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Abstract

Clustering aims at extracting hidden structure in dataset. While the prob-
lem of finding compact clusters has been widely studied in the litera-
ture, extracting arbitrarily formed elongated structures is considered a
much harder problem. In this paper we present a novel clustering algo-
rithm which tackles the problem by a two step procedure: first the data
are transformed in such a way that elongated structures become compact
ones. In a second step, these new objects are clustered by optimizing a
compactness-based criterion. The advantages of the method over related
approaches are threefold: (i) robustness properties of compactness-based
criteria naturally transfer to the problem of extracting elongated struc-
tures, leading to a model which is highly robust against outlier objects;
(ii) the transformed distances induce a Mercer kernel which allows us
to formulate a polynomial approximation scheme to the generally NP-
hard clustering problem; (iii) the new method does not contain free kernel
parameters in contrast to methods like spectral clustering or mean-shift
clustering.

1 Introduction

Clustering or grouping data is an important topic in machine learning and pattern recog-
nition research. Among various possible grouping principles, those methods which try to
find compact clusters have gained particular importance. Presumingly the most prominent
method of this kind is the K-means clustering for vectorial data [6]. Despite the powerful
modeling capabilities of compactness-based clustering methods, they mostly fail in finding
elongated structures. The fast single linkage algorithm [9] is the most often used algorithm
to search for elongated structures, but it is known to be very sensitive to outliers in the
dataset. Mean shift clustering [3], another method of this class, is capable of extracting
elongated clusters only if all modes of the underlying probability distribution have one sin-
gle maximum. Furthermore, a suitable kernel bandwidth parameter has to be preselected
[2]. Spectral clustering [10] shows good performance in many cases, but the algorithm is
only analyzed for special input instances while a complete analysis of the algorithm is still
missing. Concerning the preselection of a suitable kernel width, spectral clustering suffers
from similar problems as mean shift clustering.

In this paper we present an alternative method for clustering elongated structures. Apart
from the number of clusters, it is a completely parameter-free grouping principle. We build
up on the work on path-based clustering [7]. For a slight modification of the original prob-



lem we show that the defined path distance induces a kernel matrix fulfilling Mercers con-
dition. After the computation of the path-based distance, the compactness-based pairwise
clustering principle is used to partition the data. While for the general NP-hard pairwise
clustering problem no approximation algorithms are known, we present a polynomial time
approximation scheme (PTAS) for our special case with path-based distances. The Mercer
property of these distances allows us to embed the data in a (n − 1) dimensional vector
space even for non-metric input graphs. In this vector space, pairwise clustering reduces to
minimizing the K-means cost function in (n− 1) dimensions [13]. For the latter problem,
however, there exists a PTAS [11].

In addition to this theoretical result, we also present an efficient practical algorithm resort-
ing to a 2-approximation algorithm which is based on kernel PCA. Our experiments sug-
gest that kernel PCA effectively reduces the noise in the data while preserving the coarse
cluster structure. Our method is compared to spectral clustering and mean shift clustering
on selected artificial datasets. In addition, the performance is demonstrated on the USPS
handwritten digits dataset.

2 Clustering by Connectivity

The main idea of our clustering criterion is to transform elongated structures into compact
ones in a preprocessing step. Given the transformed data, we then infer a clustering solution
by optimizing a compactness based criterion. The advantage of circumventing the problem
of directly finding connected (elongated) regions in the data as e.g. in the spanning tree ap-
proach is the following: while spanning tree algorithms are extremely sensitive to outliers,
the two-step procedure may benefit from the statistical robustness of certain compactness
based methods. Concerning the general case of datasets which are not given in a vector
space, but only characterized by pairwise dissimilarities, the pairwise clustering model has
been shown to be robust against outliers in the dataset [12]. It may, thus, be a natural
choice to formulate the second step as searching for the partition vector c ∈ {1, . . . ,K}n

that minimizes the pairwise clustering cost function

HPC(c;D) =
∑K

ν=1
1

nν

∑

i:ci=ν

∑

j:cj=ν dij , (1)

where K denotes the number of clusters, nν = |{i : ci = ν}| denotes the number of
objects in cluster ν, and dij is the pairwise “effective” dissimilarity between objects i and
j as computed by a preprocessing step.

The idea of this preprocessing step is to define distances between objects by considering
certain paths through the total object set. The natural formalization of such path problems
is to represent the objects as a graph: consider a connected graph G = (V,E, d′) with n
vertices (the objects) and symmetric nonnegative edge weights d′

ij on the edge (i, j) (the
original dissimilarities). Let us denote by Pij all paths from vertex i to vertex j. In order
to make those objects more similar which are connected by “bridges” of other objects,
we define for each path p ∈ Pij the effective dissimilarity d

p
ij between i and j connected

by p as the maximum weight on this path, i.e. the “weakest link” on this path. The total
dissimilarity between vertices i and j is then defined as the minimum of all path-specific
effective dissimilarities d

p
ij :

dij := min
p∈Pij

{ max
1≤h≤|p|−1

d′p[h]p[h+1]}. (2)

Figure 1 illustrates the definition of the effective dissimilarity. If the objects are in the same
cluster their pairwise effective dissimilarities will be small (fig. 1(a)). If the two objects
belong to two different clusters, however, all paths contain at least one large dissimilarity
and the resulting effective dissimilarity will be large (fig. 1(b)). Note that single outliers
as in (fig. 1(a,b)) do not affect the basic structure in the path-based distances. A problem
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Figure 1: Effective dissimilarities. (a) If objects belong to the same high-density region, dij is small.
(b) If they are in different regions, dij is larger. (c) To regions connected by a “bridge”.

can only occur, if the point density along a “bridge” between the two clusters is as high as
the density on the backbone of the clusters, see 1(c). In such a case, however, the points
belonging to the “bridge” can hardly be considered as “outliers”. The reader should notice
that the single linkage algorithm does not posses the robustness properties, since it will
separate the three most distant outlier objects in example 1(a) from the remaining data, but
it will not detect the dominant structure.

Summarizing the above model, we formalize the path-based clustering problem as:
INPUT: A symmetric (n× n) matrix D′ = (d′

ij)1≤i,j≤n of nonnegative pairwise dissimi-
larities between n objects, with zero diagonal elements.
QUESTION: Find clusters by minimizing HPC(c;D), where the matrix D represents the
effective dissimilarities derived from D′ by eq. (2).

3 The Connectivity Kernel

In this section we show that the effective dissimilarities induce a Mercer kernel on the
weighted graph G. The Mercer property will then allow us to derive several approximation
results for the NP-hard pairwise clustering problem in section 4.

Definition 1. A metric D is called ultra-metric if it satisfies the condition dij ≤
max(dik, dkj) for all distinct i, j, k.

Theorem 1. The dissimilarities defined by (2) induce an ultra-metric on G.

Proof. We have to check the axioms of a metric distance measure plus the restricted tri-
angle inequality dij ≤ max(dik, dkj): (i) dij ≥ 0, since the weights are nonnegative; (ii)
dij = dji, since we consider symmetric weights; (iii) dii = 0 follows immediately from
definition (2); (iv) The proof of the restricted triangle inequality follows by contradiction:
suppose, there exists a triple i, j, k for which dij > max(dik, dkj). This situation, however,
contradicts the above definition (2) of dij : in this case there exists a path from i to j over
k, the weakest link of which is shorter than dij . Equation (2) then implies that dij must be
smaller or equal to max(dik, dkj).
Definition 2. A metric D is `2 embeddable, if there exists a set of vectors {xi}n

i=1, xi ∈
R

p, p ≤ n − 1 such that for all pairs i, j ‖xi − xj‖2 = dij .
A proof for the following lemma has been given in [4]:

Lemma 1. For every ultra-metric D,
√

D is `2 embeddable.
Now we are considered with a realization of such an embedding. We introduce the notion
of a centralized matrix. Let P be an (n × n) matrix and let Q = In − 1

n
ene>n , where

en = (1, 1, . . . 1)> is a n-vector of ones and In the n × n identity matrix. We define the
centralized P as P c = QPQ.
The following lemma (for a proof see e.g. [15]) characterizes `2 embeddings:



Lemma 2. Given a metric D,
√

D is `2 embeddable iff Dc = QDQ is negative
(semi)definite.
The combination of both lemmata yields the following theorem.

Theorem 2. For the distance matrix D defined in the setting of theorem 1, the matrix
Sc = − 1

2Dc with Dc = QDQ is a Gram matrix or Mercer kernel. It contains dot products
between a set of vectors {xi}n

i=1 with squared Euclidean distances ‖xi − xj‖2
2 = dij .

Proof. (i) Since D is ultra-metric,
√

D is `2 embeddable by lemma 1, and Dc is negative
(semi)definite by lemma (2). Thus, Sc = − 1

2Dc is positive (semi)definite. As any positive
(semi)definite matrix, Sc defines a Gram matrix or Mercer kernel. (ii) Since sc

ij is a dot-
product between two vectors xi and xj , the squared Euclidean distance between xi and xj

is defined by ‖xi − xj‖2
2 = sc

ii + sc
jj − 2sc

ij = − 1
2

[

dc
ii + dc

jj − 2dc
ij

]

. With the definition
of the centralized distances, it can be seen easily that all but one term, namely the original
distance, cancel out: − 1

2

[

dc
ii + dc

jj − 2dc
ij

]

= dij .

4 Approximation Results

Pairwise clustering is known to be NP-hard [1]. To our knowledge there is no polynomial
time approximation algorithm known for the general case of pairwise clustering. For our
special case in which the data are transformed into effective dissimilarities, however, we
now present a polynomial time approximation scheme.

A Polynomial Time Approximation Scheme. Let us first consider the computation of the
effective dissimilarities D. Despite the fact that the path-based distance is a minimum over
all paths from i to j, the whole distance matrix can be computed in polynomial time.

Lemma 3. The path-based dissimilarity matrix D defined by equation 2 can be computed
in running time O(n2 log n).

Proof. The computation of the connectivity kernel matrix is an extention of Kruskal’s min-
imum spanning tree algorithm. We start with n clusters each containing one single ob-
ject. In each iteration step the two clusters Ci and Cj are merged with minimal costs
dij = minp∈Ci,q∈Cj

d′pq where d′
pq is the edge weight on the input graph. The link dij

gives the effective dissimilarity of all objects in Ci to all objects in Cj . To proof this, one
can consider the case, where dij is not the effective dissimilarity between Ci and Cj . Then
there exists a path over some other cluster Ck, where all objects on this path have a smaller
weight, implying the existence of another pair of clusters with smaller merging costs. The
running time is O(n2 log n) for the spanning tree algorithm on the the complete input graph
and additional O(n2) for filling all elements in the matrix D.

Let us now discuss the clustering step. Recall first the problem of K-means clustering:
given n vectors X = {x1, . . . , xn ∈ R

p}, the task is to partition the vectors in such a way
that the squared Euclidean distance to the cluster centroids is minimized. The objective
function for K-means is given by

HKM(c;X ) =
∑K

ν=1

∑

i:ci=ν(xi − yν)2 where yν = 1
nν

∑

j:cj=ν xj (3)

Minimizing the K-means objective function for squared Euclidean distances is NP-hard
if the dimension of the vectors is growing with n.

Lemma 4. There exists a polynomial time approximation scheme (PTAS) for HKM in arbi-
trary dimensions and for fixed K.

Proof. In [11] Ostrovsky and Rabani presented a PTAS for K-means.
Using this approximation lemma we are able to proof the existence of a PTAS for pairwise
data clustering using the distance defined by (2).



Theorem 3. for distances defined by (2), there exists a PTAS for HPC.

Proof. By lemma 3 the dissimilarity matrix D can be computed in polynomial time. By
theorem 2 we can find vectors x1, . . . xn ∈ R

p (p ≤ n − 1) with dij = ||xi − xj ||22. For
squared Euclidean distances, however, there is an algebraic identity between HPC(c;D)
and HKM(c;X ) [13]. By lemma 4 there exists a PTAS for HKM and thus for HPC.

A 2-approximation by Kernel PCA. While the existence of a PTAS is an interesting
theoretical approximation result, it does not automatically follow that a PTAS can be used
in a constructive way to derive practical algorithms. Taking such a practical viewpoint,
we now consider another (weaker) approximation result from which, however, an efficient
algorithm can be designed easily. From the fact that we can define a connectivity kernel
matrix we can use kernel PCA [14] to reduce the data dimension. The vectors are projected
on the first principle components. Diagonalization of the centered kernel matrix Sc leads to
Sc = V tΛV , with an orthogonal matrix V = (v1, . . . , vn) containing the eigenvectors of
Sc, and a diagonal matrix Λ = diag(λ1, . . . , λn) containing the corresponding eigenvalues
on its diagonal. Assuming now that the eigenvalues are in descending order (λ1 ≥ λ2 ≥
· · · ≥ λn), the data are projected on the first p eigenvectors: x′

i =
∑p

j=1

√

λjvji.

Theorem 4. Embedding the path-based distances into R
K by kernel PCA and enumerating

over all possible Voronoi partitions yields an O(nK2+1) algorithm which approximates
path-based clustering within a constant factor of 2.

Proof. The solution of the K-means cost function induces a Voronoi partition on the
dataset. If the dimension p of the data is kept fix, the number of different Voronoi par-
titions is at most O(nKp), and they can be enumerated in O(nKp+1) time [8]. Further, if
the embedding dimension is chosen as p = K, K-means in R

K is a 2-approximation algo-
rithm for K-means in R

n−1 [5]. Combining both results, we arrive at a 2-approximation
algorithm with running time O(nK2+1).

Heuristics without approximation guarantees. The running time of the 2-approximation
algorithm may still be too large for many applications, therefore we will refer to two heuris-
tic optimization methods without approximation guarantees. Instead of enumerating all
possible Voronoi partitions, one can simply partition the data with the fast classical K-
means algorithm. In one sweep it assigns each object to the nearest centroid, while keeping
all other object assignments fixed. Then the centroids are relocated according to the new
assignments. Since the running time grows linear with the data dimension, it is useful to
first embed the data in K dimensions which leads us to a functional which optimal solution
is even in the worst case within a factor of two of the desired solution, as we know from
the above approximation results. In this reduced space, the K-means heuristics is applied
with the hope that there exist only few local minima in the low-dimensional subspace.
As a second heuristic one can apply Ward’s method which is an agglomerative optimization
of the K-means objective function.1 It starts with n clusters, each containing one object,
and in each step the two clusters that minimize the K-means objective function are merged.
Ward’s method produces a cluster hierarchy. For applications of this method see figure 3.

5 Experiments

We first compare our method with the classical single linkage algorithm on artificial data
consisting of three noisy spirals, see figure 2. Our main concern in these experiments is
the robustness against noise in the data. Figure 3(a) shows the dendrogram produced by
single linkage. The leaves of the tree are the objects of figure 2. For better visualization
of the tree structure, the bar diagrams below the tree show the labels of the three cluster

1It has been shown in [12] that Ward’s method is an optimization heuristics for H
PC . Due to the

equivalence of H
PC and H

KM in our special case, this property carries over to K-means.



(a) (b) (c)

Figure 2: Comparison to other clustering methods. (a) Mean shift clustering, (b) Spectral Clustering,
(c) Connectivity kernel clustering. (Color images at http://www.inf.ethz.ch/∼befische/nips03)

(a) (b) (c)

Figure 3: Hierarchical Clustering Solutions for example 2(c). (a) Single Linkage, (b) Ward’s method
with connectivity kernel, applied to embedded objects in n − 1 dimensions. (c) Ward’s method after
kernel PCA embedding in 3 dimensions.

solution as drawn in fig. 2(c). The height of the inner nodes depicts the merging costs for
two subtrees. Each level of the hierarchy is one cluster solution. It is obvious that the main
parts of the spiral arms are found, but the objects drawn on the right side are separated
from the rest of the cluster. The respective objects are the outliers that are separated in the
highest hierarchical levels of the algorithm. We conclude that for small K, single linkage
has the tendency to separates single outlier objects from the data.

By way of the connectivity kernel we can transform the original dyadic data to n − 1
dimensional vectorial data. To show comparable results for the connectivity kernel, we
apply Ward’s method to the embedded vectors. Figure 3(b) shows the cluster hierarchy
for Ward’s method in the full space of n − 1 dimensions. Opposed to the single linkage
results, the main structure of the spiral arms has been successfully found in the hierarchy
corresponding to the three cluster solution. Below the three cluster lever, the tree appears
to be very noisy. It should also be noticed that the costs of the three cluster solution are
not much larger as the costs of the four cluster solution, indicating that the three cluster
solution does not form a distinctly separated hierarchical level.

Figure 3(c) demonstrates that more distinctly separated levels can be found after applying
kernel PCA and embedding the objects into a low-dimensional space (here 3 dimensions).
Ward’s method is then applied to the embedded objects. One can see that the coarse struc-



ture of the tree has been preserved, while the costs of cluster solutions for K > 3 have been
shrunken towards zero. We conclude that PCA has the effect of de-noising the hierarchical
tree, leading to a more robust agglomerative algorithm.

Now we compare our results to other recently published clustering techniques, that have
been designed to extract elongated structures. Mean shift clustering [3] computes a trajec-
tory of vectors towards the gradient of the underlying probability density. The probability
distribution is estimated with a density estimation kernel, e.g. a Gaussian kernel. The tra-
jectories starting at each point in the feature space converge at the local maxima of the
probability distribution. Mean shift clustering is only applicable to finite dimensional vec-
tor spaces, because it implicitly involves density estimation. A potential shortcoming of
mean-shift clustering is the following: if the modes of the distribution have multiple local
maxima (as e.g. in the spiral arm example), there does not exist any kernel bandwidth to
successfully separate the data according to the underlying structure. In figure 2(a) the best
result for mean shift clustering is drawn. For smaller values of σ the spiral arms are further
subdivided into additional clusters, and for a larger bandwidth values, the result becomes
more and more similar to compactness-based criteria like K-means.

Spectral methods [10] have become quite popular in the last years. Usually the Laplacian
matrix based on a Gaussian kernel is computed. By way of PCA, the data are embedded
in a low dimensional space. The K-means algorithm on the embedded data then gives
the resulting partition. It has also been proposed to project the data on the unit sphere
before applying K-means. Spectral clustering with a Gaussian kernel is known to be able
to separate nested circles, but we observed that it has severe problems to extract the noisy
spiral arms, see 2(b). In spectral clustering, the kernel width σ is a free parameter which has
to be selected “correctly”. If σ is too large, spectral clustering becomes similar to standard
K-means and fails to extract elongated structures. If, on the other hand, σ is too small, the
algorithm becomes increasingly sensitive to outliers, in the sense that it has the tendency to
separate single outlier objects.

Our approach to clustering with the connectivity kernel, however, could successfully extract
the three spiral arms as can be seen in figure 2(c). The reader should notice, that this method
does not require the user to preselect any kernel parameter.

(a) (b) (c)

Figure 4: Example from the USPS dataset. Training example of digits 2 and 9 embedded in two
dimensions. (a) Ground truth labels. (b) K-means labels and (c) clustering with connectivity kernel.

In a last experiment, we show the advantages of our method compared to a parameter-free
compactness criterion (K-means) on the problem of clustering digits ’2’ and ’9’ from the
USPS digits dataset. Figure 4 shows the clustering result of our method using the connec-
tivity kernel. The 16x16 digit gray-value images of the USPS dataset are interpreted as
vectors and projected on the two leading principle components. In figure 4(a) the ground
truth solution is drawn. Figure 4(b) shows the partition by directly applying K-means clus-
tering, and figure 4(c) shows the result produced by our method. Compared to the ground



truth solution, path-based clustering succeeded in extracting the elongated structures, re-
sulting in a very small error of only 1.5% mislabeled digits. The compactness-based K-
means method, on the other hand, produces clearly suboptimal clusters with an error rate
of 30.6%.

6 Conclusion

In this paper we presented a clustering approach, that is based on path-based distances in the
input graph. In a first step, elongated structures are transformed into compact ones, which
in the second step are partitioned by the compactness-based pairwise clustering method.
We showed that the transformed distances induce a Mercer kernel, which in turn allowed
us to derive a polynomial time approximation scheme for the generally NP-hard pairwise
clustering problem. Moreover, Mercers property renders it possible to embed the data
into low-dimensional subspaces by Kernel PCA. These embeddings form the basis for an
efficient 2-approximation algorithm, and also for de-noising the data to “robustify” fast
agglomerative optimization heuristics. Compared to related methods like single linkage,
mean shift clustering and spectral clustering, our method has been shown to successfully
overcome the problem of sensitivity to outlier objects, while being capable of extracting
nested elongated structures. Our method does not involve any free kernel parameters, which
we consider to be a particular advantage over both mean shift– and spectral clustering.
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