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Abstract

We consider approximate value iteration with a parameterized approxi-
mator in which the state space is partitioned and the optimal cost-to-go
function over each partition is approximated by a constant. We estab-
lish performance loss bounds for policies derived from approximations
associated with fixed points. These bounds identify benefits to having
projection weights equal to the invariant distribution of the resulting pol-
icy. Such projection weighting leads to the same fixed points as TD(0).
Our analysis also leads to the first performance loss bound for approxi-
mate value iteration with an average cost objective.

1 Preliminaries

Consider a discrete-time communicating Markov decision process (MDP) with a finite state
space S = {1,...,|S|}. Ateach state x € S, there is a finite set I, of admissible actions.
If the current state is « and an action u € U, is selected, a cost of g, () is incurred, and
the system transitions to a state y € S with probability p,,(u). Forany € S and u € Uy,
> yes Pay(u) = 1. Costs are discounted at a rate of a € (0, 1) per period. Each instance

of such an MDP is defined by a quintuple (S,U, g, p, ).

A (stationary deterministic) policy is a mapping p that assigns an action v € U, to each
state x € S. If actions are selected based on a policy , the state follows a Markov process
with transition matrix P,,, where each (z, y)th entry is equal to p,, (1(z)). The restriction
to communicating MDPs ensures that it is possible to reach any state from any other state.

Each policy p is associated with a cost-to-go function J, € RISI, defined by Ju =
o Plg, = (I —aP,)""g,, where, with some abuse of notation, g, () = g,(x)(z)
for each x € S. A policy p is said to be greedy with respect to a function J if
p(x) € argmin(gy () + a - o5 Pay(u)J(y)) forallz € S.

UEU,

The optimal cost-to-go function J* € RIS is defined by J*(z) = min,, J,(z), for all
x € §. A policy p* is said to be optimal if J,- = J*. It is well-known that an optimal
policy exists. Further, a policy p* is optimal if and only if it is greedy with respect to J*.
Hence, given the optimal cost-to-go function, optimal actions can computed be minimizing
the right-hand side of the above inclusion.



Value iteration generates a sequence Jy; converging to J* according to Jyy1 = T'Jy,
where T is the dynamic programming operator, defined by (7'J)(z) = minyey, (g.(z) +
) esPoy(u)J(y)), forallz € Sand J € RISI. This sequence converges to J* for any
initialization of Jj.

2 Approximate Value Iteration

The state spaces of relevant MDPs are typically so large that computation and storage of
a cost-to-go function is infeasible. One approach to dealing with this obstacle involves
partitioning the state space S into a manageable number K of disjoint subsets Sy, ..., Sk
and approximating the optimal cost-to-go function with a function that is constant over
each partition. This can be thought of as a form of state aggregation — all states within a
given partition are assumed to share a common optimal cost-to-go.

To represent an approximation, we define a matrix ® € RISI*K such that each kth column
is an indicator function for the kth partition S;. Hence, for any r € RE k,and z € S,
(®r)(x) = 7. In this paper, we study variations of value iteration, each of which computes
a vector 7 so that ®r approximates J*. The use of such a policy p, which is greedy with
respect to ®r is justified by the following result (see [10] for a proof):

Theorem 1 If i1 is a greedy policy with respect to a function J € RIS then
2cr
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One common way of approximating a function .J € RIS! with a function of the form & in-
volves projection with respect to a weighted Euclidean norm || - || . The weighted Euclidean

norm: || J|[2. = (X ,cs 77(:10)J2(a;))1/2. Here, 7 € R°! is a vector of weights that assign
relative emphasis among states. The projection 1 J is the function ®r that attains the min-
imum of ||J — ®r||2 »; if there are multiple functions ®r that attain the minimum, they must
form an affine space, and the projection is taken to be the one with minimal norm || ®r||2 .
Note that in our context, where each kth column of ® represents an indicator function for
the kth partition, for any 7, J, and x € Sk, (IlxJ)(z) = >_ cs5, (W) (Y)/ 2 cs, T(Y)-

Approximate value iteration begins with a function ®r(°) and generates a sequence accord-
ing to &+ = I, T®r® . It is well-known that the dynamic programming operator 7" is
a contraction mapping with respect to the maximum norm. Further, II; is maximum-norm
nonexpansive [16, 7, 8]. (This is not true for general ®, but is true in our context in which
columns of @ are indicator functions for partitions.) It follows that the composition I, T’
is a contraction mapping. By the contraction mapping theorem, I, 7" has a unique fixed
point &7, which is the limit of the sequence ®r(©). Further, the following result holds:

Theorem 2 For any MDP, partition, and weights w with support intersecting every parti-
tion, if ®r = 1L, T ®r then

~ * 2 : *
|7 — T [los < =g Juin [J* = @r|o,

and

4o
1-— Jpr — I oo < —— min [|J* — Or|| .
(1= @)y = T llow < 7 mmin |7 = r]

The first inequality of the theorem is an approximation error bound, established in [16, 7, 8]
for broader classes of approximators that include state aggregation as a special case. The



second is a performance loss bound, derived by simply combining the approximation error
bound and Theorem 1.

Note that J,,.(x) > J*(z) for all z, so the left-hand side of the performance loss bound
is the maximal increase in cost-to-go, normalized by 1 — «. This normalization is natural,
since a cost-to-go function is a linear combination of expected future costs, with coefficients
1,a,a2, ..., whichsumto 1/(1 — a).

Our motivation of the normalizing constant begs the question of whether, for fixed MDP
parameters (S,U, g, p) and fixed ®, min, ||J* — ®r|| also grows with 1/(1 — ). It turns
out that min, ||J* — ®r|| = O(1). To see why, note that for any y,

B 1
J,=(I—aP,) 1gu:—1 aAquhm

where A, (z) is the expected average cost if the process starts in state = and is controlled
by policy p,

1 T—1
Ay = lim — P!
e o Z nYns
t=0
and h,, is the discounted differential cost function

h,=(I—aP,) (g, — M)

Both )\, and h, converge to finite vectors as o approaches 1 [3]. For an optimal policy
w*, limaq1 Ay- () does not depend on  (in our context of a communicating MDP). Since
constant functions lie in the range of ®,

(;gllrrélgl&ll T\Ioo_o{?lll\ plloo <00

The performance loss bound still exhibits an undesirable dependence on « through the
coefficient 4a;/(1 — «). In most relevant contexts, « is close to 1; a representative value
might be 0.99. Consequently, 4c/(1 — «) can be very large. Unfortunately, the bound is
sharp, as expressed by the following theorem. We will denote by 1 the vector with every
component equal to 1.

Theorem 3 For any § > 0, « € (0,1), and A > 0, there exists MDP parameters
(8,U,g,p) and a partition such that min,cgpx ||J* — 1|0 = A and, if &7 = I, TPF
withm™ =1,

(1= ) = T lloe > T min [l = b1 =

This theorem is established through an example in [22]. The choice of uniform weights
(m = 1) is meant to point out that even for such a simple, perhaps natural, choice of
weights, the performance loss bound is sharp.

Based on Theorems 2 and 3, one might expect that there exists MDP parameters (S,U, g, p)
and a partition such that, with 7 = 1,

* _ 1 . ®
(1= @)y — Tl = © (Mmﬁ 1 <I>r||m) |

In other words, that the performance loss is both lower and upper bounded by 1/(1 — «)
times the smallest possible approximation error. It turns out that this is not true, at least
if we restrict to a finite state space. However, as the following theorem establishes, the
coefficient multiplying min,.cpx ||J* — ®r||s can grow arbitrarily large as « increases,
keeping all else fixed.



Theorem 4 For any L and A > 0, there exists MDP parameters (S,U, g, p) and a parti-
tion such that limq11 min, cqx || J* — Or| o = A and, if o7 = ILT®F withm = 1,
liminf(1 — Ju(x)—=J" > Ll in ||J* — ®&r s,
minf(1 — ) (Ju(v) = J*(x)) = Llim min | |

forallx € S.

This Theorem is also established through an example [22].

For any i and z,
lilTrrll (1 —a)d,(z) — Au(z)) = li?ll(l —a)h,(z) =0.

Combined with Theorem 4, this yields the following corollary.

Corollary 1 For any L and A > 0, there exists MDP parameters (S,U, g, p) and a parti-
tion such that lim,1 min, cqx || J* — Or| o = A and, if o7 = ILT®F withm = 1,
liminf (A,. () — Ay« (2)) > Llim min ||J* — &7,
ninf (v, (2) — A (2)) > Llim min |77~ @]
forall x € S.

3 Using the Invariant Distribution

In the previous section, we considered an approximation ®7 that solves II,7®7 = ®7 for
some arbitrary pre-selected weights m. We now turn to consider use of an invariant state
distribution 7 of P, as the weight vector.! This leads to a circular definition: the weights
are used in defining 7 and now we are defining the weights in terms of 7. What we are
really after here is a vector 7 that satisfies 11, 7T'®7 = ®7. The following theorem captures
the associated benefits. (Due to space limitations, we omit the proof, which is provided in
the full length version of this paper [22].)

Theorem 5 For any MDP and partition, if ®r = I1.. T'®7 and 77 has support intersecting
every partition, (1 — a)wl (J,. — J*) < 2amin,cpx || J* — @r|oo.

When « is close to 1, which is typical, the right-hand side of our new performance loss
bound is far less than that of Theorem 2. The primary improvement is in the omission of a
factor of 1 — o from the denominator. But for the bounds to be compared in a meaningful
way, we must also relate the left-hand-side expressions. A relation can be based on the fact
that for all g, limaqq [[(1 — &) J, — Aullec = 0, as explained in Section 2. In particular,
based on this, we have

11%1(1 — )Ty = T oo = Ay = A=A, — A = liﬁnT(JM —J%),
for all policies 1 and probability distributions 7. Hence, the left-hand-side expressions

from the two performance bounds become directly comparable as « approaches 1.

Another interesting comparison can be made by contrasting Corollary 1 against the follow-
ing immediate consequence of Theorem 5.

Corollary 2 For all MDP parameters (S,U, g,p) and partitions, if 7 = I, . T®7 and
liminfar1 ) s, 77 (2) > 0 forall k,

limsup ||[A,. — A= < 2lim min ||J* — &7 s.
s [, = Ayl < 2lim i 77— B

The comparison suggests that solving &7 = IL..T'®r is strongly preferable to solving
7 =11, TPr with m = 1.

"By an invariant state distribution of a transition matrix P, we mean any probability distribution
7 such that 77 P = 77 In the event that P, has multiple invariant distributions, 7 denotes an
arbitrary choice.



4 Exploration

If a vector 7 solves @7 = IL..T'®7 and the support of 7 intersects every partition, Theorem
5 promises a desirable bound. However, there are two significant shortcomings to this
solution concept, which we will address in this section. First, in some cases, the equation
II;, T®r = ®r does not have a solution. It is easy to produce examples of this; though
no example has been documented for the particular class of approximators we are using
here, [2] offers an example involving a different linearly parameterized approximator that
captures the spirit of what can happen. Second, it would be nice to relax the requirement
that the support of 7 intersect every partition.

To address these shortcomings, we introduce stochastic policies. A stochastic policy p
maps state-action pairs to probabilities. For each x € S and v € U,, pu(x,u) is the
probability of taking action w when in state . Hence, p(z,u) > 0 for all z € S and
u €Uy, and ), o, p(r,u) =1forallz €S.

Given a scalar ¢ > 0 and a function J, the e-greedy Boltzmann exploration policy with

respect to J is defined by
e~ (Tud)(@)(Us|—1)/ce
@, u) = Zueu, e—(TuJ)(x)([Ux]—1)/cc

For any € > 0 and r, let 11f. denote the e-greedy Boltzmann exploration policy with respect
to ®r. Further, we define a modified dynamic programming operator that incorporates
Boltzmann exploration:

Zueu 6_(TUJ)(OE)(|Z/{m|_1)/Ee(TuJ) (x)
Zueu,, e~ (Tud) () ([Uz|—1)/ce

(T°J)(z) =

As € approaches 0, e-greedy Boltzmann exploration policies become greedy and the mod-
ified dynamic programming operators become the dynamic programming operator. More
precisely, for all r, x, and J, lim, o pS(z, pr(2)) = 1 and lim¢; T¢J = T'J. These are
immediate consequences of the following result (see [4] for a proof).

Lemma 1l For any n, v € R", min;v; + € > Zie_”i("_l)/“vi/zie‘”i("_l)/“ >
min; v;.

Because we are only concerned with communicating MDPs, there is a unique invariant
state distribution associated with each e-greedy Boltzmann exploration policy p. and the
support of this distribution is S. Let ;. denote this distribution. We consider a vector 7 that
solves @7 = Il T“®r. For any € > 0, there exists a solution to this equation (this is an
immediate extension of Theorem 5.1 from [4]).

We have the following performance loss bound, which parallels Theorem 5 but with an
equation for which a solution is guaranteed to exist and without any requirement on the
resulting invariant distribution. (Again, we omit the proof, which is available in [22].)

Theorem 6 For any MDF, partition, and € > 0, if ®r = Il T°®r then (1 -
o) (7T (Jpe — J*) < 200min, eqx |[J* — @rlloo + €

3

5 Computation: TD(0)

Though computation is not a focus of this paper, we offer a brief discussion here. First,
we describe a simple algorithm from [16], which draws on ideas from temporal-difference
learning [11, 12] and Q-learning [23, 24] to solve &7 = IL,7'®7. It requires an abil-
ity to sample a sequence of states (9, z(1) 2(2) . each independent and identically



distributed according to 7. Also required is a way to efficiently compute (7'®r)(z) =
minyeu, (9u () + @32, c s Poy(w)(®r)(y)), for any given z and r. This is typically pos-
sible when the action set U, and the support of p,.(u) (i.e., the set of states that can follow
z if action w is selected) are not too large. The algorithm generates a sequence of vectors
7 according to

D = (0 () ((T@r(‘))(x“)) — (@T(f))(x(@)) ,

where ~y, is a step size and ¢(x) denotes the column vector made up of components from
the xth row of ®. In [16], using results from [15, 9], it is shown that under appropriate as-
sumptions on the step size sequence, () converges to a vector 7 that solves &7 = I1,, T 7.

The equation ®7 = II,7®7 may have no solution. Further, the requirement that states
are sampled independently from the invariant distribution may be impractical. However, a
natural extension of the above algorithm leads to an easily implementable version of TD(0)
that aims at solving ®r = IL,T°®r. The algorithm requires simulation of a trajectory
g, X1, L2, ... of the MDP, with each action us € Uy, generated by the e-greedy Boltz-
mann exploration policy with respect to ®r(*), The sequence of vectors () is generated
according to

P =3O o) (T@r) (@) - (@rD) (@) )

Under suitable conditions on the step size sequence, if this algorithm converges, the limit
satisfies &7 = I, 7°®r. Whether such an algorithm converges and whether there are
other algorithms that can effectively solve 7 = Il T“®r for broad classes of relevant
problems remain open issues.

6 Extensions and Open Issues

Our results demonstrate that weighting a Euclidean norm projection by the invariant dis-
tribution of a greedy (or approximately greedy) policy can lead to a dramatic performance
gain. It is intriguing that temporal-difference learning implicitly carries out such a pro-
jection, and consequently, any limit of convergence obeys the stronger performance loss
bound.

This is not the first time that the invariant distribution has been shown to play a critical
role in approximate value iteration and temporal-difference learning. In prior work involv-
ing approximation of a cost-to-go function for a fixed policy (no control) and a general
linearly parameterized approximator (arbitrary matrix ®), it was shown that weighting by
the invariant distribution is key to ensuring convergence and an approximation error bound
[17, 18]. Earlier empirical work anticipated this [13, 14].

The temporal-difference learning algorithm presented in Section 5 is a version of TD(0),
This is a special case of TD()), which is parameterized by A € [0,1]. It is not known
whether the results of this paper can be extended to the general case of A € [0,1]. Prior
research has suggested that larger values of A lead to superior results. In particular, an
example of [1] and the approximation error bounds of [17, 18], both of which are restricted
to the case of a fixed policy, suggest that approximation error is amplified by a factor of
1/(1 — «) as A is changed from 1 to 0. The results of Sections 3 and 4 suggest that
this factor vanishes if one considers a controlled process and performance loss rather than
approximation error.

Whether the results of this paper can be extended to accommodate approximate value it-
eration with general linearly parameterized approximators remains an open issue. In this
broader context, error and performance loss bounds of the kind offered by Theorem 2 are



unavailable, even when the invariant distribution is used to weight the projection. Such
error and performance bounds are available, on the other hand, for the solution to a certain
linear program [5, 6]. Whether a factor of 1/(1 — «) can similarly be eliminated from these
bounds is an open issue.

Our results can be extended to accommodate an average cost objective, assuming that the
MDP is communicating. With Boltzmann exploration, the equation of interest becomes

OF = Tpe (T°OF — A1).

The variables include an estimate A € R of the minimal average cost A* € & and an
approximation ®7 of the optimal differential cost function ~h*. The discount factor « is set
to 1 in computing an e-greedy Boltzmann exploration policy as well as 7. There is an
average-cost version of temporal-difference learning for which any limit of convergence
(A, 7) satisfies this equation [19, 20, 21]. Generalization of Theorem 2 does not lead to a
useful result because the right-hand side of the bound becomes infinite as o approaches 1.
On the other hand, generalization of Theorem 6 yields the first performance loss bound for
approximate value iteration with an average-cost objective:

Theorem 7 For any communicating MDP with an average-cost objective, partition, and
€>0, if &7 = Il (T<®7 — A1) then

Aue — A* <2 min [|h* — &l + €.
" reRkK

Here, A,c € ¥t denotes the average cost under policy p%, which is well-defined because the
process is irreducible under an e-greedy Boltzmann exploration policy. This theorem can be
proved by taking limits on the left and right-hand sides of the bound of Theorem 6. It is easy
to see that the limit of the left-hand side is A,c — A*. The limit of min, cgx [|J* — 7|
on the right-hand side is min,.cpx ||h* — @7||. (This follows from the analysis of [3].)
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