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Abstract

Inspired by “Google™ Sets”, we consider the problem of retrieving items
from a concept or cluster, given a query consisting of a few items from
that cluster. We formulate this as a Bayesian inference problem and de-
scribe a very simple algorithm for solving it. Our algorithm uses a model-
based concept of a cluster and ranks items using a score which evaluates
the marginal probability that each item belongs to a cluster containing
the query items. For exponential family models with conjugate priors
this marginal probability is a simple function of sufficient statistics. We
focus on sparse binary data and show that our score can be evaluated ex-
actly using a single sparse matrix multiplication, making it possible to
apply our algorithm to very large datasets. We evaluate our algorithm on
three datasets: retrieving movies from EachMovie, finding completions
of author sets from the NIPS dataset, and finding completions of sets of
words appearing in the Grolier encyclopedia. We compare to Google™

Sets and show that Bayesian Sets gives very reasonable set completions.

1 Introduction

What do Jesus and Darwin have in common? Other than being associated with two
different views on the origin of man, they also have colleges at Cambridge Univer-
sity named after them. If these two names are entered as a query into Google™ Sets
(http://labs.google.com/sets) it returns a list of other colleges at Cambridge.

Google™ Sets is a remarkably useful tool which encapsulates a very practical and interest-
ing problem in machine learning and information retrieval.1 Consider a universe of items
D. Depending on the application, the setD may consist of web pages, movies, people,
words, proteins, images, or any other object we may wish to form queries on. The user
provides a query in the form of a very small subset of itemsDc ⊂ D. The assumption
is that the elements inDc are examples of some concept / class / cluster in the data. The
algorithm then has to provide a completion to the setDc—that is, some setD′

c ⊂ D which
presumably includes all the elements inDc and other elements inD which are also in this
concept / class / cluster2.

∗ZG is also at CALD, Carnegie Mellon University, Pittsburgh PA 15213.
1Google™ Sets is a large-scale clustering algorithm that uses many millions of data instances

extracted from web data (Simon Tong, personal communication). We are unable to describe any
details of how the algorithm works due its proprietary nature.

2From here on, we will use the term “cluster” to refer to the target concept.



We can view this problem from several perspectives. First, the query can be interpreted
aselements of some unknown cluster, and the output of the algorithm is the completion
of that cluster. Whereas most clustering algorithms are completely unsupervised, here the
query provides supervised hints or constraints as to the membership of a particular cluster.
We call this viewclustering on demand, since it involves forming a cluster once some
elements of that cluster have been revealed. An important advantage of this approach over
traditional clustering is that the few elements in the query can give useful information as
to the features which are relevant for forming the cluster. For example, the query “Bush”,
“Nixon”, “Reagan” suggests that the featuresrepublicanandUS Presidentare relevant to
the cluster, while the query “Bush”, “Putin”, “Blair” suggests thatcurrentandworld leader
are relevant. Given the huge number of features in many real world data sets, such hints as
to feature relevance can produce much more sensible clusters.

Second, we can think of the goal of the algorithm to be to solve a particularinformation re-
trieval problem [2, 3, 4]. As in other retrieval problems, the output should be relevant to the
query, and it makes sense to limit the output to the top few items ranked by relevance to the
query. In our experiments, we take this approach and report items ranked by relevance. Our
relevance criterion is closely related to a Bayesian framework for understanding patterns of
generalization in human cognition [5].

2 Bayesian Sets

LetD be a data set of items, andx ∈ D be an item from this set. Assume the user provides
a query setDc which is a small subset ofD. Our goal is to rank the elements ofD by how
well they would “fit into” a set which includesDc. Intuitively, the task is clear: if the set
D is the set of all movies, and the query set consists of two animated Disney movies, we
expect other animated Disney movies to be ranked highly.

We use a model-based probabilistic criterion to measure how well items fit intoDc. Having
observedDc as belonging to some concept, we want to know how probable it is thatx also
belongs withDc. This is measured byp(x|Dc). Ranking items simply by this probability
is not sensible since some items may be more probable than others, regardless ofDc. For
example, under most sensible models, the probability of a string decreases with the number
of characters, the probability of an image decreases with the number of pixels, and the
probability of any continuous variable decreases with the precision to which it is measured.
We want to remove these effects, so we compute the ratio:

score(x) =
p(x|Dc)

p(x)
(1)

wherethe denominator is the prior probability ofx and under most sensible models will
scale exactly correctly with number of pixels, characters, discretization level, etc. Using
Bayes rule, this score can be re-written as:

score(x) =
p(x,Dc)

p(x) p(Dc)
(2)

which can be interpreted as the ratio of the joint probability of observingx andDc, to the
probability of independently observingx andDc. Intuitively, this ratio compares the prob-
ability thatx andDc were generated by the same model with thesame, though unknown,
parametersθ, to the probability thatx andDc came from models withdifferentparameters
θ andθ′ (see figure 1). Finally, up to a multiplicative constant independent ofx, the score
can be written as:score(x) = p(Dc|x), which is the probability of observing the query set
givenx (i.e. the likelihood ofx).

From the above discussion, it is still not clear how one would compute quantities such
asp(x|Dc) andp(x). A natural model-based way of defining a cluster is to assume that



Figure 1:Our Bayesian score compares the hypotheses that the data was generated by each of the
above graphical models.

the data points in the cluster all come independently and identically distributed from some
simple parameterized statistical model. Assume that the parameterized model isp(x|θ)
whereθ are the parameters. If the data points inDc all belong to one cluster, then under
this definition they were generated from the same setting of the parameters; however, that
setting is unknown, so we need to average over possible parameter values weighted by
some prior density on parameter values,p(θ). Using these considerations and the basic
rules of probability we arrive at:

p(x) =
∫

p(x|θ) p(θ) dθ (3)

p(Dc) =
∫ ∏

xi∈Dc

p(xi|θ) p(θ) dθ (4)

p(x|Dc) =
∫

p(x|θ) p(θ|Dc) dθ (5)

p(θ|Dc) =
p(Dc|θ) p(θ)

p(Dc)
(6)

We are now fully equipped to describe the “Bayesian Sets” algorithm:

Bayesian Sets Algorithm
background: aset of itemsD, a probabilistic modelp(x|θ) where

x ∈ D, a prior on the model parametersp(θ)
input: a queryDc = {xi} ⊂ D
for all x ∈ D do

compute score(x) =
p(x|Dc)

p(x)
end for
output: return elements ofD sorted by decreasing score

We mention two properties of this algorithm to assuage two common worries with Bayesian
methods—tractabilityand sensitivity to priors:

1. For the simple models we will consider, the integrals (3)-(5) are analytical. In fact,
for the model we consider in section 3 computing all the scores can be reduced to
a single sparse matrix multiplication.



2. Although it clearly makes sense to put some thought into choosing sensible mod-
elsp(x|θ) andpriorsp(θ), we will show in 5 that even with very simple models
and almost no tuning of the prior one can get very competitive retrieval results. In
practice, we use a simple empirical heuristic which sets the prior to be vague but
centered on the mean of the data inD.

3 Sparse Binary Data

We now derive in more detail the application of the Bayesian Sets algorithm to sparse
binary data. This type of data is a very natural representation for the large datasets we used
in our evaluations (section 5). Applications of Bayesian Sets to other forms of data (real-
valued, discrete, ordinal, strings) are also possible, and especially practical if the statistical
model is a member of the exponential family (section 4).

Assume each itemxi ∈ Dc is a binary vectorxi = (xi1, . . . , xiJ) wherexij ∈ {0, 1}, and
that each element ofxi has an independent Bernoulli distribution:

p(xi|θ) =
J∏

j=1

θ
xij

j (1− θj)1−xij (7)

The conjugate prior for the parameters of a Bernoulli distribution is the Beta distribution:

p(θ|α, β) =
J∏

j=1

Γ(αj + βj)
Γ(αj)Γ(βj)

θ
αj−1
j (1− θj)βj−1 (8)

whereα andβ arehyperparameters, and the Gamma function is a generalization of the
factorial function. For a queryDc = {xi} consisting ofN vectors it is easy to show that:

p(Dc|α, β) =
∏
j

Γ(αj + βj)
Γ(αj)Γ(βj)

Γ(α̃j)Γ(β̃j)
Γ(α̃j + β̃j)

(9)

whereα̃ = α +
∑N

i=1 xij andβ̃ = β + N −
∑N

i=1 xij . For an itemx = (x·1 . . . x·J) the
score, written with the hyperparameters explicit, can be computed as follows:

score(x) =
p(x|Dc, α, β)

p(x|α, β)
=
∏
j

Γ(αj+βj+N)
Γ(αj+βj+N+1)

Γ(α̃j+x·j)Γ(β̃j+1−x·j)

Γ(α̃j)Γ(β̃j)

Γ(αj+βj)
Γ(αj+βj+1)

Γ(αj+x·j)Γ(βj+1−x·j)
Γ(αj)Γ(βj)

(10)

This daunting expression can be dramatically simplified. We use the fact thatΓ(x) =
(x− 1) Γ(x− 1) for x > 1. For eachj we can consider the two casesx·j = 0 andx·j = 1
and separately. Forx·j = 1 we have a contribution αj+βj

αj+βj+N
α̃j

αj
. For x·j = 0 we have a

contribution αj+βj

αj+βj+N
β̃j

βj
. Putting these together we get:

score(x) =
∏
j

αj + βj

αj + βj + N

(
α̃j

αj

)x·j
(

β̃j

βj

)1−x·j

(11)

Thelog of the score islinear in x:

log score(x) = c +
∑

j

qjx·j (12)

where
c =

∑
j

log(αj + βj)− log(αj + βj + N) + log β̃j − log βj (13)



and
qj = log α̃j − log αj − log β̃j + log βj (14)

If we put the entire data setD into one large matrixX with J columns, we can compute
the vectors of log scores for all points using a single matrix vector multiplication

s = c + Xq (15)

For sparse data sets this linear operation can be implemented very efficiently. Each query
Dc corresponds to computing the vectorq and scalarc. This can also be done efficiently if
the query is also sparse, since most elements ofq will equal log βj − log(βj + N) which
is independent of the query.

4 Exponential Families

We generalize the above result to models in the exponential family. The distribution for
such models can be written in the formp(x|θ) = f(x)g(θ) exp{θ>u(x)}, whereu(x) is a
K-dimensional vector of sufficient statistics,θ are the natural parameters, andf andg are
non-negative functions. The conjugate prior isp(θ|η, ν) = h(η, ν)g(θ)η exp{θ>ν}, where
η andν are hyperparameters, andh normalizes the distribution.

Given a queryDc = {xi} with N items, and a candidatex, it is not hard to show that the
score for the candidate is:

score(x) =
h(η + 1, ν + u(x))h(η + N, ν +

∑
i u(xi))

h(η, ν)h(η + N + 1, ν + u(x) +
∑

i u(xi))
(16)

This expression helps us understand when the score can be computed efficiently. First of
all, the score only depends on the size of the query (N), the sufficient statistics computed
from each candidate, and from the whole query. It therefore makes sense to precomputeU,
a matrix of sufficient statistics corresponding toX. Second, whether the score is a linear
operation onU depends on whetherlog h is linear in the second argument. This is the case
for the Bernoulli distribution, but not for all exponential family distributions. However,
for many distributions, such as diagonal covariance Gaussians, even though the score is
nonlinear inU, it can be computed by applying the nonlinearity elementwise toU. For
sparse matrices, the score can therefore still be computed in time linear in the number of
non-zero elements ofU.

5 Results

We ran our Bayesian Sets algorithm on three different datasets: the Groliers Encyclo-
pedia dataset, consisting of the text of the articles in the Encyclopedia, the EachMovie
dataset, consisting of movie ratings by users of the EachMovie service, and the NIPS au-
thors dataset, consisting of the text of articles published in NIPS volumes 0-12 (spanning
the 1987-1999 conferences). The Groliers dataset is 30991 articles by 15276 words, where
the entries are the number of times each word appears in each document. We preprocess
(binarize) the data by column normalizing each word, and then thresholding so that a (ar-
ticle,word) entry is 1 if that word has a frequency of more than twice the article mean.
We do essentially no tuning of the hyperparameters. We use broad empirical priors, where
α = c×m, β = c × (1−m) wherem is a mean vector over all articles, andc = 2. The
analogous priors are used for both other datasets.

The EachMovie dataset was preprocessed, first by removing movies rated by less than 15
people, and people who rated less than 200 movies. Then the dataset was binarized so that a
(person, movie) entry had value 1 if the person gave the movie a rating above 3 stars (from
a possible 0-5 stars). The data was then column normalized to account for overall movie
popularity. The size of the dataset after preprocessing was 1813 people by 1532 movies.



Finally the NIPS author dataset (13649 words by 2037 authors), was preprocessed very
similarly to the Grolier dataset. It was binarized by column normalizing each author, and
then thresholding so that a (word,author) entry is 1 if the author uses that word more fre-
quently than twice the word mean across all authors.

The results of our experiments, and comparisons with Google Sets for word and movie
queries are given in tables 2 and 3. Unfortunately, NIPS authors have not yet achieved the
kind of popularity on the web necessary for Google Sets to work effectively. Instead we
list the top words associated with the cluster of authors given by our algorithm (table 4).

The running times of our algorithm on all three datasets are given in table 1. All experi-
ments were run in Matlab on a 2GHz Pentium 4, Toshiba laptop. Our algorithm is very fast
both at pre-processing the data, and answering queries (about 1 sec per query).

GROLIERS EACHMOVIE NIPS

SIZE 30991× 15276 1813× 1532 13649× 2037

NON-ZERO ELEMENTS 2,363,514 517,709 933,295
PREPROCESSTIME 6.1S 0.56S 3.22S

QUERY TIME 1.1S 0.34S 0.47S

Table 1:For each dataset we give the size of that dataset along with the time taken to do the (one-
time) preprocessing and the time taken to make a query (both in seconds).

QUERY: WARRIOR, SOLDIER QUERY: ANIMAL QUERY: FISH, WATER, CORAL

GOOGLE SETS BAYES SETS GOOGLE SETS BAYES SETS GOOGLE SETS BAYES SETS

WARRIOR SOLDIER ANIMAL ANIMAL FISH WATER

SOLDIER WARRIOR PLANT ANIMALS WATER FISH

SPY MERCENARY FREE PLANT CORAL SURFACE

ENGINEER CAVALRY LEGAL HUMANS AGRICULTURE SPECIES

MEDIC BRIGADE FUNGAL FOOD FOREST WATERS

SNIPER COMMANDING HUMAN SPECIES RICE MARINE

DEMOMAN SAMURAI HYSTERIA MAMMALS SILK ROAD FOOD

PYRO BRIGADIER VEGETABLE AGO RELIGION TEMPERATURE

SCOUT INFANTRY MINERAL ORGANISMS HISTORY POLITICS OCEAN

PYROMANIAC COLONEL INDETERMINATE VEGETATION DESERT SHALLOW

HWGUY SHOGUNATE FOZZIE BEAR PLANTS ARTS FT

Table 2: Clustersof words found by Google Sets and Bayesian Sets based on the given queries.
The top few are shown for each query and each algorithm. Bayesian Sets was run using Grolier
Encyclopedia data.

It is very difficult to objectively evaluate our results since there is no ground truth for this
task. One person’s idea of a good query cluster may differ drastically from another person’s.
We chose to compare our algorithm to Google Sets since it was our main inspiration and it
is currently the most public and commonly used algorithm for performing this task.

Since we do not have access to the Google Sets algorithm it was impossible for us to run
their method on our datasets. Moreover, Google Sets relies on vast amounts of web data,
which we do not have. Despite those two important caveats, Google Sets clearly “knows”
a lot about movies3 and words, and the comparison to Bayesian Sets is informative.

We found that Google Sets performed very well when the query consisted of items which
can be found listed on the web (e.g. Cambridge colleges). On the other hand, for more
abstract concepts (e.g. “soldier” and “warrior”, see Table 2) our algorithm returned more
sensible completions.

While we believe that most of our results are self-explanatory, there are a few details that we
would like to elaborate on. The top query in table 3 consists of two classic romantic movies,

3In fact, one of the example queries on the Google Sets website is a query of movie titles.



QUERY: GONE WITH THE WIND, CASABLANCA

GOOGLE SETS BAYES SETS

CASABLANCA (1942) GONE WITH THE WIND (1939)
GONE WITH THE WIND (1939) CASABLANCA (1942)

ERNEST SAVES CHRISTMAS (1988) THE AFRICAN QUEEN (1951)
CITIZEN KANE (1941) THE PHILADELPHIA STORY (1940)

PET DETECTIVE (1994) MY FAIR LADY (1964)
VACATION (1983) THE ADVENTURES OF ROBIN HOOD (1938)

WIZARD OF OZ (1939) THE MALTESE FALCON (1941)
THE GODFATHER (1972) REBECCA (1940)

LAWRENCE OF ARABIA (1962) SINGING IN THE RAIN (1952)
ON THE WATERFRONT (1954) IT HAPPENED ONE NIGHT (1934)

QUERY: MARY POPPINS, TOY STORY QUERY: CUTTHROAT ISLAND, LAST ACTION HERO

GOOGLE SETS BAYES SETS GOOGLE SETS BAYES SETS

TOY STORY MARY POPPINS LAST ACTION HERO CUTTHROAT ISLAND
MARY POPPINS TOY STORY CUTTHROAT ISLAND LAST ACTION HERO
TOY STORY 2 WINNIE THE POOH GIRL KULL THE CONQUEROR

MOULIN ROUGE CINDERELLA END OF DAYS VAMPIRE IN BROOKLYN
THE FAST AND THE FURIOUS THE LOVE BUG HOOK SPRUNG

PRESQUE RIEN BEDKNOBS AND BROOMSTICKS THE COLOR OF NIGHT JUDGE DREDD
SPACED DAVY CROCKETT CONEHEADS WILD BILL

BUT I’M A CHEERLEADER THE PARENT TRAP ADDAMS FAMILY I HIGHLANDER III
MULAN DUMBO ADDAMS FAMILY II VILLAGE OF THE DAMNED

WHO FRAMED ROGER RABBIT THE SOUND OF MUSIC SINGLES FAIR GAME

Table 3:Clustersof movies found by Google Sets and Bayesian Sets based on the given queries. The
top 10 are shown for each query and each algorithm. Bayesian Sets was run using the EachMovie
dataset.

and while most of the movies returned by Bayesian Sets are also classic romances, hardly
any of the movies returned by Google Sets are romances, and it would be difficult to call
“Ernest Saves Christmas” either a romance or a classic. Both “Cutthroat Island” and “Last
Action Hero” are action movie flops, as are many of the movies given by our algorithm
for that query. All the Bayes Sets movies associated with the query “Mary Poppins” and
“Toy Story” are children’s movies, while 5 of Google Sets’ movies are not. “But I’m
a Cheerleader”, while appearing to be a children’s movie, is actually an R rated movie
involving lesbian and gay teens.

QUERY: A.SMOLA, B.SCHOLKOPF QUERY: L.SAUL, T.JAAKKOLA QUERY: A.NG, R.SUTTON

TOP MEMBERS TOP WORDS TOP MEMBERS TOP WORDS TOP MEMBERS TOP WORDS

A.SMOLA VECTOR L.SAUL LOG R.SUTTON DECISION
B.SCHOLKOPF SUPPORT T.JAAKKOLA LIKELIHOOD A.NG REINFORCEMENT

S.MIKA KERNEL M.RAHIM MODELS Y.MANSOUR ACTIONS
G.RATSCH PAGES M.JORDAN MIXTURE B.RAVINDRAN REWARDS

R.WILLIAMSON MACHINES N.LAWRENCE CONDITIONAL D.KOLLER REWARD
K.MULLER QUADRATIC T.JEBARA PROBABILISTIC D.PRECUP START
J.WESTON SOLVE W.WIEGERINCK EXPECTATION C.WATKINS RETURN

J.SHAWE-TAYLOR REGULARIZATION M.MEILA PARAMETERS R.MOLL RECEIVED
V.VAPNIK MINIMIZING S.IKEDA DISTRIBUTION T.PERKINS MDP
T.ONODA MIN D.HAUSSLER ESTIMATION D.MCALLESTER SELECTS

Table 4:NIPSauthors found by Bayesian Sets based on the given queries. The top 10 are shown for
each query along with the top 10 words associated with that cluster of authors. Bayesian Sets was
run using NIPS data from vol 0-12 (1987-1999 conferences).

The NIPS author dataset is rather small, and co-authors of NIPS papers appear very similar
to each other. Therefore, many of the authors found by our algorithm are co-authors of a
NIPS paper with one or more of the query authors. An example where this is not the case is
Wim Wiegerinck, who we do not believe ever published a NIPS paper with Lawrence Saul
or Tommi Jaakkola, though he did have a NIPS paper on variational learning and graphical
models.



As part of the evaluation of our algorithm, we showed 30 naı̈ve subjects the unlabeled
results of Bayesian Sets and Google Sets for the queries shown from the EachMovie and
Groliers Encyclopedia datasets, and asked them to choose which they preferred. The results
of this study are given in table 5.

QUERY % BAYES SETS P-VALUE

WARRIOR 96.7 < 0.0001
ANIMAL 93.3 < 0.0001

FISH 90.0 < 0.0001
GONE WITH THE WIND 86.7 < 0.0001

MARY POPPINS 96.7 < 0.0001
CUTTHROAT ISLAND 81.5 0.0008

Table 5: For each evaluated query (listed by
first query item), we give the percentage of re-
spondents who preferred the results given by
Bayesian Sets and the p-value rejecting the null
hypothesis that Google Sets is preferable to
Bayesian Sets on that particular query.

Since, in the case of binary data, our method reduces to a matrix-vector multiplication, we
also came up with ten heuristic matrix-vector methods which we ran on the same queries,
using the same datasets. Descriptions and results can be found in supplemental material on
the authors websites.

6 Conclusions

We have described an algorithm which takes a query consisting of a small set of items,
and returns additional items which belong in this set. Our algorithm computes a score
for each item by comparing the posterior probability of that item given the set, to the prior
probability of that item. These probabilities are computed with respect to a statistical model
for the data, and since the parameters of this model are unknown they are marginalized out.

For exponential family models with conjugate priors, our score can be computed exactly
and efficiently. In fact, we show that for sparse binary data, scoring all items in a large
data set can be accomplished using a single sparse matrix-vector multiplication. Thus, we
get a very fast and practical Bayesian algorithm without needing to resort to approximate
inference. For example, a sparse data set with over 2 million nonzero entries (Grolier) can
be queried in just over 1 second.

Our method does well when compared to Google Sets in terms of set completions, demon-
strating that this Bayesian criterion can be useful in realistic problem domains. One of the
problems we have not yet addressed is deciding on the size of the response set. Since the
scores have a probabilistic interpretation, it should be possible to find a suitable threshold
to these probabilities. In the future, we will incorporate such a threshold into our algorithm.

The problem of retrieving sets of items is clearly relevant to many application domains.
Our algorithm is very flexible in that it can be combined with a wide variety of types of
data (e.g. sequences, images, etc.) and probabilistic models. We plan to explore efficient
implementations of some of these extensions. We believe that with even larger datasets the
Bayesian Sets algorithm will be a very useful tool for many application areas.
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