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Abstract

In this paper we propose a probabilistic model for online document clus-
tering. We use non-parametric Dirichlet process prior to model the grow-
ing number of clusters, and use a prior of general English language
model as the base distribution to handle the generation of novel clusters.
Furthermore, cluster uncertainty is modeled with a Bayesian Dirichlet-
multinomial distribution. We use empirical Bayes method to estimate
hyperparameters based on a historical dataset. Our probabilistic model
is applied to the novelty detection task in Topic Detection and Tracking
(TDT) and compared with existing approaches in the literature.

1 Introduction

The task of online document clustering is to group documents into clusters as long as
they arrive in a temporal sequence. Generally speaking, it is difficult for several reasons:
First, it is unsupervised learning and the learning has to be done in an online fashion,
which imposes constraints on both strategy and efficiency. Second, similar to other learning
problems in text, we have to deal with a high-dimensional space with tens of thousands of
features. And finally, the number of clusters can be as large as thousands in newswire data.

The objective of novelty detection is to identify the novel objects from a sequence of data,
where “novel” is usually defined as dissimilar to previous seen instances. Here we are inter-
ested in novelty detection in the text domain, where we want to identify the earliest report
of every new event in a sequence of news stories. Applying online document clustering
to the novelty detection task is straightforward by assigning the first seed of every cluster
as novel and all its remaining ones as non-novel. The most obvious application of novelty
detection is that, by detecting novel events, systems can automatically alert people when
new events happen, for example.



In this paper we apply Dirichlet process prior to model the growing number of clusters, and
propose to use a General English language model as a basis of newly generated clusters.
In particular, the new clusters will be generated according to the prior and a background
General English model, and each document cluster is modeled using a Bayesian Dirichlet-
multinomial language model. The Bayesian inference can be easily carried out due to
conjugacy, and model hyperparameters are estimated using a historical dataset by the em-
pirical Bayes method. We evaluate our online clustering algorithm (as well as its variants)
on the novelty detection task in TDT, which has been regarded as the hardest task in that
literature [2].

The rest of this paper is organized as follows. We first introduce our probabilistic model
in Section 2, and in Section 3 we give detailed information on how to estimate model
hyperparameters. We describe the experiments in Section 4, and related work in Section 5.
We conclude and discuss future work in Section 6.

2 A Probabilistic Model for Online Document Clustering

In this section we will describe the generative probabilistic model for online document
clustering. We use x = (n

(x)
1 , n

(x)
2 , . . . , n

(x)
V ) to represent a document vector where each

element n
(x)
v denotes the term frequency of the vth corresponding word in the document

x, and V is the total size of the vocabulary.

2.1 Dirichlet-Multinomial Model

The multinomial distribution has been one of the most frequently used language models for
modeling documents in information retrieval. It assumes that given the set of parameters
θ = (θ1, θ2, . . . , θV ), a document x is generated with the following probability:

p(x|θ) =
(
∑V
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v )!
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From the formula we can see the so-called naive assumption: words are assumed to be in-
dependent of each other. Given a collection of documents generated from the same model,
the parameter θ can be estimated with Maximum Likelihood Estimation (MLE).

In a Bayesian approach we would like to put a Dirichlet prior over the parameter (θ ∼
Dir(α)) such that the probability of generating a document is obtained by integrating over
the parameter space: p(x) =

∫

p(θ|α)p(x|θ)dθ. This integration can be easily written
down due to the conjugacy between Dirichlet and multinomial distributions. The key dif-
ference between the Bayesian approach and the MLE is that the former uses a distribution
to model the uncertainty of the parameter θ, while the latter gives only a point estimation.

2.2 Online Document Clustering with Dirichlet Process Mixture Model

In our system documents are grouped into clusters in an online fashion. Each cluster is
modeled with a multinomial distribution whose parameter θ follows a Dirichlet prior. First,
a cluster is chosen based on a Dirichlet process prior (can be either a new or existing
cluster), and then a document is drawn from that cluster.

We use Dirichlet Process (DP) to model the prior distribution of θ’s, and our hierarchical
model is as follows:

xi|ci ∼ Mul(.|θ(ci))

θi iid.
∼ G (1)

G ∼ DP (λ,G0)



where ci is the cluster indicator variable, θi is the multinomial parameter 1 for each docu-
ment, and θ(ci) is the unique θ for the cluster ci. G is a random distribution generated from
the Dirichlet process DP (λ,G0) [4], which has a precision parameter λ and a base distribu-
tion G0. Here our base distribution G0 is a Dirichlet distribution Dir(γπ1, γπ2, . . . , γπV )

with
∑V

t=1 πt = 1, which reflects our expected knowledge about G. Intuitively, our G0

distribution can be treated as the prior over general English word frequencies, which has
been used in information retrieval literature [6] to model general English documents.

The exact cluster-document generation process can be described as follows:

1. Let xi be the current document under processing (the ith document in the input
sequence), and C1,C2, . . . ,Cm are already generated clusters.

2. Draw a cluster ci based on the following Dirichlet process prior [4]:

p(ci = Cj) =
|Cj |

λ +
∑m

j=1 |Cj |
(j = 1, 2, . . . ,m)

p(ci = Cm+1) =
λ

λ +
∑m

j=1 |Cj |

(2)

where |Cj | stands for the cardinality of cluster j with
∑m

j=1 |Cj | = i − 1, and
with certain probability a new cluster Cm+1 will be generated.

3. Draw the document xi from the cluster ci.

2.3 Model Updating

Our models for each cluster need to be updated based on incoming documents. We can
write down the probability that the current document xi is generated by any cluster as

p(xi|Cj) =

∫

p(θ(Cj)|Cj)p(xi|θ
(Cj))dθ(Cj) (j = 1, 2, . . . ,m,m + 1)

where p(θ(Cj)|Cj) is the posterior distribution of parameters of the jth cluster (j =

1, 2, . . . ,m) and we use p(θ(Cm+1)|Cm+1) = p(θ(Cm+1)) to represent the prior distribu-
tion of the parameters of the new cluster for convenience. Although the dimensionality of
θ is high (V ≈ 105 in our case), closed-form solution can be obtained under our Dirichlet-
multinomial assumption. Once the conditional probabilities p(xi|Cj) are computed, the
probabilities p(Cj |xi) can be easily calculated using the Bayes rule:

p(Cj |xi) =
p(Cj)p(xi|Cj)

∑m+1
j′=1 p(Cj′)p(xi|Cj′)

where the prior probability of each cluster is calculated using equation (2).

Now there are several choices we can consider on how to update the cluster models. The
first choice, which is correct but obviously intractable, is to fork m + 1 children of the
current system where the jth child is updated with document xi assigned to cluster j, while
the final system is a probabilistic combination of those children with the corresponding
probabilities p(Cj |xi). The second choice is to make a hard decision by assigning the
current document xi to the cluster with the maximum probability:

ci = arg max
Cj

p(Cj |xi) =
p(Cj)p(xi|Cj)

∑m+1
j′=1 p(Cj′)p(xi|Cj′)

.

1For θ we use θv to denote the vth element in the vector, θi to denote the parameter vector that
generates the ith document, and θ(j) to denote the parameter vector for the jth cluster.



The third choice is to use a soft probabilistic updating, which is similar in spirit to the
Assumed Density Filtering (ADF) [7] in the literature. That is, each cluster is updated by
exponentiating the likelihood function with probabilities:

p(θ(Cj)|xi,Cj) ∝
(

p(xi|θ
(Cj))

)p(Cj |xi)

p(θ(Cj)|Cj)

However, we have to specially deal with the new cluster since we cannot afford both time-
wise and space-wise to generate a new cluster for each incoming document. Instead, we
will update all existing clusters as above, and new cluster will be generated only if ci =
Cm+1. We will use HD and PD (hard decision and probabilistic decision) to denote the
last two candidates in our experiments.

3 Learning Model Parameters

In the above probabilistic model there are still several hyperparameters not specified,
namely the π and γ in the base distribution G0 = Dir(γπ1, γπ2, . . . , γπV ), and the pre-
cision parameter λ in the DP (λ,G0). Since we can obtain a partially labeled historical
dataset 2 , we now discuss how to estimate those parameters respectively.

We will mainly use the empirical Bayes method [5] to estimate those parameters instead
of taking a full Bayesian approach, since it is easier to compute and generally reliable
when the number of data points is relatively large compared to the number of parameters.
Because the θi’s are iid. from the random distribution G, by integrating out the G we get

θi|θ1, θ2, . . . , θi−1 ∼
λ

λ + i − 1
G0 +

1

λ + i − 1

∑

j<i

δθj

where the distribution is a mixture of continuous and discrete distributions, and the δθ

denotes the probability measure giving point mass to θ.

Now suppose we have a historical dataset H which contains K labeled clusters Hj(j =
1, 2, . . . ,K), with the kth cluster Hk = {xk,1,xk,2, . . . ,xk,mk

} having mk documents.
The joint probability of θ’s of all documents can be obtained as

p(θ1, θ2, . . . , θ|H|) =

|H|
∏

i=1

(
λ

λ + i − 1
G0 +

1

λ + i − 1

∑

j<i

δθj )

where |H| is the total number of documents. By integrating over the unknown parameter
θ’s we can get

p(H) =

∫




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
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λ
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δθj )dθi



 (3)

Empirical Bayes method can be applied to equation (3) to estimate the model parameters
by maximization3. In the following we discuss how to estimate parameters individually in
detail.

2Although documents are grouped into clusters in the historical dataset, we cannot make directly
use of those labels due to the fact that clusters in the test dataset are different from those in the
historical dataset.

3Since only a subset of documents are labeled in the historical dataset H , the maximization is
only taken over the union of the labeled clusters.



3.1 Estimating πt’s

Our hyperparameter π vector contains V number of parameters for the base distribution G0,
which can be treated as the expected distribution of G – the prior of the cluster parameter
θ’s.

Although π contains V ≈ 105 number of actual parameters in our case, we can still use
the empirical Bayes to do a reliable point estimation since the amount of data we have to
represent general English is large (in our historical dataset there are around 106 documents,
around 1.8 × 108 English words in total) and highly informative about π. We use the
smoothed estimation π ∝ (1 + n

(H)
1 , 1 + n

(H)
2 , . . . , 1 + n

(H)
V ) where n

(H)
t =

∑

x∈H n
(x)
t

is the total number of times that term t happened in the collection H , and
∑V

t=1 πt should
be normalized to 1. Furthermore, the pseudo-count one is added to alleviate the out-of-
vocabulary problem.

3.2 Estimating γ

Though γ is just a scalar parameter, it has the effect to control the uncertainty of the prior
knowledge about how clusters are related to the general English model with the parameter
π. We can see that γ controls how far each new cluster can deviate from the general English
model 4. It can be estimated as follows:

γ̂ = arg max
γ

K
∏

k=1

p(Hk|γ) = arg max
γ

K
∏

k=1

∫

p(Hk|θ
(k))p(θ(k)|γ)dθ(k) (4)

γ̂ can be numerically computed by solving the following equation:

KΨ(γ) − K

V
∑

v=1

Ψ(γπv)πv +

K
∑

k=1

V
∑

v=1

Ψ(γπv + n(Hk)
v )πv −

K
∑

k=1

Ψ(γ +

V
∑

v=1

n(Hk)
v ) = 0

where the digamma function Ψ(x) is defined as Ψ(x) ≡ d
dx ln Γ(x).

Alternatively we can choose γ by evaluating over the historical dataset. This is applicable
(though computationally expensive) since it is only a scalar parameter and we can pre-
compute its possible range based on equation (4).

3.3 Estimating λ

The precision parameter λ of the DP is also very important for the model, which controls
how far the random distribution G can deviate from the baseline model G0. In our case, it is
also the prior belief about how quickly new clusters will be generated in the sequence. Sim-
ilarly we can use equation (3) to estimate λ, since items related to λ can be factored out as
∏|H|

i=1
λyi

λ+i−1 . Suppose we have a labeled subset HL = {(x1, y1), (x2, y2), . . . , (xM , yM )}
of training data, where yi is 1 if xi is a novel document or 0 otherwise. Here we describe
two possible choices:

1. The simplest way is to assume that λ is a fixed constant during the process, and it
can be computed as λ̂ = arg maxλ

∏

i∈HL
λyt

λ+i−1 , here HL denotes the subset of
indices of labeled documents in the whole sequence.

2. The assumption that λ is fixed maybe restrictive in reality, especially considering
the fact that it reflects the generation rate of new clusters. More generally, we

4The mean and variance of a Dirichlet distribution (θ1, θ2, . . . , θV ) ∼ Dir(γπ1, γπ2, . . . , γπV )

are: E[θv] = πv and Var[θv] = πv(1−πv)
(γ+1)

.



can assume that λ is some function of variable i. In particular, we assume λ =
a/i + b + ci where a, b and c are non-negative numbers. This formulation is a
generalization of the above case, where the i−1 term allows a much faster decrease
at the beginning, and c is the asymptotic rate of events happening as i → ∞.
Again the parameters a, b and c are estimated by MLE over the training dataset:
â, b̂, ĉ = arg maxa,b,c>0

∏

i∈HL

(a/i+b+ci)yi

a/i+b+ci+i .

4 Experiments

We apply the above online clustering model to the novelty detection task in Topic Detection
and Tracking (TDT). TDT has been a research community since its 1997 pilot study, which
is a research initiative that aims at techniques to automatically process news documents in
terms of events. There are several tasks defined in TDT, and among them Novelty Detection
(a.k.a. First Story Detection or New Event Detection) has been regarded as the hardest task
in this area [2]. The objective of the novelty detection task is to detect the earliest report
for each event as soon as that report arrives in the temporal sequence of news stories.

4.1 Dataset

We use the TDT2 corpus as our historical dataset for estimating parameters, and use the
TDT3 corpus to evaluate our model 5. Notice that we have a subset of documents in the
historical dataset (TDT2) for which events labels are given. The TDT2 corpus used for
novelty detection task consists of 62,962 documents, among them 8,401 documents are
labeled in 96 clusters. Stopwords are removed and words are stemmed, and after that there
are on average 180 words per document. The total number of features (unique words) is
around 100,000.

4.2 Evaluation Measure

In our experiments we use the standard TDT evaluation measure [1] to evaluate our results.
The performance is characterized in terms of the probability of two types of errors: miss
and false alarm (PMiss and PFA). These two error probabilities are then combined into a
single detection cost, Cdet, by assigning costs to miss and false alarm errors:

Cdet = CMiss · PMiss · Ptarget + CFA · PFA · Pnon−target

where

1. CMiss and CFA are the costs of a miss and a false alarm, respectively,

2. PMissand PFA are the conditional probabilities of a miss and a false alarm, re-
spectively, and

3. Ptarget and Pnon−target is the priori target probabilities (Ptarget = 1 −
Pnon−target).

It is the following normalized cost that is actually used in evaluating various TDT systems:

(Cdet)norm =
Cdet

min(CMiss · Ptarget, CFA · Pnon−target)

where the denominator is the minimum of two trivial systems. Besides, two types of eval-
uations are used in TDT, namely macro-averaged (topic-weighted) and micro-averaged

5Strictly speaking we only used the subsets of TDT2 and TDT3 that is designated for the novelty
detection task.



(story-weighted) evaluations. In macro-averaged evaluation, the cost is computed for every
event, and then the average is taken. In micro-averaged evaluation the cost is averaged over
all documents’ decisions generated by the system, thus large event will have bigger impact
on the overall performance. Note that macro-averaged evaluation is used as the primary
evaluation measure in TDT. In addition to the binary decision “novel” or “non-novel”, each
system is required to generated a confidence score for each test document. The higher the
score is, the more likely the document is novel. Here we mainly use the minimum cost to
evaluate systems by varying the threshold, which is independent of the threshold setting.

4.3 Methods

One simple but effective method is the “GAC-INCR” clustering method [9] with cosine
similarity metric and TFIDF term weighting, which has remained to be the top performing
system in TDT 2002 & 2003 official evaluations. For this method the novelty confidence
score we used is one minus the similarity score between the current cluster xi and its nearest
neighbor cluster: s(xi) = 1.0 − maxj<i sim(ci, cj), where ci and cj are the clusters that
xi and xj are assigned to, respectively, and the similarity is taken to be the cosine similarity
between two cluster vectors, where the ltc TFIDF term weighting scheme is used to scale
each dimension of the vector. Our second method is to train a logistic regression model
which combines multiple features generated by the GAC-INCR method. Those features
not only include the similarity score used by the first method, but also include the size of
its nearest cluster, the time difference between the current cluster and the nearest cluster,
etc. We call this method “Logistic Regression”, where we use the posterior probability
p(novelty|xi) as the confidence score. Finally, for our online clustering algorithm we
choose the quantity s(xi) = log p(C0|xi) as the output confidence score.

4.4 Experimental Results

Our results for three methods are listed in Table 1, where both macro-averaged and micro-
averaged minimum normalized costs are reported 6. The GAC-INCR method performs
very well, so does the logistic regression method. For our DP results, we observed that
using the optimized γ̂ will get results (not listed in the table) that are around 10% worse
than using the γ obtained through validation, which might be due to the flatness of the
optimal function value as well as the sample bias of the clusters in the historical dataset7.
Another observation is that the probabilistic decision does not actually improve the hard
decision performance, especially for the λvar option. Generally speaking, our DP methods
are comparable to the other two methods, especially in terms of topic-weighted measure.

Table 1: Results for novelty detection on TDT3 corpus

Topic-weighted Cost Story-weighted Cost
Method COST (Miss, FA) COST (Miss, FA)

GAC-INCR 0.6945 (0.5614, 0.0272) 0.7090 (0.5614, 0.0301)
Logistic Regression 0.7027 (0.5732, 0.0264) 0.6911 (0.5732, 0.0241)
DP with λfix, HD 0.7054 (0.4737, 0.0473) 0.7744 (0.5965, 0.0363)
DP with λvar, HD 0.6901 (0.5789, 0.0227) 0.7541 (0.5789, 0.0358)
DP with λfix, PD 0.7054 (0.4737, 0.0473) 0.7744 (0.5965, 0.0363)
DP with λvar, PD 0.9025 (0.8772, 0.0052) 0.9034 (0.8772, 0.0053)

6In TDT official evaluation there is also the DET curve, which is similar in spirit to the ROC curve
that can reflects how the performance changes as the threshold varies. We will report those results in
a longer version of this paper.

7It is known that the cluster labeling process of LDC is biased toward topics that will be covered
in multiple languages instead of one single language.



5 Related Work

Zaragoza et al. [11] applied a Bayesian Dirichlet-multinomial model to the ad hoc infor-
mation retrieval task and showed that it is comparable to other smoothed language models.
Blei et al. [3] used Chinese Restaurant Processes to model topic hierachies for a collec-
tion of documents. West et al. [8] discussed the sampling techniques for base distribution
parameters in the Dirichlet process mixture model.

6 Conclusions and Future Work

In this paper we used a hierarchical probabilistic model for online document clustering.
We modeled the generation of new clusters with a Dirichlet process mixture model, where
the base distribution can be treated as the prior of general English model and the precision
parameter is closely related to the generation rate of new clusters. Model parameters are
estimated with empirical Bayes and validation over the historical dataset. Our model is
evaluated on the TDT novelty detection task, and results show that our method is promising.

In future work we would like to investigate other ways of estimating parameters and use
sampling methods to revisit previous cluster assignments. We would also like to apply our
model to the retrospective detection task in TDT where systems do not need to make de-
cisions online. Though its simplicity, the unigram multinomial model has its well-known
limitation, which is the naive assumption about word independence. We also plan to ex-
plore richer but still tractable language models in this framework. Meanwhile, we would
like to combine this model with the topic-conditioned framework [10] as well as incorpo-
rate hierarchical mixture model so that novelty detection will be conditioned on some topic,
which will be modeled by either supervised or semi-supervised learning techniques.
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