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Abstract

A reactive environment is one that responds to the actions of an agent rather than
evolving obliviously. In reactive environments, experts algorithms must balance
exploration and exploitation of experts more carefully than in oblivious ones. In
addition, a more subtle definition of a learnable value of an expert is required. A
general exploration-exploitation experts method is presented along with a proper
definition of value. The method is shown to asymptotically perform as well as
the best available expert. Several variants are analyzed from the viewpoint of the
exploration-exploitation tradeoff, including explore-then-exploit, polynomially
vanishing exploration, constant-frequency exploration, and constant-size explo-
ration phases. Complexity and performance bounds are proven.

1 Introduction

Real-world environments require agents to choose actions sequentially. For example, a
driver has to choose everyday a route from one point to another, based on past experience
and perhaps some current information. In another example, an airline company has to set
prices dynamically, also based on past experience and current information. One important
difference between these two examples is that the effect of the driver’s decision on the fu-
ture traffic patterns is negligible, whereas prices set by one airline can affect future market
prices significantly. In this sense the decisions of the airlines are made in a reactive envi-
ronment, whereas the driver performs in a non-reactive one. For this reason, the driver’s
problem is essentially a problem of prediction while the airline’s problem has an additional
element of control.

In the decision problems we consider, an agent has to repeatedly choose currently feasi-
ble actions. The agent then observes a reward, which depends both on the chosen action
and the current state of the environment. The state of the environment may depend both
on the agent’s past choices and on choices made by the environment independent of the
agent’s current choice. There are various known approaches to sequential decision making
under uncertainty. In this paper we focus on the so-called experts algorithm approach. An
“expert” (or “oracle”) is simply a particular strategy recommending actions based on the
past history of the process. An experts algorithm is a method that combines the recommen-
dations of several given “experts” (or “oracles”) into another strategy of choosing actions
(e.g., [4, 1, 3]).



Many learning algorithms can be interpreted as “exploration-exploitation” methods.
Roughly speaking, such algorithms blend choices of exploration, aimed at acquiring knowl-
edge, and exploitation that capitalizes on gained knowledge to accumulate rewards. In par-
ticular, some experts algorithms can be interpreted as blending the testing of all experts
and following those experts that observed to be more rewarding. Our previous paper [2]
presented a specific exploration-exploitation experts algorithm. The reader is referred to
[2] for more definitions, examples and discussion. That algorithm was designed especially
for learning in reactive environments. The difference between our algorithm and previous
experts algorithms is that our algorithm tests each expert for multiple consecutive stages of
the decision process, in order to acquire knowledge about how the environment reacts to
the expert. We pointed out that the “Minimum Regret” criterion often used for evaluating
experts algorithms was not suitable for reactive environments, since it ignored the possi-
bility that different experts may induce different states of the environment. The previous
paper, however, did not attempt to optimize the exploration-exploitation tradeoff. It rather
focused on one particular possibility, which was shown to perform in the long-run as well
as the best expert.

In this paper, we present a more general exploration-exploitation experts method and pro-
vide results about the convergence of several of its variants. We develop performance guar-
antees showing that the method achieves average payoff comparable to that achieved by the
best expert. We characterize convergence rates that hold both in expected value and with
high probability. We also introduce a definition for the long-term value of an expert, which
captures the reactions of the environment to the expert’s actions, as well as the fact that any
learning algorithm commits mistakes. Finally, we characterize how fast the method learns
the value of each expert. An important aspect of our results is that they provide an explicit
characterization of the tradeoff between exploration and exploitation.

The paper is organized as follows. The method is described in section 2. Convergence
rates based on actual expert performance are presented in section 3. In section 4, we de-
fine the experts’ long-rum values, whereas in section 5 we address the question of how
fast the method learns the values of the experts. Finally, in section 6 we analyze various
explorations schemes. These results assume that the number of stages.

2 The Exploration-Exploitation Method

The problem we consider in this paper can be described as follows. At times t = 1, 2, . . .,
an agent has to choose actions at ∈ A. At the same times the environment also “chooses”
bt ∈ B, and then the agent receives a reward R(at, bt). The choices of the environment
may depend on various factors, including the past choices of the agent.

As in the particular algorithm of [2], the general method follows chosen experts for multiple
stages rather than picking a different expert each time. A maximal set of consecutive stages
during which the same expert is followed is called a phase. Phase numbers are denoted by
i, The number of phases during which expert e has been followed is denoted by Ne, the
total number of stages during which expert e has been followed is denoted by Se, and the
average payoff from phases in which expert e has been followed is denoted by Me. The
general method is stated as follows.

• Exploration. An exploration phase consists of picking a random expert e (i.e.,
from the uniform distribution over {1, . . . , r}), and following e’s recommenda-
tions for a certain number of stages depending on the variant of the method.

• Exploitation. An exploitation phase consists of picking an expert e with maxi-
mum Me, breaking ties at random, and following e’s recommendations for a cer-
tain number of stages depending on the variant of the method.



A general Exploration-Exploitation Experts Method:

1. Initialize Me = Ne = Se = 0 (e = 1, . . . , r) and i = 1.
2. With probability pi, perform an exploration phase, and with probability 1 − pi

perform an exploitation phase; denote by e the expert chosen to be followed and
by n the number of stages chosen for the current phase.

3. Follow expert e’s instructions for the next n stages. Increment Ne = Ne + 1 and
update Se = Se + n. Denote by R̃ the average payoff accumulated during the
current phase of n stages and update

Me = Me +
n

Se
(R̃−Me) .

4. Increment i = i+ 1 and go to step 2.

We denote stage numbers by s and phase numbers by i. We denote by M1(i), . . . ,Mr(i)
the values of the registers M1, . . . ,Mr, respectively, at the end of phase i. Similarly, we
denote by N1(i), . . . , Nr(i) the values of the registers N1, . . . , Nr, respectively, and by
S1(i), . . . , Sr(i) the values of the registers S1, . . . , Sr, respectively, at the end of phase i.

In sections 3 and 5, we present performance bounds for the EEE method when the length
of the phase is n = Ne. In section 6.4 we consider the case where n = L for a fixed L.
Due to space limitations, proofs are omitted and can be found in the online appendix CITE.

3 Bounds Based on Actual Expert Performance

The original variant of the EEE method [2] used pi = 1/i and n = Ne. The following was
proven:

Pr
(

lim inf
s→∞

M(s) ≥ max
e

lim inf
i→∞

Me(i)
)

= 1 . (1)

In words, the algorithm achieves asymptotically an average reward that is as large as that
of the best expert. In this section we generalize this result. We present several bounds
characterizing the relationship between M(i) and Me(i). These bounds are valuable in
several ways. First, they provide worst-case guarantees about the performance of the EEE
method. Second, they provide a starting point for analyzing the behavior of the method
under various assumptions about the environment. Third, they quantify the relationship
between amount of exploration, represented by the exploration probabilities pi, and the
loss of performance. Together with the analysis of Section 5, which characterizes how fast
the EEE method learns the value of each expert, the bounds derived here describe explicitly
the tradeoff between exploration and exploitation.

We denote by Zej the event “phase j performs exploration with expert e,” and let Zj =
∑

e Zej and

Z̄i0i = E

[

i
∑

j=i0+1

Zj

]

=

i
∑

j=i0+1

pi .

Note that Z̄i0i denotes the expected number of exploration phases between phases i0 + 1
and i.

The first theorem establishes that, with high probability, after a finite number of iterations,
the EEE method performs comparably to the best expert. The performance of each expert
is defined as the smallest average reward achieved by that expert in the interval between an
(arbitrary) phase i0 and the current phase i. It can be shown via a counterexample that this
bound cannot be extended into a (somewhat more natural) comparison between the average
reward of the EEE method and the average reward of each expert at iteration i.



Theorem 3.1. For all i0, i and ε such that Z̄i0i ≤ iε2/(4
√
ru2)− i0ε/(4u),

Pr
(

M(i) ≤ max
e

min
i0+1≤j≤i

Me(j)− 2ε
)

≤ exp

{

− 1

2i

(

iε2

4
√
ru2

− i0ε

4u
− Z̄i0i

)2
}

.

The following theorem characterizes the expected difference between the average reward
of EEE method and that of the best expert.

Theorem 3.2. For all i0 ≤ i and ε > 0,

E

[

M(i)−max
e

min
i0+1≤j≤i

Me(i)
]

≥ −ε− u
i0(i0 + 1)

i (i/r + 1)
− 2u

(

3u+ 2ε

ε

)2
Z̄i0i

i
.

It follows from Theorem 3.1 that, under certain assumptions on the exploration probabil-
ities, the EEE method performs asymptotically at least as well as the expert that did best.
Corollary 3.1 generalizes the asymptotic result established in [2].

Corollary 3.1. If limi→∞ Z̄0i/i = 0, then

Pr
(

lim inf
s→∞

M(s) ≥ max
e

lim inf
i→∞

Me(i)
)

= 1 . (2)

Note that here the average reward obtained by the EEE method is compared with the reward
actually achieved by each expert during the same run of the method. It does not have any
implication on the behavior of Me(i), which is analyzed in the next section.

4 The Value of an Expert

In this section we analyze the behavior of the average reward Me(i) that is computed by
the EEE method for each expert e. This average reward is also used by the method to intu-
itively estimate the value of expert e. So, the question is whether the EEE method is indeed
capable of learning the value of the best experts. Thus, we first discuss what is a “learnable
value” of an expert. This concept is not trivial especially when the environment is reactive.
The obvious definition of a value as the expected average reward the expert could achieve,
if followed exclusively, does not work. The previous paper presented an example (see Sec-
tion 4 in [2]) of a repeated Matching Pennies game, which proved this impossibility. That
example shows that an algorithm that attempts to learn what an expert would achieve, if
played exclusively, cannot avoid committing fatal “mistakes.” In certain environments, ev-
ery non-trivial learning algorithm must commit such fatal mistakes. Hence, such mistakes
cannot, in general, be considered necessarily a weakness of the algorithm. A more realistic
concept of value, relative to a certain environment policy π, is defined as follows, using a
real parameter τ .

Definition 4.1.

(i) Achievable τ -Value. A real µ is called an achievable τ -value for expert e against
an environment policy π, if there exists a constant cτ ≥ 0 such that, for every
stage s0, every possible history hs0 at stage s0 and any number of stages s,

E

[

1

s

∑s0+s
s=s0+1

R(ae(s), b(s)) : ae(s) ∼ σe(hs), b(s) ∼ π(hs)
]

≥ µ− cτ
sτ

.

(ii) τ -Value. The τ -value µτ
e of expert e with respect to π is the largest achievable

τ -value of e:
µτ
e = sup{ µ : µ is an achievable τ -value} . (3)



In words, a value µ is achievable by expert e if the expert can secure an expected average
reward during the s stages, between stage s0 and stage s0 + s, which is asymptotically at
least as much as µ, regardless of the history of the play prior to stage s0. In [2], we intro-
duced the notion of flexibility as a way of reasoning about the value of an expert and when
it can be learned. The τ -value can be viewed as a relaxation of the previous assumptions
and hence the results here strengthen those of [2]. We note, however, that flexibility does
hold when the environment reacts with bounded memory or as a finite automaton.

5 Bounds Based on Expected Expert Performance

In this section we characterize how fast the EEE method learns the τ -value of each expert.
We can derive the rate at which the average reward achieved by the EEE method approaches
the τ -value of the best expert.
Theorem 5.1. Denote τ̄ = min(τ, 1). For all ε > 0 and i,

if
4r

3

(

4cτ
ε(2− τ̄)

)1/τ̄

≤ Z̄0i ,

then Pr
(

inf
j≥i

Me(j) < µτ
e − ε

)

≤ 33u2

ε2
exp

(

− ε2Z̄0i

43u2r

)

.

Note from the definition of τ -values that we can only expect the average reward of expert e
to be close to µτ

e if the phase lengths when the expert is chosen are sufficiently large. This
is necessary to ensure that the bias term cτ/s

τ , present in the definition of the τ -value, is
small. The condition on Z̄0i reflects this observation. It ensures that each expert is chosen
sufficiently many phases; since phase lengths grow proportionally to the number of phases
an expert is chosen, this implies that phase lengths are large enough.

We can combine Theorems 3.1 and 5.1 to provide an overall bound on the difference of the
average reward achieved by the EEE method and the τ -value of the best expert.
Corollary 5.1. For all ε > 0, i0 and i,

if (i)
4r

3

(

4cτ
ε(2− τ̄)

)1/τ̄

≤ Z̄0i0 , and (ii) Z̄i0i ≤
iε2

4
√
ru2

− i0ε

4u
,

then Pr
(

M(i) ≤ max
e

µτ
e − 3ε

)

≤ 33u2

ε2
exp

(

−ε2Z̄0i0

43u2r

)

+ exp

{

− 1

2i

(

iε2

4
√
ru2

− i0ε

4u
− Z̄i0i

)2
}

.

(4)

Corollary 5.1 explicitly quantifies the tradeoff between exploration and exploitation. In
particular, one would like to choose pj such that Z̄0i0 is large enough to make the first
term in the bound small, and Z̄i0i as small as possible. In Section 6, we analyze several
exploration schemes and their effect on the convergence rate of the EEE method.

Here we can also derive from Theorems 3.1 and 5.1 asymptotic guarantees for the EEE
method.
Corollary 5.2. If limi→∞ Z̄0i =∞, then Pr (lim inf i→∞Me(i) ≥ µτ

e ) = 1.

The following is an immediate result from Corollaries 3.1 and 5.2:
Corollary 5.3. If limi→∞ Z̄0i =∞ and limi→∞ Z̄0i/i = 0, then

Pr
(

lim inf
i→∞

M(i) ≥ max
e

µτ
e

)

= 1 .



6 Exploration Schemes

The results of the previous sections hold under generic choices of the probabilities pi.
Here, we discuss how various particular choices affect the speed of exploiting accumulated
information, gathering new information and adapting to changes in the environment.

6.1 Explore-then-Exploit

One approach to determining exploration schemes is to minimize the upper bound provided
in Corollary 5.1. This gives rise to a scheme where the whole exploration takes place before
any exploitation. Indeed, according to expression (4), for any fixed number of iterations i,
it is optimal to let Z̄0i0 = i0 (i.e., pj = 1 for all j ≤ i0) and Z̄i0i = 0 (i.e., pj = 0 for
all j > i0). Let U denote the upper bound given by (4). It can be shown that the smallest
number of phases i, such that U ≤ β, is bounded between two polynomials in 1/ε, u, and
r. Moreover, its dependence on the the total number of experts r is asymptotically O(r1.5).

The main drawback of explore-then-exploit is its inability to adapt to changes in the policy
of the environment — since the whole exploration occurs first, any change that occurs after
exploration has ended cannot be learned. Moreover, the choice of the last exploration phase
i0 depends on parameters of the problem that may not be observable. Finally, it requires
fixing β and ε a priori, and can only achieve optimality within these tolerance parameters.

6.2 Polynomially Decreasing Exploration

In [2] asymptotic results were described that were equivalent to Corollaries 3.1 and 5.3
when pj = 1/j. This choice of exploration probabilities satisfies

lim
i→∞

Z̄0i =∞ and lim
i→∞

Z̄0i/i = 0 ,

so the corollaries apply. We have, however,

Z̄0i0 ≤ log(i0) + 1 .

It follows that the total number of phases required for U to hold grows exponentially in
1/ε, u and r. An alternative scheme, leading to polynomial complexity, can be developed
by choosing pj = j−α, for some α ∈ (0, 1). In this case,

Z̄0i0 ≥
(i0 + 1)1−α

1− α
− 1

and

Z̄0i ≤
i1−α

1− α
.

It follows that the smallest number of phases that guarantees that U ≤ β is on the order of

i = O

(

max

[

u
3−α
1−α r

3−α
2(1−α)

ε
3−α
1−α

(

log
u2

ε2β

)

1
1−α

,
u

2
α r

1
2α

ε
2
α

])

.

6.3 Constant-Rate Exploration

The previous exploration schemes have the property that the frequency of exploration van-
ishes as the number of phases grows. This property is required in order to achieve the
asymptotic optimality results described in Corollaries 3.1 and 5.3. However, it also makes
the EEE method increasingly slower in tracking changes in the policy of the environment.
An alternative approach is to use a constant frequency pj = η ∈ (0, 1) of exploration.



Constant-rate exploration does not satisfy the conditions of Corollaries 3.1 and 5.3. How-
ever, for any given tolerance level ε, the value of η can be chosen so that

Pr
(

lim inf
i→∞

M(i) ≥ max
e

µτ
e − ε

)

= 1 .

Moreover, constant-rate exploration yields complexity results similar to those of the
explore-then-exploit scheme. For example, given any tolerance level ε, if

pj =
ηε2

8
√
ru2

(j = 1, 2, . . .) ;

then it follows that U ≤ β if the number of phases i is on the order of

i = O

(

r2u5

ε5
log

u2

ε2β

)

.

6.4 Constant Phase Lengths

In all the variants of the EEE method considered so far, the number of stages per phase
increases linearly as a function of the number of phases during which the same expert has
been followed previously. This growth is used to ensure that, as long as the policy of the
environment exhibits some regularity, that regularity is captured by the algorithm. For
instance, if that policy is cyclic, then the EEE method correctly learns the long-term value
of each expert, regardless of the lengths of the cycles.

For practical purposes, it may be necessary to slow down the growth of phase lengths in
order to get some meaningful results in reasonable time. In this section, we consider the
possibility of a constant number L of stages in each phase. Following the same steps that
we took to prove Theorems 3.1, 3.2 and 5.1, we can derive the following results:
Theorem 6.1. If the EEE method is implemented with phases of fixed length L, then for all
i0, i, and ε, such that

Z̄i0i ≤
iε2

2u2
− i0ε

2u
,

the following bound holds:

Pr
(

M(i) ≤ max
e

min
i0+1≤j≤i

Me(j)− 2ε
)

≤ exp

{

− 1

2i

(

iε2

2u2
− i0ε

2u
− Z̄i0i

)2
}

.

We can also characterize the expected difference between the average reward of EEE
method and that of the best expert.
Theorem 6.2. If the EEE method is implemented with phases of fixed length L, then for all
i0 ≤ i and ε > 0,

E

[

M(i)−max
e

min
i0+1≤j≤i

Me(i)
]

≥ − ε− u
i0
i
− 2u2

ε

Z̄i0i

i
.

Theorem 6.3. If the EEE method is implemented with phases of fixed length L ≥ 2, then
for all ε > 0,

Pr
(

inf
j≥i

Me(j) < µτ
e −

cτ
Lτ
− ε
)

≤ 2L2u2

ε2
· exp

(

− ε2Z̄0i

4L2u2r

)

.

An important qualitative difference between fixed-length phases and increasing-length ones
is the absence of the number of experts r in the bound given in Theorem 6.2. This implies
that, in the explore-then-exploit or constant-rate exploration schemes, the algorithm re-
quires a number of phases which grows only linearly with r to ensure that

Pr(M(i) ≤ max
e

Mτ
e − c/Lτ − ε) ≤ β .

Note, however, that we cannot ensure performance better than maxe µ
τ
e − cτ/L

τ .
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