
Dual-Tree Fast Gauss Transforms

Dongryeol Lee
Computer Science

Carnegie Mellon Univ.
dongryel@cmu.edu

Alexander Gray
Computer Science

Carnegie Mellon Univ.
agray@cs.cmu.edu

Andrew Moore
Computer Science

Carnegie Mellon Univ.
awm@cs.cmu.edu

Abstract

In previous work we presented an efficient approach to computing ker-
nel summations which arise in many machine learning methods such as
kernel density estimation. This approach, dual-tree recursion with finite-
difference approximation, generalized existing methods for similar prob-
lems arising in computational physics in two ways appropriate for sta-
tistical problems: toward distribution sensitivity and general dimension,
partly by avoiding series expansions. While this proved to be the fastest
practical method for multivariate kernel density estimation at the optimal
bandwidth, it is much less efficient at larger-than-optimal bandwidths.
In this work, we explore the extent to which the dual-tree approach can
be integrated with multipole-like Hermite expansions in order to achieve
reasonable efficiency across all bandwidth scales, though only for low di-
mensionalities. In the process, we derive and demonstrate the first truly
hierarchical fast Gauss transforms, effectively combining the best tools
from discrete algorithms and continuous approximation theory.

1 Fast Gaussian Summation

Kernel summations are fundamental in both statistics/learning and computational physics.

This paper will focus on the common formG(xq) =
NR∑
r=1

e
−||xq−xr||2

2h2 i.e. where the ker-

nel is the Gaussian kernel with scaling parameter, orbandwidthh, there areNR reference
pointsxr, and we desire the sum forNQ differentquery pointsxq. Such kernel summations
appear in a wide array of statistical/learning methods [5], perhaps most obviously in kernel
density estimation [11], the most widely used distribution-free method for the fundamental
task of density estimation, which will be our main example. Understanding kernel summa-
tion algorithms from a recently developed unified perspective [5] begins with the picture of
Figure 1, then separately considers the discrete and continuous aspects.

Discrete/geometric aspect.In terms of discrete algorithmic structure, the dual-tree frame-
work of [5], in the context of kernel summation, generalizes all of the well-known algo-
rithms. 1 It was applied to the problem of kernel density estimation in [7] using a simple

1These include the Barnes-Hut algorithm [2], the Fast Multipole Method [8], Appel’s algorithm
[1], and the WSPD [4]: the dual-tree method is a node-node algorithm (considers query regions rather
than points), is fully recursive, can use distribution-sensitive data structures such askd-trees, and is
bichromatic (can specialize for differing query and reference sets).

Figure 1: The basic idea is to approximate the kernel sum contribution of some subset of the ref-
erence pointsXR, lying in some compact region of spaceR with centroidxR, to a query point. In
more efficient schemes a query region is considered,i.e. the approximate contribution is made to an
entire subset of the query pointsXQ lying in some region of spaceQ, with centroidxQ.

finite-difference approximation, which is tantamount to a centroid approximation. Partially
by avoiding series expansions, which depend explicitly on the dimension, the result was
the fastest such algorithm for general dimension, when operating at the optimal bandwidth.
Unfortunately, when performing cross-validation to determine the (initially unknown) op-
timal bandwidth, both suboptimally small and large bandwidths must be evaluated. The
finite-difference-based dual-tree method tends to be efficient at or below the optimal band-
width, and at very large bandwidths, but for intermediately-large bandwidths it suffers.

Continuous/approximation aspect. This motivates investigating a multipole-like series
approximation which is appropriate for the Gaussian kernel, as introduced by [9], which
can be shown the generalize the centroid approximation. We define the Hermite functions
hn(t) by hn(t) = e−t2Hn(t), where the Hermite polynomialsHn(t) are defined by the
Rodrigues formula:Hn(t) = (−1)net2Dne−t2 , t ∈ R

1. After scaling and shifting the ar-
gumentt appropriately, then taking the product of univariate functions for each dimension,
we obtain the multivariateHermite expansion

G(xq) =

NR∑

r=1

e
−||xq−xr||2

2h2 =

NR∑

r=1

∑

α≥0

1

α!

(
xr − xR√

2h2

)α

hα

(
xq − xR√

2h2

)
(1)

where we’ve adopted the usual multi-index notation as in [9]. This can be re-written as

G(xq) =

NR∑

r=1

e
−||xq−xr||2

2h2 =

NR∑

r=1

∑

α≥0

1

α!
hα

(
xr − xQ√

2h2

) (
xq − xQ√

2h2

)α

(2)

to express the sum as aTaylor (local) expansionabout a nearby representative centroidxQ

in the query region. We will be using both types of expansions simultaneously.

Since series approximations only hold locally, Greengard and Rokhlin [8] showed that it
is useful to think in terms of a set of three ‘translation operators’ for converting between
expansions centered at different points, in order to create their celebrated hierarchical algo-
rithm. This was done in the context of the Coulombic kernel, but the Gaussian kernel has
importantly different mathematical properties. The original Fast Gauss Transform (FGT)
[9] was based on a flat grid, and thus provided only one operator (“H2L” of the next sec-
tion), with an associated error bound (which was unfortunately incorrect). The Improved
Fast Gauss Transform (IFGT) [14] was based on a flat set of clusters and provided no op-
erators with a rearranged series approximation, which intended to be more favorable in
higher dimensions but had an incorrect error bound. We will show the derivations of all
the translation operators and associated error bounds needed to obtain, for the first time, a
hierarchicalalgorithm for the Gaussian kernel.

2 Translation Operators and Error Bounds

The first operator converts a multipole expansion of a reference node to form a local expan-
sion centered at the centroid of the query node, and is our main approximation workhorse.

Lemma 2.1. Hermite-to-local (H2L) translation operator for Gaussian kernel(as pre-
sented in Lemma 2.2 in [9, 10]): Given a reference nodeXR, a query nodeXQ, and the

Hermite expansion centered at a centroidxR of XR: G(xq) =
∑

α≥0

Aαhα

(
xq−xR√

2h2

)
, the

Taylor expansion of the Hermite expansion at the centroidxQ of the query nodeXQ is

given byG(xq) =
∑
β≥0

Bβ

(
xq−xQ√

2h2

)β

whereBβ = (−1)|β|

β!

∑
α≥0

Aαhα+β

(
xQ−xR√

2h2

)
.

Proof. (sketch) The proof consists of replacing the Hermite function portion of the expan-
sion with its Taylor series.

Note that we can rewriteG(xq) =
∑

α≥0

[
NR∑
r=1

1
α!

(
xr−xR√

2h2

)α
]

hα

(
xq−xR√

2h2

)
by interchanging

the summation order, such that the term in the brackets depends only on the reference
points, and can thus be computed indepedent of any query location – we will call such
terms Hermite moments. The next operator allows the efficient pre-computation of the
Hermite moments in the reference tree in a bottom-up fashion from its children.

Lemma 2.2. Hermite-to-Hermite (H2H) translation operator for Gaussian kernel:
Given the Hermite expansion centered at a centroidxR′ in a reference nodeXR′ :

G(xq) =
∑

α≥0

A′
αhα

(
xq−xR′√

2h2

)
, this same Hermite expansion shifted to a new loca-

tion xR of the parent node ofXR is given byG(xq) =
∑
γ≥0

Aγhγ

(
xq−xR√

2h2

)
where

Aγ =
∑

0≤α≤γ

1
(γ−α)!A

′
α

(
xR′−xR√

2h2

)γ−α

.

Proof. We simply replace the Hermite function part of the expansion by a new Taylor
series, as follows:

G(xq) =
X

α≥0

A
′
αhα

„
xq − xR′
√

2h2

«

=
X

α≥0

A
′
α

X

β≥0

1

β!

„
xR − xR′
√

2h2

«β

(−1)|β|
hα+β

„
xq − xR√

2h2

«

=
X

α≥0

X

β≥0

A
′
α

1

β!

„
xR − xR′
√

2h2

«β

(−1)|β|
hα+β

„
xq − xR√

2h2

«

=
X

α≥0

X

β≥0

A
′
α

1

β!

„
xR′ − xR√

2h2

«β

hα+β

„
xq − xR√

2h2

«

=
X

γ≥0

2
4 X

0≤α≤γ

1

(γ − α)!
A

′
α

„
xR′ − xR√

2h2

«γ−α

3
5hγ

„
xq − xR√

2h2

«

whereγ = α + β.

The next operator acts as a “clean-up” routine in a hierarchical algorithm. Since we can
approximate at different scales in the query tree, we must somehow combine all the ap-
proximations at the end of the computation. By performing a breadth-first traversal of the
query tree, the L2L operator shifts a node’s local expansion to the centroid of each child.

Lemma 2.3. Local-to-local (L2L) translation operator for Gaussian ker-
nel: Given a Taylor expansion centered at a centroidxQ′ of a query node

XQ′ : G(xq) =
∑
β≥0

Bβ

(
xq−xQ′√

2h2

)β

, the Taylor expansion obtained by shift-

ing this expansion to the new centroidxQ of the child nodeXQ is G(xq) =

∑
α≥0

[
∑

β≥α

β!
α!(β−α)!Bβ

(
xQ−xQ′√

2h2

)β−α

] (
xq−xQ√

2h2

)α

.

Proof. Applying the multinomial theorem to to expand about the new centerxQ yields:

G(xq) =
X

β≥0

Bβ

„
xq − xQ′

√
2h2

«β

=
X

β≥0

X

α≤β

Bβ
β!

α!(β − α)!

„
xQ − xQ′

√
2h2

«β−α„
xq − xQ√

2h2

«α

.

whose summation order can be interchanged to achieve the result.

Because the Hermite and the Taylor expansion are truncated after takingpD terms, we incur
an error in approximation. The original error bounds for the Gaussian kernel in [9, 10] were
wrong and corrections were shown in [3]. Here, we will present all necessary three error
bounds incurred in performing translation operators. We note that these error bounds place
limits on the size of the query node and the reference node.2

Lemma 2.4. Error Bound for Truncating an Hermite Expansion (as presented in [3]):
Suppose we are given an Hermite expansion of a reference nodeXR about its centroidxR:

G(xq) =
∑

α≥0

Aαhα

(
xq−xR√

2h2

)
whereAα =

NR∑
r=1

1
α!

(
xr−xR√

2h2

)α

. For any query pointxq, the

error due to truncating the series after the firstpD term is|ǫM (p)| ≤ NR

(1−r)D

D−1∑
k=0

(
D
k

)
(1−

rp)k
(

rp
√

p!

)D−k

where∀xr ∈ XR satisfies||xr − xR||∞ < rh for r < 1.

Proof. (sketch) We expand the Hermite expansion as a product of one-dimensional Her-
mite functions, and utilize a bound on one-dimensional Hermite functions due to [13]:
1
n! |hn(x)| ≤ 2

n
2√
n!

e
−x2

2 , n ≥ 0, x ∈ R
1.

Lemma 2.5. Error Bound for Truncating a Taylor Expansion Converted from an
Hermite Expansion of Infinite Order: Suppose we are given the following Taylor ex-

pansion about the centroidxQ of a query nodeG(xq) =
∑
β≥0

Bβ

(
xq−xQ√

2h2

)β

where

2Strain [12] proposed the interesting idea of using Stirling’s formula (for any non-negative integer
n:
`

n+1

e

´n ≤ n!) to lift the node size constraint; one might imagine that this could allow approxi-
mation of larger regions in a tree-based algorithm. Unfortunately, the error bounds developed in [12]
were also incorrect. We have derived the three necessary corrected error bounds based on the tech-
niques in [3]. However, due to space, and because using these bounds actually degraded performance
slightly, we do not include those lemmas here.

Bβ = (−1)|β|

β!

∑
α≥0

Aαhα+β

(
xQ−xR√

2h2

)
and Aα’s are the coefficients of the Hermite ex-

pansion centered at the reference node centroidxR. Then, truncating the series after

pD terms satisfies the error bound|ǫL(p)| ≤ NR

(1−r)D

D−1∑
k=0

(
D
k

)
(1 − rp)k

(
rp
√

p!

)D−k

where

||xq − xQ||∞ < rh for r < 1, ∀xq ∈ XQ.

Proof. Taylor expansion of the Hermite function yields

e
−||xq−xr||2

2h2 =
X

β≥0

(−1)|β|

β!

X

α≥0

1

α!

„
xr − xR√

2h2

«α

hα+β

„
xQ − xR√

2h2

«„
xq − xQ√

2h2

«β

=
X

β≥0

(−1)|β|

β!

X

α≥0

1

α!

„
xR − xr√

2h2

«α

(−1)|α|
hα+β

„
xQ − xR√

2h2

«„
xq − xQ√

2h2

«β

=
X

β≥0

(−1)|β|

β!
hβ

„
xQ − xr√

2h2

«„
xq − xQ√

2h2

«β

Usee
−||xq−xr||2

2h2 =
D∏

i=1

(up(xqi
, xri

, xQi
) + vp(xqi

, xri
, xQi

)) for 1 ≤ i ≤ D, where

up(xqi
, xri

, xQi
) =

p−1X

ni=0

(−1)ni

ni!
hni

„
xQi

− xri√
2h2

«„
xqi

− xQi√
2h2

«ni

vp(xqi
, xri

, xQi
) =

∞X

ni=p

(−1)ni

ni!
hni

„
xQi

− xri√
2h2

«„
xqi

− xQi√
2h2

«ni

.

These univariate functions respectively satisfyup(xqi
, xri

, xQi
) ≤ 1−rp

1−r
and

vp(xqi
, xri

, xQi
) ≤ 1√

p!
rp

1−r
, for 1 ≤ i ≤ D, achieving the multivariate bound.

Lemma 2.6. Error Bound for Truncating a Taylor Expansion Converted from an Al-
ready Truncated Hermite Expansion: A truncated Hermite expansion centered about

the centroidxR of a reference nodeG(xq) =
∑

α<p

Aαhα

(
xq−xR√

2h2

)
has the following

Taylor expansion about the centroidxQ of a query node:G(xq) =
∑
β≥0

Cβ

(
xq−xQ√

2h2

)β

where the coefficientsCβ are given byCβ = (−1)|β|

β!

∑
α<p

Aαhα+β

(
xQ−xR√

2h2

)
. Truncat-

ing the series afterpD terms satisfies the error bound|ǫL(p)| ≤ NR

(1−2r)2D

D−1∑
k=0

(
D
k

)
((1 −

(2r)p)2)k
(

((2r)p)(2−(2r)p)√
p!

)D−k

for a query nodeXQ for which||xq − xQ||∞ < rh, and

a reference nodeXR for which||xr − xR||∞ < rh for r < 1
2 , ∀xq ∈ XQ, ∀xr ∈ XR.

Proof. We defineupi = up(xqi
, xri

, xQi
, xRi

), vpi = vp(xqi
, xri

, xQi
, xRi

), wpi =
wp(xqi

, xri
, xQi

, xRi
) for 1 ≤ i ≤ D:

upi =

p−1X

ni=0

(−1)ni

ni!

p−1X

nj=0

1

nj !

„
xRi

− xri√
2h2

«nj

(−1)nj hni+nj

„
xQi

− xRi√
2h2

«„
xqi

− xQi√
2h2

«ni

vpi =

p−1X

ni=0

(−1)ni

ni!

∞X

nj=p

1

nj !

„
xRi

− xri√
2h2

«nj

(−1)nj hni+nj

„
xQi

− xRi√
2h2

«„
xqi

− xQi√
2h2

«ni

wpi =
∞X

ni=p

(−1)ni

ni!

∞X

nj=0

1

nj !

„
xRi

− xri√
2h2

«nj

(−1)nj hni+nj

„
xQi

− xRi√
2h2

«„
xqi

− xQi√
2h2

«ni

Note thate
−||xq−xr ||2

2h2 =
D∏

i=1

(upi + vpi + wpi) for 1 ≤ i ≤ D. Using the bound for

Hermite functions and the property of geometric series, we obtain the following upper
bounds:

upi ≤
p−1X

ni=0

p−1X

nj=0

(2r)ni(2r)nj =

„
1 − (2r)p)

1 − 2r

«2

vpi ≤
1√
p!

p−1X

ni=0

∞X

nj=p

(2r)ni(2r)nj =
1√
p!

„
1 − (2r)p

1 − 2r

«„
(2r)p

1 − 2r

«

wpi ≤
1√
p!

∞X

ni=p

∞X

nj=0

(2r)ni(2r)nj =
1√
p!

„
1

1 − 2r

«„
(2r)p

1 − 2r

«

Therefore,
˛̨
˛̨
˛e

−||xq−xr||2

2h2 −
DY

i=1

upi

˛̨
˛̨
˛ ≤ (1 − 2r)−2D

D−1X

k=0

D

k

!
((1 − (2r)p)2)k

„
((2r)p)(2 − (2r)p)√

p!

«D−k

˛

˛

˛

˛

˛

˛

G(xq) −
X

β<p

Cβ

„

xq − xQ√
2h2

«β

˛

˛

˛

˛

˛

˛

≤
NR

(1 − 2r)2D

D−1
X

k=0

“D

k

”

((1 − (2r)
p
)
2
)
k

„

((2r)p)(2 − (2r)p)
√

p!

«D−k

3 Algorithm and Results

Algorithm. The algorithm mainly consists of making the function call
DFGT(Q.root,R.root), i.e. calling the recursive functionDFGT() with the root
nodes of the query tree and reference tree. After theDFGT() routine is completed, the
pre-order traversal of the query tree implied by the L2L operator is performed. Before the
DFGT() routine is called, the reference tree could be initialized with Hermite coefficients
stored in each node using the H2H translation operator, but instead we will compute
them as needed on the fly. It adaptively chooses among three possible methods for
approximating the summation contribution of the points in nodeR to the queries in node
Q, which are self-explanatory, based on crude operation count estimates.Gmin

Q , a running
lower bound on the kernel sumG(xq) for any xq ∈ XQ, is used to ensure locally that
the global relative error isǫ or less. This automatic mechanism allows the user to specify
only an error toleranceǫ rather than other tweak parameters. Upon approximation, the
upper and lower bounds onG for Q and all its children are updated; the latter can be
done in anO(1) delayed fashion as in [7]. The remainder of the routine implements the
characteristic four-way dual-tree recursion. We also tested a hybrid method (DFGTH)
which approximates if either of the DFD or DFGT approximation criteria are met.

Experimental results. We empirically studied the runtime3 performance of five algo-
rithms on five real-world datasets for kernel density estimation at every query point with a
range of bandwidths, from 3 orders of magnitude smaller than optimal to three orders larger
than optimal, according to the standard least-squares cross-validation score [11]. The naive

3All times include all preprocessing costs including any data structure construction. Times are
measured in CPU seconds on a dual-processor AMD Opteron 242 machine with 8 Gb of main mem-
ory and 1 Mb of CPU cache. All the codes that we have written and obtained are written in C and
C++, and was compiled under-O6 -funroll-loops flags on Linux kernel 2.4.26.

algorithm computes the sum explicitly and thus exactly. We have limited all datasets to

50K points so that true relative error,i.e.
(
|Ĝ(xq) − Gtrue(xq)|

)
/Gtrue(xq), can be eval-

uated, and set the tolerance at 1% relative error for all query points. When any method fails
to achieve the error tolerance in less time than twice that of the naive method, we give up.
Codes for the FGT [9] and for the IFGT [14] were obtained from the authors’ websites.
Note that both of these methods require the user to tweak parameters, while the others are
automatic.4 DFD refers to the depth-first dual-tree finite-difference method [7].

DFGT(Q, R)
pDH = pDL = pH2L = ∞
if R.maxside< 2h, pDH = the smallestp ≥ 1 such that

NR

(1−r)D

D−1∑
k=0

(
D
k

)
(1 − rp)k

(
rp
√

p!

)D−k

< ǫGmin
Q .

if Q.maxside< 2h, pDL = the smallestp ≥ 1 such that

NR

(1−r)D

D−1∑
k=0

(
D
k

)
(1 − rp)k

(
rp

√
p!

)D−k

< ǫGmin
Q .

if max(Q.maxside,R.maxside) < h, pH2L = the smallestp ≥ 1 such that

NR

(1−2r)2D

D−1∑
k=0

(
D
k

)
((1 − (2r)p)2)k

(
((2r)p)(2−(2r)p)√

p!

)D−k

< ǫGmin
Q .

cDH = pD
DHNQ. cDL = pD

DLNR. cH2L = DpD+1
H2L . cDirect = DNQNR.

if no Hermite coefficient of orderpDH exists forXR,
Compute it.cDH = cDH + pD

DHNR.
if no Hermite coefficient of orderpH2L exists forXR,

Compute it.cH2L = cH2L + pD
H2LNR.

c = min(cDH , cDL, cH2L, cDirect).
if c = cDH < ∞, (Direct Hermite)

Evaluate eachxq at the Hermite series of orderpDH centered aboutxR of XR

using Equation 1.
if c = cDL < ∞, (Direct Local)

Accumulate eachxr ∈ XR as the Taylor series of orderpDL about the center
xQ of XQ using Equation 2.

if c = cH2L < ∞, (Hermite-to-Local)
Convert the Hermite series of orderpH2L centered aboutxR of XR to the Taylor
series of the same order centered aboutxQ of XQ using Lemma 2.1.

if c 6= cDirect,
UpdateGmin andGmax in Q and all its children.return.

if leaf(Q) and leaf(R),
Perform the naive algorithm on every pair of points inQ andR.

else
DFGT(Q.left, R.left). DFGT(Q.left, R.right).
DFGT(Q.right,R.left). DFGT(Q.right,R.right).

4For the FGT, note that the algorithm only ensures:
˛̨
˛ bG(xq) − Gtrue(xq)

˛̨
˛ ≤ τ . Therefore, we

first setτ = ǫ, halving τ until the error toleranceǫ was met. For the IFGT, which has multiple
parameters that must be tweaked simultaneously, an automatic scheme was created, based on the
recommendations given in the paper and software documentation: ForD = 2, usep = 8; for D = 3,
usep = 6; setρx = 2.5; start withK =

√
N and doubleK until the error tolerance is met. When this

failed to meet the tolerance, we resorted to additional trial and error by hand. The costs of parameter
selection for these methods in both computer and human time is not included in the table.

Algorithm\ scale 0.001 0.01 0.1 1 10 100 1000
sj2-50000-2 (astronomy: positions),D = 2, N = 50000, h∗ = 0.00139506

Naive 301.696 301.696 301.696 301.696 301.696 301.696 301.696
FGT out of RAM out of RAM out of RAM 3.892312 2.01846 0.319538 0.183616
IFGT > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive 7.576783
DFD 0.837724 1.087066 1.658592 6.018158 62.077669 151.590062 1.551019
DFGT 0.849935 1.11567 4.599235 72.435177 18.450387 2.777454 2.532401
DFGTH 0.846294 1.10654 1.683913 6.265131 5.063365 1.036626 0.68471

colors50k (astronomy: colors),D = 2, N = 50000, h∗ = 0.0016911

Naive 301.696 301.696 301.696 301.696 301.696 301.696 301.696
FGT out of RAM out of RAM out of RAM > 2×Naive > 2×Naive 0.475281 0.114430
IFGT > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive 7.55986
DFD 1.095838 1.469454 2.802112 30.294007 280.633106 81.373053 3.604753
DFGT 1.099828 1.983888 29.231309 285.719266 12.886239 5.336602 3.5638
DFGTH 1.081216 1.47692 2.855083 24.598749 7.142465 1.78648 0.627554

edsgc-radec-rnd (astronomy: angles),D = 2, N = 50000, h∗
= 0.00466204

Naive 301.696 301.696 301.696 301.696 301.696 301.696 301.696
FGT out of RAM out of RAM out of RAM 2.859245 1.768738 0.210799 0.059664
IFGT > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive 7.585585
DFD 0.812462 1.083528 1.682261 5.860172 63.849361 357.099354 0.743045
DFGT 0.84023 1.120015 4.346061 73.036687 21.652047 3.424304 1.977302
DFGTH 0.821672 1.104545 1.737799 6.037217 5.7398 1.883216 0.436596

mockgalaxy-D-1M-rnd (cosmology: positions),D = 3, N = 50000, h∗
= 0.000768201

Naive 354.868751 354.868751 354.868751 354.868751 354.868751 354.868751 354.868751
FGT out of RAM out of RAM out of RAM out of RAM > 2×Naive > 2×Naive > 2×Naive
IFGT > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive
DFD 0.70054 0.701547 0.761524 0.843451 1.086608 42.022605 383.12048
DFGT 0.73007 0.733638 0.799711 0.999316 50.619588 125.059911 109.353701
DFGTH 0.724004 0.719951 0.789002 0.877564 1.265064 22.6106 87.488392

bio5-rnd (biology: drug activity),D = 5, N = 50000, h∗
= 0.000567161

Naive 364.439228 364.439228 364.439228 364.439228 364.439228 364.439228 364.439228
FGT out of RAM out of RAM out of RAM out of RAM out of RAM out of RAM out of RAM
IFGT > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive
DFD 2.249868 2.4958865 4.70948 12.065697 94.345003 412.39142 107.675935
DFGT > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive
DFGTH > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive > 2×Naive

Discussion. The experiments indicate that the DFGTH method is able to achieve rea-
sonable performance across all bandwidth scales. Unfortunately none of the series
approximation-based methods do well on the 5-dimensional data, as expected, highlight-
ing the main weakness of the approach presented. Pursuing corrections to the error bounds
necessary to use the intriguing series form of [14] may allow an increase in dimensionality.

References
[1] A. W. Appel. An Efficient Program for Many-Body Simulations.SIAM Journal on Scientific and Statistical Computing,

6(1):85–103, 1985.

[2] J. Barnes and P. Hut. A HierarchicalO(NlogN) Force-Calculation Algorithm.Nature, 324, 1986.

[3] B. Baxter and G. Roussos. A new error estimate of the fast gauss transform.SIAM Journal on Scientific Computing,
24(1):257–259, 2002.

[4] P. Callahan and S. Kosaraju. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and
n-body potential fields.Journal of the ACM, 62(1):67–90, January 1995.

[5] A. Gray and A. W. Moore. N-Body Problems in Statistical Learning. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors,
Advances in Neural Information Processing Systems 13 (December 2000). MIT Press, 2001.

[6] A. G. Gray. Bringing Tractability to Generalized N-Body Problems in Statistical and Scientific Computation. PhD thesis,
Carnegie Mellon University, 2003.

[7] A. G. Gray and A. W. Moore. Rapid Evaluation of Multiple Density Models. InArtificial Intelligence and Statistics 2003,
2003.

[8] L. Greengard and V. Rokhlin. A Fast Algorithm for Particle Simulations.Journal of Computational Physics, 73, 1987.

[9] L. Greengard and J. Strain. The fast gauss transform.SIAM Journal on Scientific and Statistical Computing, 12(1):79–94,
1991.

[10] L. Greengard and X. Sun. A new version of the fast gauss transform.Documenta Mathematica, Extra Volume ICM(III):575–
584, 1998.

[11] B. W. Silverman.Density Estimation for Statistics and Data Analysis. Chapman and Hall, 1986.

[12] J. Strain. The fast gauss transform with variable scales.SIAM Journal on Scientific and Statistical Computing, 12:1131–
1139, 1991.

[13] O. Szász. On the relative extrema of the hermite orthogonal functions.J. Indian Math. Soc., 15:129–134, 1951.

[14] C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis. Improved fast gauss transform and efficient kernel density estima-
tion. International Conference on Computer Vision, 2003.

