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Abstract

There is little consensus about the computational function of top-down
synaptic connections in the visual system. Here we explore the hypoth-
esis that top-down connections, like bottom-up connections, reflect part-
whole relationships. We analyze a recurrent network with bidirectional
synaptic interactions between a layer of neurons representing parts and a
layer of neurons representing wholes. Within each layer, there is lateral
inhibition. When the network detects a whole, it can rigorously enforce
part-whole relationships by ignoring parts that do not belong. The net-
work can complete the whole by filling in missing parts. The network
can refuse to recognize a whole, if the activated parts do not conform to
a stored part-whole relationship. Parameter regimes in which these be-
haviors happen are identified using the theory of permitted and forbidden
sets [3, 4]. The network behaviors are illustrated by recreating Rumelhart
and McClelland’s “interactive activation” model [7].

In neural network models of visual object recognition [2, 6, 8], patterns of synaptic con-
nectivity often reflect part-whole relationships between the features that are represented
by neurons. For example, the connections of Figure 1 reflect the fact that feature B both
contains simpler features A1, A2, and A3, and is contained in more complex features C1,
C2, and C3. Such connectivity allows neurons to follow the rule that existence of the part
is evidence for existence of the whole. By combining synaptic input from multiple sources
of evidence for a feature, a neuron can “decide” whether that feature is present. 1

The synapses shown in Figure 1 are purely bottom-up, directed from simple to complex
features. However, there are also top-down connections in the visual system, and there
is little consensus about their function. One possibility is that top-down connections also
reflect part-whole relationships. They allow feature detectors to make decisions using the
rule that existence of the whole is evidence for existence of its parts.

In this paper, we analyze the dynamics of a recurrent network in which part-whole re-
lationships are stored as bidirectional synaptic interactions, rather than the unidirectional
interactions of Figure 1. The network has a number of interesting computational capabili-
ties. When the network detects a whole, it can rigorously enforce part-whole relationships

1Synaptic connectivity may reflect other relationships besides part-whole. For example, invari-
ances can be implemented by connecting detectors of several instances of the same feature to the
same target, which is consequently an invariant detector of the feature.
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Figure 1: The synaptic connections (arrows)
of neuron B represent part-whole relation-
ships. Feature B both contains simpler fea-
tures and is contained in more complex fea-
tures. The synaptic interactions are drawn
one-way, as in most models of visual object
recognition. Existence of the part is regarded
as evidence for existence of the whole. This
paper makes the interactions bidirectional, al-
lowing the existence of the whole to be evi-
dence for the existence of its parts.

by ignoring parts that do not belong. The network can complete the whole by filling in
missing parts. The network can refuse to recognize a whole, if the activated parts do not
conform to a stored part-whole relationship. Parameter regimes in which these behaviors
happen are identified using the recently developed theory of permitted and forbidden sets
[3, 4].

Our model is closely related to the interactive activation model of word recognition, which
was proposed by McClelland and Rumelhart to explain the word superiority effect studied
by visual psychologists [7]. Here our concern is not to model a psychological effect, but to
characterize mathematically how computations involving part-whole relationships can be
carried out by a recurrent network.

1 Network model

Suppose that we are given a set of part-whole relationships specified by

ξa
i =

{
1, if part i is contained in whole a

0, otherwise

We assume that every whole contains at least one part, and every part is contained in at
least one whole.

The stimulus drives a layer of neurons that detect parts. These neurons also interact with
a layer of neurons that detect wholes. We will refer to part-detectors as “P-neurons” and
whole-detectors as “W-neurons.”

The part-whole relationships are directly stored in the synaptic connections between P and
W neurons. If ξa

i = 1, the ith neuron in the P layer and the ath neuron in the W layer have
an excitatory interaction of strength γ. If ξa

i = 0, the neurons have an inhibitory interaction
of strength σ. Furthermore, the P-neurons inhibit each other with strength β, and the W-
neurons inhibit each other with strength α. All of these interactions are symmetric, and all
activation functions are the rectification nonlinearity [z]+ = max{z, 0}.

Then the dynamics of the network takes the form

Ẇa + Wa =

γ
∑

i

Piξ
a
i − σ

∑
i
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i )Pi − α

∑
b6=a

Wb

+

, (1)
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Pj + Bi

+
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where Bi is the input to the P layer from the stimulus. Figure 2 shows an example of a
network with two wholes. Each whole contains two parts. One of the parts is contained in
both wholes.
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Figure 2: Model in example configuration: ξ = {(1, 1, 0), (0, 1, 1)}.

When a stimulus is presented, it activates some of the P-neurons, which activate some of
the W-neurons. The network eventually converges to a stable steady state. We will assume
that α > 1. In the Appendix, we prove that this leads to unconditional winner-take-all
behavior in the W layer. In other words, no more than one W-neuron can be active at a
stable steady state.

If a single W-neuron is active, then a whole has been detected. Potentially there are also
many P-neurons active, indicating detection of parts. This representation may have differ-
ent properties, depending on the choice of parameters β, γ, and σ. As discussed below,
these include rigorous enforcement of part-whole relationships, completion of wholes by
“filling in” missing parts, and non-recognition of parts that do not conform to a whole.

2 Enforcement of part-whole relationships

Suppose that a single W-neuron is active at a stable steady state, so that a whole has been
detected. Part-whole relationships are said to be enforced if the network always ignores
parts that are not contained in the detected whole, despite potentially strong bottom-up
evidence for them. It can be shown that enforcement follows from the inequality

σ2 + β2 + γ2 + 2σβγ > 1. (3)
which guarantees that neuron i in the P layer is inactive, if neuron a in the W layer is
active and ξa

i = 0. When part-whole relations are enforced, prior knowledge about legal
combinations of parts strictly constrains what may be perceived. This result is proven in
the Appendix, and only an intuitive explanation is given here.

Enforcement is easiest to understand when there is interlayer inhibition (σ > 0). In this
case, the active W-neuron directly inhibits the forbidden P-neurons. The case of σ = 0 is
more subtle. Then enforcement is mediated by lateral inhibition in the P layer. Excitatory
feedback from the W-neuron has the effect of counteracting the lateral inhibition between
the P-neurons that belong to the whole. As a result, these P-neurons become strongly
activated enough to inhibit the rest of the P layer.

3 Completion of wholes by filling in missing parts

If a W-neuron is active, it excites the P-neurons that belong to the whole. As a result, even
if one of these P-neurons receives no bottom-up input (Bi = 0), it is still active. We call



this phenomenon “completion,” and it is guaranteed to happen when

γ >
√

β (4)
The network may thus “imagine” parts that are consistent with the recognized whole, but
are not actually present in the stimulus. As with enforcement, this condition depends on
top-down connections.

In the special case γ =
√

β, the interlayer excitation between a W-neuron and its P-neurons
exactly cancels out the lateral inhibition between the P-neurons at a steady state. So the re-
current connections effectively vanish, letting the activity of the P-neurons be determined
by their feedforward inputs. When the interlayer excitation is stronger than this, the in-
equality (4) holds, and completion occurs.

4 Non-recognition of a whole

If there is no interlayer inhibition (σ = 0), then a single W-neuron is always active, assum-
ing that there is some activity in the P layer. To see this, suppose for the sake of contradic-
tion that all the W-neurons are inactive. Then they receive no inhibition to counteract the
excitation from the P layer. This means some of them must be active, which contradicts our
assumption. This means that the network always recognizes a whole, even if the stimulus
is very different from any part-whole combination that is stored in the network.

However, if interlayer inhibition is sufficiently strong (large σ), the network may refuse
to recognize a whole. Neurons in the P layer are activated, but there is no activity in the
W layer. Formal conditions on σ can be derived, but are not given here because of space
limitations.

In case of non-recognition, constraints on the P-layer are not enforced. It is possible for the
network to detect a configuration of parts that is not consistent with any stored whole.

5 Example: Interactive Activation model

To illustrate the computational capabilities of our network, we use it to recreate the in-
teractive activation (IA) model of McClelland and Rumelhart. Figure 3 shows numerical
simulations of a network containing three layers of neurons representing strokes, letters,
and words, respectively. There are 16 possible strokes in each of four letter positions. For
each stroke, there are two neurons, one signaling the presence of the stroke and the other
signaling its absence. Letter neurons represent each letter of the alphabet in each of four
positions. Word neurons represent each of 1200 common four letter words.

The letter and word layers correspond to the P and W layers that were introduced previ-
ously. There are bidirectional interactions between the letter and word layers, and lateral
inhibition within the layers. The letter neurons also receive input from the stroke neurons,
but this interaction is unidirectional.

Our network differs in two ways from the original IA model. First, all interactions involving
letter and word neurons are symmetric. In the original model, the interactions between the
letter and word layers were asymmetric. In particular, inhibitory connections only ran from
letter neurons to word neurons, and not vice versa. Second, the only nonlinearity in our
model is rectification. These two aspects allow us to apply the full machinery of the theory
of permitted and forbidden sets.

Figure 3 shows the result of presenting the stimulus “MO M” for four different settings
of parameters. In each of the four cases, the word layer of the network converges to the
same result, detecting the word “MOON”, which is the closest stored word to the stimulus.
However, the activity in the letter layer is different in the four cases.
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Figure 3: Simulation of 4 different parameter regimes in a letter- word recognition network. Within
each panel, the middle column presents a feature- layer reconstruction based on the letter activity
shown in the left column. W layer activity is shown in the right column. The top row shows the
network state after 10 iterations of the dynamics. The bottom row shows the steady state.

In the left column, the parameters obey the inequality (3), so that part- whole relationships
are enforced. The activity of the letter layer is visualized by activating the strokes corre-
sponding to each active letter neuron. The activated letters are part of the word “MOON”.
In the top left, the inequality (4) is satisfied, so that the missing “O” in the stimulus is filled
in. In the bottom left, completion does not occur.

In the simulations of the right column, param-

input:

multi-stability

non-recognition event

Figure 4: Simulation of a non- recognition
event and example of multistability.

eters are such that part- whole relationships are
not enforced. Consequently, the word layer is
much more active. Bottom- up input provides
evidence for several other letters, which is not
suppressed. In the top right, the inequality (4) is
satisfied, so that the missing “O” in the stimulus
is filled in. In the bottom right, the “O” neuron
is not activated in the third position, so there is
no completion. However, some letter neurons
for the third position are activated, due to the
input from neurons that indicate the absence of
strokes.

Figure 4 shows simulations for large σ, deep in
the enforcement regime where non- recognition is a possibility. From one initial condition,
the network converges to a state in which no W neurons are active, a non- recognition. From
another initial condition, the network detects the word “NORM”. Deep in the enforcement
regime, the top- down feedback can be so strong that the network has multiple stable states,
many of which bear little resemblance to the stimulus at all. This is a problematic aspect
of this network. It can be prevented by setting parameters at the edge of the enforcement
regime.

6 Discussion

We have analyzed a recurrent network that performs computations involving part- whole
relationships. The network can fill in missing parts and suppress parts that do not belong.



These two computations are distinct and can be dissociated from each other, as shown in
Figure 3.

While these two computations can also be performed by associative memory models, they
are not typically dissociable in these models. For example, in the Hopfield model pattern
completion and noise suppression are both the result of recall of one of a finite number of
stereotyped activity patterns.

We believe that our model is more appropriate for perceptual systems, because its behavior
is piecewise linear, due its reliance on rectification nonlinearity. Therefore, analog aspects
of computation are able to coexist with the part-whole relationships. Furthermore, in our
model the stimulus is encoded in maintained synaptic input to the network, rather than as
an initial condition of the dynamics.

A Appendix: Permitted and forbidden sets

Our mathematical results depend on the theory of permitted and forbidden sets [3, 4], which
is summarized briefly here. The theory is applicable to neural networks with rectification
nonlinearity, of the form ẋi + xi = [bi +

∑
j Wijxj ]+. Neuron i is said to be active when

xi > 0. For a network of N neurons, there are 2N possible sets of active neurons. For each
active set, consider the submatrix of Wij corresponding to the synapses between active
neurons. If all eigenvalues of this submatrix have real parts less than or equal to unity, then
the active set is said to be permitted. Otherwise the active set is said to be forbidden. A set
is permitted if and only if there exists an input vector b such that those neurons are active
at a stable steady state. Permitted sets can be regarded as memories stored in the synaptic
connections Wij . If Wij is a symmetric matrix, the nesting property holds: every subset of
a permitted set is permitted, and every superset of a forbidden set is forbidden.

The present model can be seen as a general method for storing permitted sets in a recurrent
network. This method introduces a neuron for each permitted set, relying on a unary or
“grandmother cell” representation. In contrast, Xie et al.[9] used lateral inhibition in a
single layer of neurons to store permitted sets. By introducing extra neurons, the present
model achieves superior storage capacity, much as unary models of associative memory [1]
surpass distributed models [5].

A.1 Unconditional winner-take-all in the W layer

The synapses between two W-neurons have strengths(
0 −α
−α 0

)
The eigenvalues of this matrix are±α. Therefore two W-neurons constitute a forbidden set
if α > 1. By the nesting property, it follows more than two W-neurons is also a forbidden
set, and that the W layer has the unconditional winner-take-all property.

A.2 Part-whole combinations as permitted sets

Theorem 1. Suppose that β < 1. If γ2 < β + (1 − β)/k then any combination of k ≥ 1
parts consistent with a whole corresponds to a permitted set.

Proof. Consider k parts belonging to a whole. They are represented by one W-neuron and
k P-neurons, with synaptic connections given by the (k + 1)× (k + 1) matrix

M =
(
−β(11T − I) γ1

γ1T 0

)
, (5)



where 1 is the k - dimensional vector whose elements are all equal to one. Two eigenvectors
of M are of the form (1T c), and have the same eigenvalues as the 2× 2 matrix(

−β(k − 1) γ
γk 0

)
This matrix has eigenvalues less than one when γ2 < β + (1− β)/k and β(k − 1) + 2 >
0. The other k − 1 eigenvectors are of the form (dT , 0), where dT 1 = 0. These have
eigenvalues β. Therefore all eigenvalues of W are less than one if the condition of the
theorem is satisfied.

A.3 Constraints on combining parts

Wa

Pi Pj
-β

γ -σ

Figure 5: A set of
one W- neuron and two
P- neurons is forbidden
if one part belongs to
the whole and the other
does not.

Here, we derive conditions under which the network can en-
force the constraint that steady state activity be confined to
parts that constitute a whole.
Theorem 2. Suppose that β > 0 and σ2+β2+γ2+2σβγ > 1
If a W- neuron is active, then only P- neurons corresponding to
parts contained in the relevant whole can be active at a stable
steady state.

Proof. Consider P- neurons Pi, Pj , and W- neuron Wa. Sup-
pose that ξa

i = 1 but ξa
j = 0. As shown in Figure 5, the matrix

of connections is given by:

W =

( 0 −β γ
−β 0 −σ
γ −σ 0

)
(6)

This set is permitted if all eigenvalues of W − I have negative
real parts. The characteristic equation of I−W is λ3 + b1λ

2 +
b2λ + b3 = 0, where b1 = 3, b2 = 3 − σ2 − β2 − γ2 and
b3 = 1−2σβγ−σ2−β2−γ2. According to the Routh- Hurwitz theorem, all the eigenvalues
have negative real parts if and only if b1 > 0, b3 > 0 and b1b2 > b3. Clearly, the first
condition is always satisfied. The second condition is more restrictive than the third. It is
satisfied only when σ2 +β2 +γ2 +2σβγ < 1. Hence, one of the eigenvalues has a positive
real part when this condition is broken, i.e., when σ2+β2+γ2+2σβγ > 1. By the nesting
property, any larger set of P- neurons inconsistent with the W- neuron is also forbidden.

A.4 Completion of wholes

Theorem 3. If γ >
√

β and a single W- neuron a is active at a steady state, then Pi > 0
for all i such that ξa

i = 1.

Proof. Suppose that the detected whole has k parts. At the steady state

Pi =
ξa
i

1− β

[
Bi − (β − γ2)Ptot

]+
where

Ptot =
∑

i

Pi =
1

1− β + (β − γ2)k

k∑
i=1

Biξ
a
i (7)



A.5 Preventing runaway

If feedback loops cause the network activity to diverge, then the preceding analyses are not
relevant. Here we give a sufficient condition guaranteeing that runaway instability does not
happen. It is not a necessary condition. Interestingly, the condition implies the condition
of Theorem 1.
Theorem 4. Suppose that P and W obey the dynamics of Eqs. (1) and (2), and define the
objective function

E =
1− α

2

∑
a

W 2
a +

α

2

(∑
a

Wa

)2

+
1− β

2

∑
i

P 2
i +

β

2

(∑
i

Pi

)2

−
∑

i

BiPi − γ
∑
ia

PiWaξa
i + σ

∑
ia

(1− ξa
i )PiWa. (8)

Then E is a Lyapunov like function that, given β > γ2− 1−γ2

N−1 , ensures convergence of the
dynamics to a stable steady state.

Proof. (sketch) Differentiation of E with respect to time shows that that E is nonincreasing
in the nonnegative orthant and constant only at steady states of the network dynamics. We
must also show that E is radially unbounded, which is true if the quadratic part of E is
copositive definite. Note that the last term of E is lower-bounded by zero and the previous
term is upper bounded by γ

∑
ia PiWa. We assume α > 1. Thus, we can use Cauchy’s

inequality,
∑

i P 2
i ≥ (

∑
i Pi)

2
/N , and the fact that

∑
a W 2

a ≤ (
∑

a Wa)2 for Wa ≥ 0, to
derive

E ≥ 1
2

(
(
∑

a

Wa)2 +
1− β + βN

N
(
∑

i

Pi)2 − 2γ(
∑

a

Wa

∑
i

Pi)

)
−
∑

i

BiPi. (9)

If β > γ2− 1−γ2

N−1 , the quadratic form in the inequality is positive definite and E is radially
unbounded.
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