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Abstract

We present an analysis of concentration-of-expectation phenomena in
layered Bayesian networks that use generalized linear models as the local
conditional probabilities. This framework encompasses a wide variety of
probability distributions, including both discrete and continuous random
variables. We utilize ideas from large deviation analysis and the delta
method to devise and evaluate a class of approximate inference algo-
rithms for layered Bayesian networks that have superior asymptotic error
bounds and very fast computation time.

1 Introduction

The methodology of variational inference has developed rapidly in recent years, with in-
creasingly rich classes of approximation being considered (see, e.g., Yedidia, et al., 2001,
Jordan et al., 1998). While such methods are intuitively reasonable and often perform well
in practice, it is unfortunately not possible, except in very special cases, to provide error
bounds for these inference algorithms. Thus the user has little a priori guidance in choosing
an inference algorithm, and little a posteriori reassurance that the approximate marginals
produced by an algorithm are good approximations. The situation is somewhat better for
sampling algorithms, but there the reassurance is only asymptotic.

A line of research initiated by Kearns and Saul (1998) aimed at providing such error bounds
for certain classes of directed graphs. Analyzing the setting of two-layer networks, binary
nodes with large fan-in, noisy-OR or logistic conditional probabilities, and parameters that
scale as O(1/N), where N are the number of nodes in each layer, they used a simple
large deviation analysis to design an approximate inference algorithm that provided error
bounds. In later work they extended their algorithm to multi-layer networks (Kearns and
Saul, 1999). The error bound provided by this approach was O(+/In N/N). Ng and Jordan

(2000) pursued this line of work, obtaining an improved error bound of O(1/N (k+1)/2)
where k is the order of a Taylor expansion employed by their technique. Their approach
was, however, restricted to two-layer graphs.

Layered graphs are problematic for many inference algorithms, including belief propa-
gation and generalized belief propagation algorithms. These algorithms convert directed
graphs to undirected graphs by moralization, which creates infeasibly large cliques when
there are nodes with large fan-in. Thus the work initiated by Kearns and Saul is notable
not only for its ability to provide error bounds, but also because it provides one of the few



practical algorithms for general layered graphs. It is essential to develop algorithms that
scale in this setting—e.g., a recent application at Google studied layered graphs involving
more than a million nodes (Harik and Shazeer, personal communication).

In this paper, we design and analyze approximate inference algorithms for general multi-
layered Bayesian networks with generalized linear models as the local conditional proba-
bility distributions. Generalized linear models including noisy-OR and logistic functions
in the binary case, but go significantly further, allowing random variables from any dis-
tribution in the exponential family. We show that in such layered graphical models, the
concentration of expectations of any fixed number of nodes propagate from one layer to
another according to a topological sort of the nodes. This concentration phenomenon can
be exploited to devise efficient approximate inference algorithms that provide error bounds.
Specifically, in a multi-layer network with N nodes in each layer and random variables in
some exponential family of distribution, our algorithm has an O((In N)3/N)(&+1)/2) error
bound and O(N*) time complexity. We perform a large number of simulations to con-
firm this error bound and compare with Kearns and Saul’s algorithm, which has not been
empirically evaluated before.

The paper is organized as follows. In Section 2, we study the concentration of expectation
in generalized linear models. Section 3 introduces the use of delta method for approximat-
ing the expectations. Section 4 describes an approximate inference algorithm in a general
directed graphical model, which is evaluated empirically in Section 5. Finally, Section 6
concludes the paper.

2 Generalized linear models

Consider a generalized linear model (GLIM; see McCullagh and Nelder, 1983, for de-
tails) consisting of NV covariates (inputs) X1, ..., Xy and a response (output) variable Y.
A GLIM makes three assumptions regarding the form of the conditional probability dis-
tribution P(Y|X): (1) The inputs X1, ..., X enter the model via a linear combination
£= Zf\il 0, X;; (2) the conditional mean . is represented as a function f (&), known as the
response function; and (3) the output Y is characterized by an exponential family distribu-
tion (cf. Brown, 1986) with natural parameter  and conditional mean . The conditional
probability takes the following form:
ny — A(n)

Po,o(Y1X) = hly, ¢) exp ===,

where ¢ is a scale parameter,  is a function reflecting the underlying measure, and A(n)
is the log partition function.

@)

In this section, for ease of exposition, we shall assume that the response function f is a

canonical response function, which simply means that = £ = Zfil 0;X;. As will soon
be clear, however, our analysis is applicable to a general setting in which f is only required
to have bounded derivatives on compact sets.

It is a well-known property of exponential family distributions that
N
EY|X) = p=A'(n)=fn)="f (Z 9¢XZ->
i=1

Var(Y|X) = ¢A"(n) = ¢f'(n).

The exponential family includes the Bernoulli, multinomial, and Gaussian distributions,
but many other useful distributions as well, including the Poisson, gamma and Dirichlet.

We will be studying GLIMs defined on layered graphical models, and thus X, ..., X are
themselves taken to be random variables in the exponential family. We also make the key



assumption that all parameters obey the bound |9;| < /N for some constant 7, although
this assumption shall be relaxed later on.

Under these assumptions, we can show that the linear combination n = Zf\; 0;X; is
tightly concentrated around its mean with very high probability. Kearns and Saul (1998)
have proved this for binary random variables using large deviation analysis. This type
of analysis can be used to prove general results for (bounded and unbounded) random
variables in any standard exponential family.*

Lemmal Assume that X1, ..., Xy are independent random variables in a standard ex-
ponential family distribution. Furthermore, EX; € [p; — A;,p; + A;]. Then there are

absolute constants C' and « such that, for any ¢ > Zf\i 110514

N N 4

ale — Yt [6:]A)*?
P(ln— Oipi| > €) < Cexp — y :
2:: (i, 62)/3

N
< Cexp{—aN1/37_2/3(€ - Z |9i|Ai)2/3}

i=1

We will study architectures that are strictly layered; that is, we require that there are no
edges directly linking the parents of any node. In this setting the parents of each node are
conditionally independent given all ancestor nodes (in the previous layers) in the graph.
This will allow us to use Lemma 1 and iterated conditional expectation formulas to ana-
lyze concentration phenomena in these models. The next lemma shows that under certain
assumptions about the response function f, the tight concentration of 7 also entails the
concentration of £(Y|X) and Var(Y|X).

Lemma2 Assume that the means of Xi,..., Xy are bounded within some fixed
interval [pmin, Pmaz] @nd f has bounded derivatives on compact sets. If €

SN 0ipi — € 2N 0ipi + €] with high probability, then: E(Y|X) = f(n) €
[F(SN, ipi) — O(e), F(N, 8ips) +O(e)], and Var(Y[X) = £'(n) € [f'(}, 6ipi) —
O(e), f'(zi1 0ipi) + O(e)] with high probability.

Lemmas 1 and 2 provide a mean-field-like basis for propagating the concentration of ex-
pectations from the input layer X, ..., X to the output layer Y. Specifically, if E(X;)

are approximated by p; (: = 1,..., N), then E(Y") can be approximated by f(zilil 0:pi).

3 Higher order expansion (the delta method)

While Lemmas 1 and 2 already provide a procedure for approximating £(Y’), one can
use higher-order (Taylor) expansion to obtain a significantly more accurate approximation.
This approach, known in the statistics literature as the delta method, has been used in
slightly different contexts for inference problems in the work of Plefka (1982), Barber and
van der Laar (1999), and Ng and Jordan (2000). In our present setting, we will show that
estimates based on Taylor expansion up to order k can be obtained by propagating the
expectation of the product of up to k£ nodes from one layer to an offspring layer.

The delta method is based on the same assumptions as in Lemma 2; that is, the means
of Xi,..., Xy are assumed to be bounded within some fixed interval [pyin, Pmax], and

the response function f has bounded derivatives on compact sets. We have Zf\i 1 0ip;
bounded within fixed interval [Tpmin, TPmaz]. By Lemma 1, with high probability n =

1The proofs of thisand all other theorems can be found in alonger version of this paper, available
at www. cs. ber kel ey. edu/ ~xuanl ong.



Zf;l 0:p; + ¢, for some small e. Using Taylor’s expansion up to second order, we have
that with high probability:

E(Y) = EEY|X)=E.f(n)=/,+
N N
O 0EX; = 0ipi) f) + %(Z 0:0;(E(X; — pi)(X; —p)) fy + O(€),
i=1 i=1 Ty

where f, and its derivatives are evaluated at Zfil 0;p;. This gives us a method of approxi-
mating £(Y") by recursion: Assuming that one can approximate all needed expectations of
variables in the parent layer X with error O(¢?), one can also obtain an approximation of
E(Y') with the error O(e*). Clearly, the error can be improved to O(e**1) by using Taylor
expansion to some order & (provided that the response function f(n) = A’(n) has bounded
derivatives up to that order). In this case, the expectation of the product of up to k& elements
in the input layer, e.g., E(X; — p1) ... (Xx — px), needs to be computed.

The variance of Y (as well as other higher-order expectations) can also be approximated in
the same way:
Var(Y) = E;(Var(Y|X)) + Varyg(E(Y|X))
= GE.f'(n) + E:f(n)” — (B(Y))?

where each component can be approximated using the delta method.

4 Approximate inferencefor layered Bayesian networks

In this section, we shall harness the concentration of expectation phenomenon to design
and analyze a family of approximate inference algorithms for multi-layer Bayesian net-
works that use GLIMs as local conditional probabilities. The recipe is clear by now. First,
organize the graph into layers that respect the topological ordering of the graph. The algo-
rithm is comprised of two stages: (1) Propagate the concentrated conditional expectations
from ancestor layers to offspring layers. This results in a rough approximation of the ex-
pectation of individual nodes in the graph; (2) Apply the delta method to obtain more a
refined marginal expectation of the needed statistics, also starting from ancestor layers to
offspring layers.

Consider a multi-layer network that has L layers, each of which has N random variables.
We refer to the ith variable in layer I by X!, where { X!}, isthe input layer, and { X1}V |
is the output layer. The expectations £(X ') of the first layer are given. Foreach2 <[ < L,
let 95;1 denote the parameter linking X! and its parent X]lfl. Define the weighted sum of

contributions from parents to a node X!: n! = Z;V: 1 Gﬁjle ;*17 where we assume that
|0.;] < 7/N for some constant 7.

We first consider the problem of estimating expectations of nodes in the output layer.
For binary networks, this amounts to estimating marginal probabilities, say, P[X{ =
Ty, ..., XL = z,,], for given observed values (z1,...,x,,), where m < N. We sub-

sequently consider a more general inference problem involving marginal and conditional
probabilities of nodes residing in different layers in the graph.

4.1 Algorithm stage 1: Propagating the concentrated expectation of single nodes

We establish a rough approximation of the expectations of all single nodes of the graph,
starting from the input layer [ = 1 to the output layer [ = L in an inductive manner. For
I=1letAl =5 =0andp} = EX} foralli=1,...,N.Forl > 1, let

N
o= 2 05wy @
j=1



N

e = > 105NAY + 7/ (yInN)3/N ©)
j=1
55 — C’exp{ Ole/S —2/3 Zwl lAl 1 2/3} (4)
P = = (Sup f(z)+ inf f(x)> ®)
xGAé zGAi
A= L <p o)~ it f(rf)) where Al = (il —d 4 d]. (@
zeAl z€A;

In the above updates, constants o and C' arise from Lemma 1, ~ is an arbitrary constant
that is greater than 1/«. The following proposition, whose proof makes use of Lemma 1
combined with union bounds, provides the error bounds for our algorithm.

Proposition 3 With probability at least [T, (1 — S~ 6}) = (1 — CN'=7)L=1 for
any1 <i < N,1 <1< Lwehave: E[X}|XI7', ..., X1 = f(n}) € p — AL pl +
Alland ! € [ul — €, ul + €l]. Furthermore, ¢! = O(\/(lnN)B/N) for all i, 1.

For layered networks with only bounded and Gaussian variables, Lemma 1 can be tight-
ened, and this results in an error bound of O(y/(In N)2/N). For layered networks with
only bounded variables, the error bound can be tightened to O(1/In N/N). In addition, if
we drop the conditions that all parameters 0 are bounded by 7/, Proposition 3 still goes

through by replacing 7 by /N ijl(eﬁj 1) in updating equations for ¢ and 4! for all i
and . The asymptotic error bound O(+/(In N)3/N) no longer holds, but it can be shown
that there are absolute constants ¢; and ¢» such that for all 4, :

e < (calle' ™M + c2/(In N)3) 16771
where [16;[| = /327, (05 1)2 and [|€[| = /325, ()2

4.2 Algorithm stage 2: Approximating expectations by recursive delta method

The next step is to apply the delta method presented in Section 3 in a recursive manner.
Write:

EIX{. X} = ExtE(X{ ... Xp| X" = Exeos [[ f(0f) = Exc1 F(nf,....nk)
i=1

Where F(TI1L7 77771‘;1) = H:il f(mL)

Let 8! = n} — ul. So, with probability (1 — CN1=27)L=1 we have |B!| < € =
O(y/(InN)3/N) foralll = 1,...,Land ¢ = 1,...,N. Applying the delta method
by expanding F' around the vector ;1 = (u¥,...,uL) up to order k gives an approxima-
tion, which is denoted by MF(K), that depends on expectations of nodes in the previous
layer. Continuing this approximation recursively on the previous layers, we obtain an ap-
proximate algorithm that has an error bound O(((In N)3 /N')(k+1)/2) (see the derivation in

Section 3) with probability at least (1 — CN'=*7)£=1 and an error bound O(1) with the
remaining probability. We conclude that,

Theorem 4 The absolute error of the MF(k) approximation is O(((In N)3/N)(k+1)/2),
For networks with bounded variables, the error bound can be tightened to
O((In N/N)E+1)/2),



It is straightforward to check that MF(k) takes O(N™ax{k:2}) computational time. The
asymptotic error bound O(((In N)3/N)(*+1)/2) is guaranteed for the aproximation of
expectations of a fixed number m of nodes in the output layer. In principle, this im-
plies that m has to be small compared to N for the approximation to be useful. For bi-
nary networks, for instance, the marginal probabilities of m nodes could be as small as
O(1/2™), so we need O(1/2™) to be greater than O((In N/N)*+1)/2)_ This implies that
m < Ind 4 E 4y N~ Inln V) for some constant c. However, we shall see that our
approximation is still useful for large m as long as the quantity it tries to approximate is
not too small.

For two-layer networks, an algorithm by Ng and Jordan (2000) yields a better error rate of
O(1/N++1)/2) py exploiting the Central Limit Theorem. However, this result is restricted
to networks with only 2 layers. Barber and Sollich (1999) were also motivated by the
Central Limit Theorem’s effect to approximate »! by a multivariate Gaussian distribution,
resulting in a similar exploitation of correlation between pairs of nodes in the parent layer
as in our MF(2) approximation. Also related to Barber and Sollich’s algorithm of using an
approximating family of distribution is the assumed-density filtering approach (e.g., Minka,
2001). These approaches, however, do not provide an error bound guarantee.

4.3 Computing conditional expectations of nodesin different layers

For simplicity, in this subsection we shall consider binary layered networks. First, we
are interested in the marginal probability of a fixed number of nodes in different layers.
This can be expressed in terms of product of conditional probabilities of nodes in the
same layer given values of nodes in the previous layer. As shown in the previous sub-
section, each of these conditional probabilities can be approximated with an error bound
O((In N/N)+1)/2) as N — oo, and the product can also be approximated with the same
error bound.

Next, we consider approximating the probability of several nodes in the input layer con-
ditioned on some nodes observed in the output layer L, i.e., P(X] = zi,..., X}, =

ol | XE = 2f . XE = 2L) for some fixed numbers m and n that are small com-
pared to N. In a multi -layer network, when even one node in the output layer is ob-
served, all nodes in the graph becomes dependent. Furthermore, the conditional prob-
abilities of all nodes in the graph are generally not concentrated. Nevertheless, we can
still approximate the conditional probability by approximating two marginal probabilities
P(X{=z},..., X} =2 Xt =2F . XL =2L)yand P(XE =2t .. XE =2k
separately and taking the ratio. This boils down to the | problem of computing the marginal
probabilities of nodes residing in different layers of the graph. As discussed in the previous
paragraph, since each marginal probabilities can be approximated with an asymptotic error
bound O((In N/N)*+1)/2) as N — oo (for binary networks), the same asymptotic error
bound holds for the conditional probabilities of fixed number of nodes. In the next section,
we shall present empirical results that show that this approximation is still quite good even
when a large number of nodes are conditioned on.

5 Simulation results

In our experiments, we consider a large number of randomly generated multi-layer
Bayesian networks with L = 3, L = 4 or L = 5 layers, and with the number of nodes
in each layer ranging from 10 to 100. The number of parents of each node is chosen
uniformly at random in [2, N]. We use the noisy-OR function for the local conditional
probabilities; this choice has the advantage that we can obtain exact marginal probabili-
ties for single nodes by exploiting the special structure of noisy-OR function (Heckerman,
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Figure 1: The fi gures show the average error in the marginal probabilities of nodes in the output
layer. The x-axis is the number of nodes in each layer (N = 10, ..., 100). The three curves (solid,

dashed, dashdot) correspond to the different numbers of layers L = 3,4, 5, respectively. Plot (a)
corresponds to the case 7 = 2 and plot (b) correspondsto 7 = 4. In each pair of plots, the leftmost
plot shows MF(1) and Kearns and Saul’s algorithm (K-S) (with the latter being distinguished by black
arrows), and the rightmost plot is MF(2). Note the scale on the y-axis for the rightmost plot is 1072.

| k] 1] 2] 3] 4] 5] 6] 7] 8]
Network 1 || 0.0001 | 0.0041 | 0.0052 | 0.0085 | 0.0162 | 0.0360 | 0.0738 | 0.1562
0.0007 | 0.0609 | 0.0912 | 0.1925 | 0.1862 | 0.3885 | 0.6262 | 1.6478
Network 2 || 0.0003 | 0.0040 | 0.0148 | 0.0331 | 0.0981 | 0.1629 | 0.1408 | 0.1391
0.0018 | 0.0508 | 0.1431 | 0.3518 | 0.7605 | 0.7790 | 0.7118 | 0.9435
Network 3 || 0.0002 | 0.0031 | 0.0082 | 0.0501 | 0.1095 | 0.0890 | 0.0957 | 0.1022
0.0008 | 0.0406 | 0.1150 | 0.6858 | 1.2392 | 0.6115 | 0.5703 | 0.7840

Table 1: The experiments were performed on 24-node networks (3 layerswith N = 8 nodesin each
layer). For each network, the fi rst line shows the absolute error of our approximation of conditional
probabilities of nodesin theinput layer given values of thefi rst & nodesin the output layer, the second
line shows the absolute error of the log likelihood of the & nodes. The numbers were obtained by
averaging over k2 random instances of the k nodes.

1989). All parameters 6;; are uniformly distributed in [0, 7/N], with 7 = 2 and 7 = 4.

Figure 1 shows the error rates for computing the expectation of a single node in the output
layer of the graph. The results for each N are obtained by averaging over many graphi-
cal models with the same value of N. Our approximate algorithm, which is denoted by
MF(2), runs fast: The running time for the largest network (with L = 5, N = 100) is
approximately one minute.

We compare our algorithm (with ~ fixed to be 2/«a) with that of Kearns and Saul (K-S).
The MF(1) estimates are slightly worse that of the K-S algorithm, but they have the same
error curve O(In N/N)'/2, The MF(2) estimates, whose error curves were proven to be
O(In N/N)3/2, are better than both by orders of magnitude. The figure also shows that the
error increases when we increase the size of the parameters (increase 7).

Next, we consider the inference problem of computing conditional probabilities of the in-
put layer given that the first &£ nodes are observed in the output layer. We perform our
experiments on several randomly generated three-layer networks with N = 8. This size
allows us to be able to compute the conditional probabilities exactly.? For each value of

2The amount of time spent on exact computation for each network is about 3 days, while our
approximation routines take a few minutes.



k, we generate k2 samples of the observed nodes generated uniformly at random from the
network and then compute the average of errors of conditional probability approximations.
We observe that while the error of conditional probabilities is higher than those of marginal
probabilities (see Table 1 and Figure 1), the error remains small despite the relatively large
number of observed nodes k& compared to V.

6 Conclusions

We have presented a detailed analysis of concentration-of-expectation phenomena in lay-
ered Bayesian networks which use generalized linear models as local conditional probabil-
ities. Our analysis encompasses a wide variety of probability distributions, including both
discrete and continuous random variables. We also performed a large number of simula-
tions in multi-layer network models, showing that our approach not only provides a useful
theoretical analysis of concentration phenomena, but it also provides a fast and accurate
inference algorithm for densely-connected multi-layer graphical models.

In the setting of Bayesian networks in which nodes have large in-degree, there are few vi-
able options for probabilistic inference. Not only are junction tree algorithms infeasible,
but (loopy) belief propagation algorithms are infeasible as well, because of the need to
moralize. The mean-field algorithms that we have presented here are thus worthy of atten-
tion as one of the few viable methods for such graphs. As we have shown, the framework
allows us to systematically trade time for accuracy with such algorithms, by accounting for
interactions between neighboring nodes via the delta method.

Acknowledgement. We would like to thank Andrew Ng and Martin Wainwright for very
useful discussions and feedback regarding this work.

References

D. Barber and P. van de Laar, Variational cumulant expansions for intractable distributions. Journal
of Artificial Intelligence Research, 10, 435-455, 1999.

L. Brown, Fundamentals of Statistical Exponential Families with Applications in Statistical Decision
Theory, Ingtitute of Mathematical Statistics, Hayward, CA, 1986.

P. McCullagh and J.A. Nelder, Generalized Linear Models, Chapman and Hall, London, 1983.
T. Minka, Expectation propagation for approximate Bayesian inference, In Proc. UAI, 2001.
D. Heckerman, A tractable inference algorithm for diagnosing multiple diseases, In Proc. UAI, 1989.

M.I. Jordan, Z. Ghahramani, T.S. Jaakkolaand L.K. Saul, An introduction to variational methods for
graphical models, In Learning in Graphical Models, Cambridge, MIT Press, 1998.

M.J. Kearns and L.K. Saul, Large deviation methods for approximate probabilistic inference, with
rates of convergence, In Proc. UAI, 1998.

M.J. Kearns and L.K. Saul, Inference in multi-layer networks via large deviation bounds, NIPS 11,
1999.

A.Y. Ng and M.I. Jordan, Approximate inference algorithms for two-layer Baysian networks, NIPS
12, 2000.

D. Barber and P. Sollich, Gaussian fi elds for approximate inference in layered sigmoid belief net-
works, NIPS 11, 1999.

T. Plefka, Convergence condition of the TAP equation for the infi nite-ranged Ising spin glass model,
J. Phys. A: Math. Gen., 15(6), 1982.

J.S. Yedidia, W.T. Freeman, and Y. Weiss. Generalized belief propagation. NIPS 13, 2001.



