conjugate gradient methods to minimize the loss function in eq. (1). This second step
helps to correct patches of the network where either the graph regularization leads to oversmoothing
and/or the rank constraint is not well modeled by MVU.

4 Results

We evaluated our algorithm on two simulated sensor networks of different size and topology. We
did not assume any prior knowledge of sensor locations (e.g., from anchor points). We added white
noise to each local distance measurement with a standard deviation of 10% of the true local distance.

!0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

!0.8 !0.6 !0.4 !0.2 0 0.2 0.4 0.6 0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

Figure 2: Sensor locations inferred for n = 1055 largest cities in the continental US. On average,
each sensor estimated local distances to 18 neighbors, with measurements corrupted by 10% Gaus-
sian noise; see text. Left: sensor locations obtained by solving the SDP in eq. (9) using the m=10
bottom eigenvectors of the graph Laplacian (computation time 4s). Despite the obvious distortion,
the solution provides a good initial starting point for gradient-based improvement. Right: sensor
locations after post-processing by conjugate gradient descent (additional computation time 3s).



Figure 3: Results on a simulated network with n = 20000 uniformly distributed nodes inside a
centered unit square. See text for details.

The first simulated network, shown in Fig. 1, placed nodes at scaled locations of the n = 1055 largest
cities in the continental US. Each node estimated the local distance to up to 18 other nodes within
a radius of size r = 0.09. The SDP in eq. (9) was solved using the m = 10 bottom eigenvectors
of the graph Laplacian. Fig. 2 shows the solution from this SDP (on the left), as well as the final
result after gradient-based improvement (on the right), as described in section 3.3. From the figure,
it can be seen that the solution of the SDP recovers the general topology of the network but tends to
clump nodes together, especially near the boundaries. After gradient-based improvement, however,
the inferred locations differ very little from the true locations. The construction and solution of the
SDP required 4s of total computation time on a 2.4 GHz Pentium 4 desktop computer, while the
post-processing by conjugate gradient descent took an additional 3s.

0 5 10 15 20

objective

time

o
b

je
ct

iv
e 

v
a
lu

e

number of eigenvectors

co
m

p
u

ta
ti

o
n

 t
im

e 
(i

n
 s

ec
)

2.0

1.0

480

240

Figure 4: Left: the value of the loss func-
tion in eq. (1) from the solution of the SDP in
eq. (8). Right: the computation time to solve
the SDP. Both are plotted versus the number
of eigenvectors, m, in the matrix factoriza-
tion.

The second simulated network, shown in Fig. 3,
placed nodes at n = 20000 uniformly sampled
points inside the unit square. The nodes were then
centered on the origin. Each node estimated the lo-
cal distance to up to 20 other nodes within a radius of
size r = 0.06. The SDP in eq. (9) was solved using
the m=10 bottom eigenvectors of the graph Lapla-
cian. The computation time to construct and solve
the SDP was 19s. The follow-up conjugate gradi-
ent optimization required 52s for 100 line searches.
Fig. 3 illustrates the absolute positional errors of the
sensor locations computed in three different ways:
the solution from the SDP in eq. (8), the refined so-
lution obtain by conjugate gradient descent, and the
“baseline” solution obtained by conjugate gradient
descent from a random initialization. For these plots,
the sensors were colored so that the ground truth
positioning reveals the word CONVEX in the fore-
ground with a radial color gradient in the background. The refined solution in the third panel is seen
to yield highly accurate results. (Note: the representations in the second and fourth panels were
scaled by factors of 0.50 and 1028, respectively, to have the same size as the others.)

We also evaluated the effect of the number of eigenvectors, m, used in the SDP. (We focused on the
role of m, noting that previous studies [1, 7] have thoroughly investigated the role of parameters such
as the weight constant ν, the sensor radius r, and the noise level.) For the simulated network with
nodes at US cities, Fig. 4 plots the value of the loss function in eq. (1) obtained from the solution of
eq. (8) as a function of m. It also plots the computation time required to create and solve the SDP.
The figure shows that more eigenvectors lead to better solutions, but at the expense of increased
computation time. In our experience, there is a “sweet spot” around m ≈ 10 that best manages
this tradeoff. Here, the SDP can typically be solved in seconds while still providing a sufficiently
accurate initialization for rapid convergence of subsequent gradient-based methods.

Finally, though not reported here due to space constraints, we also tested our approach on various
data sets in manifold learning from [12]. Our approach generally reduced previous computation
times of minutes or hours to seconds with no noticeable loss of accuracy.



5 Discussion

In this paper, we have proposed an approach for solving large-scale problems in MVU. The approach
makes use of a matrix factorization computed from the bottom eigenvectors of the graph Laplacian.
The factorization yields accurate approximate solutions which can be further refined by local search.
The power of the approach was illustrated by simulated results on sensor localization. The networks
in section 4 have far more nodes and edges than could be analyzed by previously formulated SDPs
for these types of problems [1, 3, 6, 14]. Beyond the problem of sensor localization, our approach
applies quite generally to other settings where low dimensional representations are inferred from
local distance constraints. Thus we are hopeful that the ideas in this paper will find further use in
areas such as robotic path mapping [3], protein clustering [6, 7], and manifold learning [12].

Acknowledgments

This work was supported by NSF Award 0238323.

References
[1] P. Biswas, T.-C. Liang, K.-C. Toh, T.-C. Wang, and Y. Ye. Semidefinite programming approaches for

sensor network localization with noisy distance measurements. IEEE Transactions on Automation Science
and Engineering, 3(4):360–371, 2006.

[2] B. Borchers. CSDP, a C library for semidefinite programming. Optimization Methods and Software
11(1):613-623, 1999.

[3] M. Bowling, A. Ghodsi, and D. Wilkinson. Action respecting embedding. In Proceedings of the Twenty
Second International Conference on Machine Learning (ICML-05), pages 65–72, Bonn, Germany, 2005.

[4] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT Press, Cambridge, MA,
2006.

[5] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.
[6] F. Lu, S. Keles, S. Wright, and G. Wahba. Framework for kernel regularization with application to protein

clustering. Proceedings of the National Academy of Sciences, 102:12332–12337, 2005.
[7] F. Lu, Y. Lin, and G. Wahba. Robust manifold unfolding with kernel regularization. Technical Report

1108, Department of Statistics, University of Wisconsin-Madison, 2005.
[8] F. Sha and L. K. Saul. Analysis and extension of spectral methods for nonlinear dimensionality reduction.

In Proceedings of the Twenty Second International Conference on Machine Learning (ICML-05), pages
785–792, Bonn, Germany, 2005.

[9] J. Sun, S. Boyd, L. Xiao, and P. Diaconis. The fastest mixing Markov process on a graph and a connection
to a maximum variance unfolding problem. SIAM Review, 48(4):681–699, 2006.

[10] L. Vandenberghe and S. P. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95, March 1996.
[11] K. Q. Weinberger, B. D. Packer, and L. K. Saul. Nonlinear dimensionality reduction by semidefinite

programming and kernel matrix factorization. In Z. Ghahramani and R. Cowell, editors, Proceedings of
the Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS-05), pages 381–388,
Barbados, West Indies, 2005.

[12] K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite program-
ming. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR-04),
volume 2, pages 988–995, Washington D.C., 2004. Extended version in International Journal of Com-
puter Vision, 70(1): 77-90, 2006.

[13] K. Q. Weinberger and L. K. Saul. An introduction to nonlinear dimensionality reduction by maximum
variance unfolding. In Proceedings of the Twenty First National Conference on Artificial Intelligence
(AAAI-06), Cambridge, MA, 2006.

[14] K. Q. Weinberger, F. Sha, and L. K. Saul. Learning a kernel matrix for nonlinear dimensionality reduction.
In Proceedings of the Twenty First International Conference on Machine Learning (ICML-04), pages
839–846, Banff, Canada, 2004.

[15] L. Xiao, J. Sun, and S. Boyd. A duality view of spectral methods for dimensionality reduction. In
Proceedings of the Twenty Third International Conference on Machine Learning (ICML-06), pages 1041–
1048, Pittsburgh, PA, 2006.


