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Abstract

We consider multi-agent systems whose agents compete for resources by
striving to be in the minority group. The agents adapt to the environment
by reinforcement learning of the preferences of the policies they hold.
Diversity of preferences of policies is introduced by adding random bi-
ases to the initial cumulative payoffs of their policies. We explain and
provide evidence that agent cooperation becomes increasingly important
when diversity increases. Analyses of these mechanisms yield excellent
agreement with simulations over nine decades of data.

1 Introduction

In the intelligent control of large systems, the multi-agent approach has the advantages of
parallelism, robustness, scalability, and light communication overhead [1]. Since it involves
many interacting adaptive agents, the behavior becomes highly complex. While a standard
analytical approach is to study their steady state behavior described by the Nash equilibria
[2], it is interesting to consider the dynamics of how the steady state is approached. Of
particular interest is the case of heterogeneous agents, which have diversi£ed preferences
in decision making. In such cases, the cooperation of agents becomes very important.

Speci£cally, we consider the dynamics of a version of large population games which mod-
els the collective behavior of agents simultaneously and adaptively competing for limited
resources. The game is a variant of the Minority Game, in which the agents strive to
make the minority decision, thereby balancing the load distributed between the majority
and minority choices [3]. Previous work showed that the system behavior depends on the
input dimension of the agents’ policies. When the policy dimension is too low, many agents
share identical policies, and the system suffers from the maladaptive behavior of the agents,
meaning that they prematurely rush to adapt to system changes in bursts [4].

Recently, we have demonstrated that a better system ef£ciency can be attained by intro-
ducing diversity [5]. This is done by randomly assigning biases to the initial preference of
policies of the agents, so that agents sharing common policies may not adopt them at the
same time, and maladaptation is reduced. As a result, the population difference between the
majority and minority groups decreases. For typical control tasks such as the distribution of
shared resources, this corresponds to a high system ef£ciency. In contrast to the maladap-
tive regime, in which agents blindly respond to environmental signals, agent cooperation
becomes increasingly important in the diverse regime. Namely, there are fewer agents ad-



justing their policy perferences at each step of the steady state, but there emerges a more
coordinated pattern of policy adjustment among them. Hence, it is interesting to study the
mechanisms by which they adapt mutually, and their effects on the system ef£ciency.

In this paper, we explain the cooperative mechanisms which appear successively when
the diversity of the agents’ preference of policies increases, as recently proposed in [6].
We will provide experimental evidence of these effects, and sketch their analyses which
yield excellent agreement with simulations. While we focus on the population dynamics
of the Minority Game, we expect that the observed cooperative mechanisms are relevant to
reinforcement learning in multi-agent systems more generally.

2 The Minority Game

The Minority Game consists of a population of N agents competing sel£shly to maximize
their individual utility in an environment of limited resources, N being odd [3]. Each agent
makes a decision+ or− at each time step, and the minority group wins. For typical control
tasks such as the resource allocation, the decisions + and − may represent two alternative
resources, so that less agents utilizing a resource implies more abundance. The decisions
of each agent are prescribed by policies, which are binary functions mapping the history of
the winning bits of the game in the most recent m steps to decisions + or −. Hence, m is
the memory size. Before the game starts, each agent randomly picks s policies out of the
set of 2D policies with replacement, where D ≡ 2m is the number of input states.

The long-term goal of an agent is to maximize her cumulative payoff, which is the sum
of the undiscounted payoffs received during the game history. For the decision ξi(t) of
agent i at time t (ξi(t) = ±1), the payoff is −ξi(t)G(A(t)), where A(t) ≡ ∑i ξi(t)/N ,
and G(A) satis£es the property signG(A) = signA. She tries to achieve her goal by
choosing at each step, out of her s policies, the most successful one so far, and outputing
her decision accordingly. The success of a policy is measured by its cumulative payoff,
updated every step irrespective of whether it is adopted or not. This reinforcement learning
provides an agent with adaptivity. Though we only consider random policies instead of
organized ones, we expect that the model is suf£cient to capture the collective behavior of
large population games. In this paper, we consider a step payoff function, G(A) = signA.
The cumulative payoffs then take integer values. Note that an agent gains in payoff when
she makes a decision opposite to A(t), and loses otherwise, re¤ecting the winning of the
minority group.

It is natural to consider systems with diverse preferences of policies [5]. This means that
the initial cumulative payoffs of policies α (α = 1, . . . , s − 1) of agent i with respect to
her sth policy have random biases ωiα. Diversity is important in reducing the maladaptive
behavior of the agents, since otherwise the same policy of all agents accumulates the same
payoffs, and would be adopted at the same time. In this paper, we consider the case s = 2,
and the biases are the sums of±1 randomly drawn R times. In particular, when R is not too
small, the bias distribution approaches a Gaussian distribution with mean 0 and variance R.
The ratio ρ ≡ R/N is referred to as the diversity. For odd R, no two policies have the same
cumulative payoffs throughout the process, and the dynamics is deterministic, resulting in
highly precise simulation results useful for re£ned comparison with theories.

The population averages of the decisions oscillate around 0 at the steady state. Since a
large difference between the majority and minority populations implies inef£cient resource
allocation, the inef£ciency of the system is often measured by the variance σ 2/N of the
population making decision +, and is given by

σ2

N
≡ N

4
〈[Aµ∗(t)(t)− 〈Aµ∗(t)(t)〉t]2〉t, (1)

where 〈 〉t denotes time average at the steady state. Its dependence on the diversity is
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Figure 1: (a) The dependence of the variance of the population making decision + on the
diversity at m = 1 and s = 2. Symbols: simulation results averaged over 1,024 samples of
initial conditions. Lines: theory. Dashed-dotted line: scaling prediction. (b) Comparison
between simulation results (symbols), theory with kinetic sampling only (dashed lines),
one-wait approximation (dash-dotted lines), and many-wait approximation (lines).

shown in Fig. 1. Several modes of agent cooperation can be identi£ed, and explained in the
following sections.

3 Statistical Cooperation

For each curve with a given N in Fig. 1(a), and besides the £rst few data points where
ρ ∼ N−1 and σ2/N ∼ N , the behavior of the variance is dominated by the scaling relation
σ2/N ∼ ρ−1 for ρ ∼ 1. To interpret this result, we describe the macroscopic dynamics of
the system by de£ning the D-dimensional vector Aµ(t), which is the sum of the decisions
of all agents responding to history µ of their policies, normalized by N . While only one of
the D components corresponds to the historical state µ∗(t) of the system, the augmentation
to D components is necessary to describe the attractor structure and the transient behavior
of the system dynamics.

The key to analysing the system dynamics is the observation that the cumulative payoffs
of all policies displace by exactly the same amount when the game proceeds. Hence for
a given pair of policies, the pro£le of the relative cumulative payoff distribution remains
unchanged, but the peak position shifts with the game dynamics. Let us consider the change
in Aµ(t) when µ is the historical state µ∗(t). We let Sαβ(ω) be the number of agents
holding policies α and β (with α < β), and the bias of α with respect to β is ω. If the
cumulative payoff of policy α at time t is Ωα(t), then the agents holding policies α and β
make decisions according to policy α if ω + Ωα(t) − Ωβ(t) > 0, and policy β otherwise.
Hence ω + Ωα(t) − Ωβ(t) is referred to as the preference of α with respect to β. At time
t, the cumulative payoff of policy α changes from Ωα(t) to Ωα(t) − ξµαsignA

µ(t), where
ξµα is the decision of policy α at state µ. Only the £ckle agents, that is, those agents with
preferences on the verge of switching signs, contribute to the change in Aµ(t), namely,
ω +Ωα(t)− Ωβ(t) = ±1 and ξµα − ξµβ = ±2signAµ(t). Hence we have

Aµ(t+ 1)−Aµ(t) = −signAµ(t)
2

N

∑

α<β

∑

r=±1

Sαβ(r − Ωα(t) + Ωβ(t))

×δ(ξµα − ξµβ − 2rsignAµ(t)) (2)

where δ(n) = 1 if n = 0, and 0 otherwise. In the region where D ¿ lnN , we have
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Figure 2: (a) The attractor in the Minority Game with m = 1, following the period-4
sequence of P-Q-R-Q in the phase space of A+ and A−. There are 4 approaches to the
attractor indicated by the arrows, and the respective probabilities are obtained by consider-
ing the detailed dynamics from the different initial positions and states. (b) Experimental
evidence of the kinetic sampling effect: steady-state preference dependence of the aver-
age number of agents holding the identity policy and its complement, immediately before
state Q enters state R, at ρ = N = 1, 023 and averaged over 100,000 samples of initial
conditions.

Sαβ(ω)À 1, and Eq. (2) is self-averaging. Following the derivation in [5], we arrive at

Aµ(t+ 1) = Aµ(t)− signAµ(t)

√

2

πR
δ(µ− µ∗(t)). (3)

Equation (3) shows that the dynamics proceeds in the direction which reduces the magni-
tude of the population vector, each time by a step of size

√

2/πR. At the steady state, each
component oscillates between positive and negative, as shown in the example of m = 1
in Fig. 2(a). Due to the maladaptive nature of the dynamics, it never reaches the zero
value. As a result, each state is con£ned in a D-dimensional hypercube of size

√

2/πR,
irrespective of the initial position of the population vector. This con£nement enables us
to compute the variance of the decisions, given by σ2/N = f(ρ)/2πρ, where f(ρ) is a
smooth function of ρ, which approaches (1− 1/4D)/3 for ρÀ 1. The physical picture of
this scaling relation comes from the broadening of the preference distribution due to bias
diversity. The fraction of £ckle agents at every time step consists of those who have ±1
preferences, which scales as the height of the bias distribution near its center. Since the
distribution is a Gaussian with standard deviation

√
R, the step sizes scale as 1/

√
R, and

variances σ2/N as ρ−1. The scaling relation shows that agent cooperation in this regime is
described at the level of statistical distributions of policy preferences, since the number of
agents making an adaptive move at each step is suf£ciently numerous (∼

√
N ).

4 Kinetic Sampling

As shown in Fig. 1(a), σ2/N deviates above the scaling with ρ−1 when ρ ∼ N . To consider
the origin of this deviation, we focus in Fig. 2(b) on how the average number of agents, who
hold the identity policy with ξµα = µ and its complementary policy ξµβ = −µ, depends on
the preference ω+Ωα−Ωβ , when the system reaches the steady state in games withm = 1.
Since the preferences are time dependent, we sample their frequencies at a £xed time, say,
immediately before the state changes from Q to R in Fig. 2(a). One would expect that the
bias distribution is reproduced. However, we £nd that a peak exists at ω+Ωα−Ωβ = −1.



This value of the preference corresponds to that of the attractor step from Q to R when at
state −, decision + loses and decision − wins, and ω +Ωα −Ωβ changes from −1 to +1.
The peak at the attractor step shows that its average size is self-organized to be larger than
those of the transient steps described by the background distribution.

This effect that favors the cooperation of larger clusters of agents is referred to as the
kinetic sampling effect. When ρ ∼ N , Aµ(t+ 1)− Aµ(t) scales as N−1 and is no longer
self-averaging. Rather, Eq. (2) shows that it is equal to 2/N times the number of £ckle
agents at time t, which is Poisson distributed with a mean of N/

√
2πR = ∆/2, where

∆ ≡ N
√

2/πR is the average step size. However, since the attractor is formed by steps
which reverse the sign of Aµ, the average step size in the attractor is larger than that in
the transient state, because a long jump in the vicinity of the attractor is more likely to get
trapped.

To describe this effect, we consider the probability Patt(∆A) of step sizes ∆A in the
attractor (with ∆Aµ > 0 for all µ). Assuming that all states of the phase space are equally
likely to be accessed, we have Patt(∆A) =

∑

A
Patt(∆A,A), where Patt(∆A,A) is the

probability of £nding the position A with displacement ∆A in the attractor. Consider the
example of m = 1, where there is only one step along each axis Aµ. The sign reversal
condition implies that Patt(∆A,A) ∝ PPoi(∆A)

∏

µΘ[−Aµ(Aµ +∆Aµ)], where Θ(x)
is the step function of x, and PPoi(∆A) is the Poisson distribution of step sizes, yielding
Patt(∆A) ∝ PPoi(∆A)

∏

µ∆A
µ. We note that the extra factors of∆Aµ favor larger step

sizes. Thus, the attractor averages 〈(∆A±)2〉att are given by

〈(∆A±)2〉att =
〈(∆A±)2∆A+∆A−〉Poi
〈∆A+∆A−〉Poi

. (4)

There are agents who contribute to both ∆A+ and ∆A−, giving rise to their correlations.
In Eq. (2), the strategies of the agents contributing to ∆A+ and ∆A− satisfy ξ+α − ξ+β =

−2r and ξ−α − ξ−β = 2r respectively. Among the agents contributing to ∆A+, the extra

requirement of ξ−α − ξ−β = 2r implies that an average of 1/4 of them also contribute to
∆A−. Hence, the number of agents contributing to both steps is a Poisson variable with
mean ∆/8, and those exclusive to the individual steps are Poisson variables with mean
3∆/8. This yields, for example,

〈∆A+∆A−〉Poi = 4
N2

∑

a0,a+,a−
e
−∆
8

a0!

(

∆
8

)a0 e
− 3∆
8

a+!

(

3∆
8

)a+ e
− 3∆
8

a−!

(

3∆
8

)a−

(a0 + a+)(a0 + a−). (5)

Together with similar expressions of the numerator in Eq. (4), we obtain

〈(∆A±)2〉att =
2∆3 + 15∆2 + 20∆ + 4

N2(2∆ + 1)
. (6)

The attractor states are given by Aµ = mµ/N and mµ/N − ∆Aµ, where mµ =
1, 3, . . . , N∆Aµ − 1. This yields a variance of

σ2

N
=
7〈(N∆A+)2〉att + 7〈(N∆A−)2〉att − 8

192N
, (7)

which gives, on combining with Eq. (6),

σ2

N
=
14∆3 + 105∆2 + 132∆ + 24

96N(2∆ + 1)
. (8)

When the diversity is low, ∆À 1, and Eq. (8) reduces to σ2/N = 7/48πρ, agreeing with
the scaling result of the previous section. When ρ ∼ N , Eq. (8) has excellent agreement
with simulation results, which signi£cantly deviate above the scaling relation.



5 Waiting Effect

As shown in Fig. 1(b), σ2/N further deviates above the predictions of kinetic sampling
when ρ À N . To study the origin of this effect, we consider the example of m = 1. As
shown in Fig. 2(a), the attractor consists of both hops along the A± axes. Analysis shows
that only those agents holding the identity policy and its complement can complete both
hops after they have adjusted their preferences to ω + Ωα − Ωβ = ±1. Since there are
fewer and fewer £ckle agents in the limit ρ À N , one would expect that a single agent of
this type would dominate the game dynamics, and σ2/N would approach 0.25/N , as also
predicted by Eq. (8).

However, attractors having 2 £ckle agents are about 10 times more common in the ex-
tremely diverse limit. As illustrated in Fig. 3(a) for a typical case, one of the two agents
£rst arrives at the status of ±1 preference of her policies and stay there waiting. Mean-
while, the preference of the second agent is steadily reduced. Once she has arrived at the
status of ±1 preference of her policies, both agents can then cooperate to complete the
dynamics of the attractor. In this example, both agents do not belong to the correct type
that can complete the dynamics alone, but waiting is crucial for them to complete the hops
in the attractor, even though one would expect that the probability of £nding more than one
£ckle agents at a time step is drastically less than that for one. Thus, the composition of
the group of £ckle agents is self-organized through this waiting effect, and consequently
the step sizes and variance increase above those predicted by kinetic sampling.

The analysis of the waiting effect is lengthy. Here the agents are so diverse that the average
step size is approaching 0. At each state in the phase space, the system remains stationary
for many time steps, waiting for some agent to reduce the magnitude of her preference until
policy switching can take place. For illustration, we sketch the approximation of including
up to one wait. As shown in Fig. 2(a), the attractor may be approached from the arm (P
or R) or from the corner (Q). Consider the case of the state approaching from P, waiting
up to k times at Q to move to R, and ending the transient dynamics thereafter. Then the
cumulative payoffs of a policy α can be written as Ωα + ξ+α at P, Ωα, . . . ,Ωα − kξ−α at Q
and, in the attractor of period 4, repeating the sequence of Ωα− kξ−α − ξ−α at R, Ωα− kξ−α
at Q, Ωα − kξ−α + ξ+α at P, and Ωα − kξ−α at Q. The movement of the cumulative payoffs
can be conveniently represented by writing Ωα =

∑

µ k
µξµα, where kµ denotes the number

of wins minus losses of decision 1 at state µ in the game history. For m = 1, these steps
are plotted in the space of k+ and k− in Fig. 3(b).

The size of each step is 2/N times the number of £ckle agents at that step, which is Poisson
distributed with average∆/2. The average numbers of agents appearing simultaneously in
different steps positioned along the directions k+±k− = constant and k± = constant are,
respectively, ∆/8 and ∆/4, and 0 for other directions. Thus, the average number of agents
common in the pairs of steps {PQ, QQ1}, {QQk, QP}, {QP, QR}, {PQ, QP} are ∆/8,
∆/8, ∆/8 and ∆/4 respectively. The rest of the combinations of steps are uncorrelated.
The number of agents involved in the steps are described in Table 1.

The variance of the step sizes is given by

〈1
2
[(∆A+)2+(∆A−)2]〉att =

∑

j

Pj

(

∑

i=0,1〈 12 [(∆A+)2 + (∆A−)2]∆A+∆A−〉i,j
∑

i=0,1〈∆A+∆A−〉i,j

)

,

(9)
where j = arm or corner. The variance of decisions can then be obtained from Eq. (7). For
illustration, we consider the derivation of the Poisson average 〈∆A+∆A−〉 for one-wait
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Figure 3: (a) Experimental evidence of the waiting effect: a typical example of the evo-
lution of the preference of the 2 agents switching policies at the attractor in a game with
m = 1, N = 127, and R = 224−1. The system converges to the attractor at t = 1, 086. (b)
The space of k+ and k− describing the movement of the cumulative payoffs in the game
with m = 1. Thick arrows: non-vanishing steps. Thin arrows: waiting steps. Thick double
arrows: attractor steps. The dashed lines link those steps that share common agents.

arm approach. Noting that the only non-vanishing steps are PQ, QR and QP, we obtain

〈∆A+∆A−〉1,arm = 4
N2

∑∞

k=1〈[1− δ(ai)δ(aturn,1)δ(acum)]δ(aturn,1)
∏k
r=1 δ(await,r)δ(aturn,2)(a− + a0)(acum + aturn,2 + a0)〉Poi

= 4
N2

1

1−e−
∆
2

{

e−
∆
2

[

12
(

∆
8

)2
+ ∆
8

]

− e−
7∆
8

[

4
(

∆
8

)2
+ ∆
8

]}

. (10)

We note that the number a0 accounts for the agents who contribute to both steps in the
attractor, and thus can complete the attractor dynamics alone in the extremely diverse limit.
On the other hand, the number acum arises from the £rst step PQ arriving at Q. Once
present, it will appear in the attractor step QP, irrespective of the duration k of the wait at
Q. These acum agents can wait to complete the attractor dynamics together with the a−
agents who contribute independently to the step from Q to R, as well as the a0 agents who
contribute to both attractor steps. As a result, the average step size increases due to this
waiting effect. In the former case, cooperation between individual types of agents becomes
indispensable in reaching the steady state behavior.

Other Poisson averages in Eq. (9) can be derived similarly. As shown in Fig. 1(b), the wait-
ing effect causes the variance to increase beyond the kinetic sampling prediction, agreeing
with the trend of the simulation results. In particular, the variance approaches 0.34/N in
the extremely diverse limit, signi£cantly greater than the limit of 0.25/N in the absence of
waiting effects. Further approximation including multiple waiting steps results in the theo-
retical curves with excellent agreement with the simulation results, as shown in Fig. 1(b).
In the extremely diverse limit, the theoretical predictions approach 0.42/N , very close to
the simulation result of 0.43/N .

6 Conclusion

We have studied the dynamical mechanisms of cooperation, which emerges automatically
in a multi-agent system with adaptive agents competing sel£shly for £nite resources. At
low diversity, agent cooperation proceeds at the statistical level, resulting in the scaling
relation of the variance with diversity. At high diversity, when kinetic sampling becomes



Table 1: The number of £ckle agents in the steps of one wait.
Label Steps No. of agents Poisson averages
PQ Ωα + ξ+α → Ωα ai + aturn,1 + acum 〈ai〉 = ∆/8, 〈aturn,1〉 = ∆/8,

〈acum〉 = ∆/4.
QQ1 Ωα → Ωα − ξ−α await,1 + aturn,1 〈await,1〉 = 3∆/8.

QQr Ωα − (r − 1)ξ−α await,r 〈await,r〉 = ∆/2,
→ Ωα − rξ−α (2 ≤ r ≤ k − 1).

QQk Ωα − (k − 1)ξ−α await,k + aturn,2 〈await,k〉 = 3∆/8,
→ Ωα − kξ−α 〈aturn,2〉 = ∆/8.

QR Ωα − kξ−α → a− + a0 〈a−〉 = 3∆/8,
Ωα − (k + 1)ξ−α 〈a0〉 = ∆/8.

QP Ωα − kξ−α → acum + aturn,2 + a0
Ωα − kξ−α + ξ+α

signi£cant, we £nd that the attractor dynamics favors the cooperation of larger clusters
of agents. In extremely diverse systems, we further discover a waiting mechanism, when
agents who are unable to complete the attractor dynamics alone wait for other agents to
collaborate with them. When waiting is present, cooperation between individual types
of agents becomes indispensable in reaching the steady state behavior. Together, these
mechanisms yield theoretical predictions of the population variance in excellent agreement
with simulations over nine decades of data.

We expect that the observed mechanisms of agent cooperation can be found in reinforce-
ment learning of multi-agent systems in general, due to their generic nature. The mecha-
nisms of statistical cooperation, kinetic sampling and waiting illustrate the importance of
dynamical considerations in describing the system behavior, and the capability of multi-
agent systems to self-organize in their collective dynamics. In particular, it is interesting to
note that given enough waiting time, agents with limited abilities can cooperate to achieve
dynamics unachievable by individuals. This is relevant to evolutionary approaches to multi-
agent control, since it allows limited changes to accumulate into bigger improvements.
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