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Abstract 

We present a biophysically constrained cerebellar model of 
classical conditioning, implemented using a neuromorphic analog 
VLSI (aVLSI) chip.  Like its biological counterpart, our cerebellar 
model is able to control adaptive behavior by predicting the 
precise timing of events.  Here we describe the functionality of the 
chip and present its learning performance, as evaluated in 
simulated conditioning experiments at the circuit level and in 
behavioral experiments using a mobile robot.  We show that this 
aVLSI model supports the acquisition and extinction of adaptively 
timed conditioned responses under real-world conditions with 
ultra-low power consumption. 

1  Introduction 

The association of two correlated stimuli, an initially neutral conditioned stimulus 
(CS) which predicts a meaningful unconditioned stimulus (US), leading to the 
acquisition of an adaptive conditioned response (CR), is one of the most essential 
forms of learning.  Pavlov introduced the classical conditioning paradigm in the 
early 20th century to study associative learning (Pavlov 1927).  In classical 
conditioning training an animal is repeatedly exposed to a CS followed by a US 
after a certain inter-stimulus interval (ISI).  The animal learns to elicit a CR 
matched to the ISI, reflecting its knowledge about an association between the CS, 
US, and their temporal relationship.  Our earlier software implementation of a 
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biophysically constrained model of the cerebellar circuit underlying classical 
conditioning (Verschure and Mintz 2001; Hofstötter et al. 2002) provided an 
explanation of this phenomenon by assuming a negative feedback loop between the 
cerebellar cortex, deep nucleus and inferior olive.  It could acquire and extinguish 
correctly timed CRs over a range of ISIs in simulated classical conditioning 
experiments, as well as in associative obstacle avoidance tasks using a mobile 
robot.  In this paper we present the analog VLSI (aVLSI) implementation of this 
cerebellum model – the cerebellum chip – and the results of chip-level and 
behavioral robot experiments. 

2  The model  circuit  and aVLSI implementation 

   
Figure 1: Anatomy of the cerebellar model circuit (left) and the block diagram of 
the corresponding chip (right). 

The model (Figure 1) is based on the identified cerebellar pathways of CS, US and 
CR (Kim and Thompson 1997) and includes four key hypotheses which were 
implemented in the earlier software model (Hofstötter et al. 2002):  

1. CS related parallel fiber (pf) and US related climbing fiber (cf) signals 
converge at Purkinje cells (PU) in the cerebellum (Steinmetz et al. 1989). The 
direction of the synaptic changes at the pf-PU-synapse depends on the temporal 
coincidence of pf and cf activity. Long-term depression (LTD) is induced by pf 
activity followed by cf activity within a certain time interval, while pf activity 
alone induces long-term potentiation (LTP) (Hansel et al. 2001). 

2. A prolonged second messenger response to pf stimulation in the dendrites of 
PU constitutes an eligibility trace from the CS pathway (Sutton and Barto 
1990) that bridges the ISI (Fiala et al. 1996). 

3. A microcircuit (Ito 1984) comprising PU, deep nucleus (DN) and inferior olive 
(IO) forms a negative feedback loop. Shunting inhibition of IO by DN blocks 
the reinforcement pathway (Thompson et al. 1998), thus controlling the 
induction of LTD and LTP at the pf-PU-synapse. 

4. DN activity triggers behavioral CRs (McCormick and Thompson 1984). The 
inhibitory PU controls DN activity by a mechanism called rebound excitation 
(Hesslow 1994): When DN cells are disinhibited from PU input, their 



 

 

membrane potential slowly repolarises and spikes are emitted if a certain 
threshold is reached.  Thereby, the correct timing of CRs results from the 
adaptation of a pause in PU spiking following the CS. 

In summary, in the model the expression of a CR is triggered by DN rebound 
excitation upon release from PU inhibition. The precise timing of a CR is 
dependent on the duration of an acquired pause in PU spiking following a CS. The 
PU response is regulated by LTD and LTP at the pf-PU-synapse under the control 
of a negative feedback loop comprising DN, PU and IO. 

We implemented an analog VLSI version of the cerebellar model using a standard 
1.6µm CMOS technology, and occupying an area of approximately 0.25 mm2.  A 
block diagram of the hardware model is shown in Figure 1.  The CS block receives 
the conditioned stimulus and generates two signals: an analog long-lasting, slowly 
decaying trace (cs_out) and an equally long binary pulse (cs_wind). Similarly, the 
US block receives an unconditioned stimulus and generates a fast pulse (us_out).  
The two pulses cs_wind and us_out are sent to the LT-ISI block that is responsible 
for perfoming LTP and LTD, upregulating or downregulating the synaptic weight 
signal w.  This signal determines the gain by which the cs_out trace is multiplied in 
the MU block.  The output of the multiplier MU is sent on to the PU block, together 
with the us_out signal.  It is a linear integrate-and-fire neuron (the axon-hillock 
circuit) connected to a constant current source that produces regular spontaneous 
activity.  The current source is gated by the digital cf_wind signal, such that the 
spontaneous activity is shut off for the duration of the cs_out trace. 

The chip allowed one of three learning rules to be connected.  Experiments showed 
that an ISI-dependent learning rule with short ISIs resulting in the strongest LTD 
was the most useful (Kramer and Hofstötter 2002).  Two elements were added to 
adapt the model circuit for real-world robot experiments.  Firstly, to prevent the 
expression of a CR after a US had already been triggered, an inhibitory connection 
from IO to CRpathway was added.  Secondly, the transduction delay (TD) from the 
aVLSI circuit to any effectors (e.g. motor controls of a robot) had to be taken into 
account, which was done by adding a delay from DN to IO of 500ms. 

The chip’s power consumption is conservatively estimated at around 100 �W 
(excluding off-chip interfacing), based on measurements from similar integrate-
and-fire neuron circuits (Indiveri 2003).  This figure is an order of magnitude lower 
than what could be achieved using conventional microcontrollers (typically 1-10 
mW), and could be improved further by optimising the circuit design. 

3  Simulated condit ioning experiments  

The aim of the “in vitro” simulated conditioning experiments was to understand the 
learning performance of the chip.  To obtain a meaningful evaluation of the 
performance of the learning system for both the simulated conditioning 
experiments and the robot experiments, the measure of effective CRs was used.  In 
acquisition experiments CS-US pairs are presented with a fixed ISI.  Whenever a 
CR occurs that precedes the US, the US signal is not propagated to PU due to the 
inhibitory connection from DN to IO.  Thus in the context of acquisition 
experiments a CR is defined as effective if it prevents the occurrence of a US spike 



 

 

at PU.  In contrast, in robot experiments an effective CR is defined at the 
behavioral level, including only CRs that prevent the US from occurring.  

 
Figure 2: Learning related response changes in the cerebellar aVLSI chip. The most 
relevant neural responses to a CS-US pair (ISI of 3s, ITI of 12s) are presented for a 
trial before (naive) significant learning occurred and when a correctly timed CR is 
expressed (trained).  US-related pf and CS/CR-related cf signals are indicated by 
vertical lines passing through the subplots.  A CS-related pf-signal evokes a 
prolonged response in the pf-PU-synapse, the CS-trace (Trace subplot).  While an 
active CS-trace is present, an inhibitory element (I) is active which inactivates an 
element representing the spontaneous activity of PU (Hofstötter et al. 2002).  (A) 
The US-related cf input occurs while there is an active CS-trace (Trace subplot), in 
this case following the CS with an ISI of 3s.  LTD predominates over LTP under 
these conditions (Weight subplot).  Because the PU membrane potential (PU) 
remains above spiking threshold, PU is active and supplies constant inhibition to 
DN (DN) while in the CS-mode.  Thus, DN cannot repolarize and remains inactive 
so that no CR is triggered.  (B) Later in the experiment, the synaptic weight of the 
pf-PU-synapse (Weight) has been reduced due to previous LTD.  As a result, 
following a CS-related pf input, the PU potential (PU subplot) falls below the 
spiking threshold, which leads to a pause in PU spiking.  The DN membrane 
potential repolarises, so that rebound spikes are emitted (DN subplot).  This 
rebound excitation triggers a CR.  DN inhibition of IO prevents US related cf-
activity.  Thus, although a US signal is still presented to the circuit, the reinforcing 
US pathway is blocked.  These conditions induce only LTP, raising the synaptic 
weight of the pf-PU-synapse (Weight subplot). 

The results we obtained were broadly consistent with those reported in the 
biological literature (Ito 1984; Kim and Thompson 1997).  The correct operation of 
the circuit can be seen in the cell traces illustrating the properties of the aVLSI 
circuit components before significant learning (Figure 2 A), and after a CR is 
expressed (Figure 2B).  Long-term acquisition experiments (25 blocks of 10 trials 



 

 

each over 50 minutes) showed that chip functions remained stable over a long time 
period.  In each trial the CS was followed by a US with a fixed ISI of 3s; the inter 
trial interval (ITI) was 12s.  The number of effective CRs shows an initial fast 
learning phase followed by a stable phase with higher percentages of effective CRs 
(Figure 3B).  In the stable phase the percentage of effective CRs per block 
fluctuates around 80-90%.  There are fluctuations of up to 500ms in the CR latency 
caused by the interaction of LTD and LTP in the stable phase, but the average CR 
latency remains fairly constant. 

Figure 4 shows the average of five acquisition experiments (5 blocks of 10 trials 
per experiment) for ISIs of 2.5s, 3s and 3.5s.  The curves are similar in shape to the 
ones in the long-term experiment.  The CR latency quickly adjusts to match the ISI 
and remains stable thereafter (Figure 4A). The effect of the ISI-dependent learning 
rule can be seen in two ways: firstly, the shorter the ISI, the faster the stable phase 
is reached, denoting faster learning.  Secondly, the shorter the ISI, the better the 
performance in terms of percentage of effective CRs (Figure 4B).  The parameters 
of the chip were tuned to optimally encode short ISIs in the range of 1.75s to 4.5s.  
Separate experiments showed that the chip could also adapt rapidly to changes in 
the ISI within this range after initial learning. 

(Error bar = 1 std. dev.) 

Figure 3: Long-term changes in CR latency (A) and % effective CRs (B) per block 
of 10 CSs during acquisition.  Experiment length = 50min., ISI = 3s, ITI = 12s. 

(Error bar = 1 std. dev.) 

Figure 4: Average of five acquisition experiments per block of 10 CSs for ISIs of 
2.5s (�), 3s (*) and 3.5s (�).  (A) Avg. CR latency.  (B) Avg. % effective CRs. 



 

 

4  Robot associative learning experiments  

The “in vivo” learning capability of the chip was evaluated by interfacing it to a 
robot and observing its behavior in an unsupervised obstacle avoidance task.  
Experiments were performed using a Khepera microrobot (K-team, Lausanne, 
Switzerland, Figure 5A) in a circular arena with striped walls (Figure 5C). The 
robot was equipped with 6 proximal infra-red (IR) sensors (Figure 5B).  Activation 
of these sensors (US) due to a collision triggered a turn of ~110° in the opposite 
direction (UR).  A line camera (64 pixels x 256 gray-levels) constituted the distal 
sensor, with detection of a certain spatial frequency (~0.14 periods/degree) 
signalling the CS.  Visual CSs and collision USs were conveyed to CSpathway and 
USpathway on the chip.  The activation of CRpathway triggered a motor CR: a 1s 
long regression followed by a turn of ~180°.  Communication between the chip and 
the robot was performed using Matlab on a PC.  The control program could be 
downloaded to the robot's processor, allowing the robot to act fully autonomously.  
In each experiment, the robot was placed in the circular arena exploring its 
environment with a constant speed of ~4 cm/s.  A spatial frequency CS was 
detected at some distance when the robot approached the wall, followed by a 
collision with the wall, stimulating the IR sensors and thus triggering a US.  
Consequently the CS was correlated with the US, predicting it.  The ISIs of these 
stimuli were variable, due to noise in sensor sampling, and variations in the angle 
at which the robot approached the wall.  

 
Figure 5: (A) Khepera microrobot with aVLSI chip mounted on top.  (B) Only the 
forward sensors were used during the experiments.  (C) The environment: a 60cm 
diameter circular arena surrounded by a 15cm high wall.  A pattern of vertical, 
equally sized black and white bars was placed on the wall. 

Associative learning mediated by the cerebellum chip significantly altered the 
robot's behavior in the obstacle avoidance task (Figure 6) over the course of each 
experiment.  In the initial learning phase, the behavior was UR driven: the robot 
drove forwards until it collided with the wall, only then performing a turn (Figure 
6A1).  In the trained phase, the robot usually turned just before it collided with the 
wall (Figure 6A2), reducing the number of collisions.  The positions of the robot 
when a CS, US or CR event occurred in these two phases are shown in Figure 6B1 



 

 

and B2.  The CRs were not expressed immediately after the CSs, but rather with a 
CR latency adjusted to just prevent collisions (USs).  Not all USs were avoided in 
the trained phase due to some excessively short ISIs (Figure 7) and normal 
extinction processes over many unreinforced trials.  After the learning phase the 
percentage of effective CRs fluctuated between 70% and 100% (Figure 7). 

 
Figure 6: Learning performance of the robot. (Top row) Trajectories of the robot. 
The white circle with the black dot in the center indicates the beginning of 
trajectories.  (Bottom row) The same periods of the experiment examined at the 
circuit level: � = CS, * = US, � = CR.  (A1, B1) Beginning of the experiment (CS 
3-15). (A2, B2) Later in the experiment (CS 32-44). 

 
Figure 7: Trends in learning behavior (average of 5 experiments, 25 min. each).  90 
CSs were presented in each experiment.  Error bars indicate one standard deviation.  
(A) Average percentage of effective CRs over 9 blocks of 10 CSs. (B) Number of 
CS occurrences (�), US occurrences (*) and CR occurrences (�). 

5  Discussion 

We have presented one of the first examples of a biologically constrained model of 
learning implemented in hardware.  Our aVLSI cerebellum chip supports the 
acquisition and extinction of adaptively timed responses under noisy, real world 



 

 

conditions.  These results provide further evidence for the role of the cerebellar 
circuit embedded in a synaptic feedback loop in the learning of adaptive behavior, 
and pave the way for the creation of artefacts with embedded ultra low-power 
learning capabilities. 
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