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Abstract

We discuss the integration of the expectation-maximization (EM) algorithm
for maximum likelihood learning of Bayesian networks with belief propagation
algorithms for approximate inference. Specifically we propose to combine the
outer-loop step of convergent belief propagation algorithms with the M-step
of the EM algorithm. This then yields an approximate EM algorithm that is
essentially still double loop, with the important advantage of an inner loop
that is guaranteed to converge. Simulations illustrate the merits of such an
approach.

1 Introduction

The EM (expectation-maximization) algorithm [1, 2] is a popular method for max­
imum likelihood learning in probabilistic models with hidden variables. The E-step
boils down to computing probabilities of the hidden variables given the observed
variables (evidence) and current set of parameters. The M-step then, given these
probabilities, yields a new set of parameters guaranteed to increase the likelihood.
In Bayesian networks, that will be the focus of this article, the M-step is usually
relatively straightforward. A complication may arise in the E-step, when computing
the probability of the hidden variables given the evidence becomes intractable.

An often used approach is to replace the exact yet intractable inference in the E­
step with approximate inference, either through sampling or using a deterministic
variational method. The use of a "mean-field" variational method in this context
leads to an algorithm known as variational EM and can be given the interpretation of
minimizing a free energy with respect to both a tractable approximate distribution
(approximate E-step) and the parameters (M-step) [2].

Loopy belief propagation [3] and variants thereof, such as generalized belief prop­
agation [4] and expectation propagation [5], have become popular alternatives to
the "mean-field" variational approaches, often yielding somewhat better approxi­
mations. And indeed, they can and have been applied for approximate inference
in the E-step of the EM algorithm (see e.g. [6, 7]). A possible worry, however, is
that standard application of these belief propagation algorithms does not always
lead to convergence. So-called double-loop algorithms with convergence guarantees
have been derived, such as CCCP [8] and UPS [9], but they tend to be an order of
magnitude slower than standard belief propagation~ .

The goal of this article is to integrate expectation-maximization with belief propaga­
tion. As for variational EM, this integration relies on the free-energy interpretation



of EM that is reviewed in Section 2. In Section 3 we describe how the exact free
energy can be approximated with a Kikuchi free energy and how this leads to an
approximate EM algorithm. Section 4 contains our main result: integrating the
outer-loop of a convergent double-loop algorithm with the M-step, we are left with
an overall double-loop algorithm, where the inner loop is now a convex constrained
optimization problem with a unique solution. The methods are illustrated in Sec­
tion 5; implications and extensions are discussed in Section 6.

2 The free energy interpretation of EM

We consider probabilistic models P(x; fJ), with fJ the model parameters to be learned
and x the variables in the model. We subdivide the variables into hidden variables h
and observed, evidenced variables e. For ease of notation, we consider just a single
set of observed variables e (in fact, if we have N sets of observed variables, we can
simply copy our probability model N times and view this as our single probability
model with "shared" parameters fJ). In maximum likelihood learning, the goal is
to find the parameters fJ that maximize the likelihood P(e; fJ) or, equivalently, that
minimize minus the loglikelihood

L(O) = -log pee; 0) = -log [~p(e,h; 0)] .

The EM algorithm can be understood from the observation, made in [2], that

L(B) == min F(Q, fJ) ,
QEP

with P the set of all probability distributions defined on h and F(Q, B) the so-called
free energy

[
Q(h) ]

F(Q, 0) = L(O) +~Q(h) log P(hle; 0) = E(Q, 0) - SeQ) ,

with the "energy"

E(Q, fJ) == - L Q(h) logP(e, h; B) ,
h

and the "entropy"

(1) .

8(Q) == - L Q(h) log Q(h) .
h

The EM algorithm now boils down to alternate minimization with respect to Q and
fJ:

E-step: fix fJ and solve Q == argmin F(QI, B)
Q'EP

M-step: fix Q and solve B == argminF(Q,B1
) == argrninE(Q,B1

)

()' ()'

(2)

(3)

The advantage of the M-step over direct minimization of -logP(e; fJ) is that the
summation over h is now outside the logarithm, which in many cases implies that
the minimum with respect to () can be computed explicitly. The main inference
problem is then in the E-step. Its solution follows directly from (1):

( ) ( I) P(h, e; fJ)
Q h = P h e;O = L-h

'
P(h',e;O) ,

with fJ the current setting of the parameters. However, in complex probability
models P(hle; fJ) can be difficult and even intractable to compute, mainly because



of the normalization in the denominator. For later purposes we note that the EM
algorithm can be interpreted as a general "bound optimization algorithm" [10]. In
this interpretation the free energy F(Q,B) is an upper bound on the function L(B)
that we try to minimize; the E-step corresponds to a reset of the bound and the
M-step to the minimization of the upper bound.

In variational EM [2] one restricts the probability distribution Q to a specific set
pI, such that the E-step. becomes tractable. Note that this restriction affects
both the energy term and the entropy term. By construction the approximate
minQEpl F(Q, B) is an upper bound on L(B).

3 Approximate free energies

In several studies, propagation algorithms like loopy belief propagation [6J and ex­
pectation propagation [7] have been applied to find approximate solutions for the
E-step. As we will see, the corresponding approximate EM-algorithm can be inter­
preted as alternate minimization of a Bethe or Kikuchi free energy. For the moment,
we will consider the case of loopy and generalized belief propagation applied to
probability models with just discrete variables. The generalization to expectation
propagation is discussed in Section 6.

The joint probability implied by a Bayesian network can be written in the form

P(x; B) == IIwa(xa;Ba) ,

where a denotes a subset of variables and Wa is a potential function. The parameters
Ba may be shared, i.e., we may have Ba == Bal for some a =1= al. For a Bayesian
network, the energy term simplifies into a sum over local terms:

E(Q,B) == - LLQ(ha)log'1ia(ha,ea;Ba).
a hex

However, the entropy term is as intractable as the normalization in (3) that we try
to prevent. In the Bethe or more generally Kikuchi approximation, this entropy
term is approximated through [4]

S(Q) == - LQ(h)logQ(h) ~ LSa(Q) + LcIJSIJ(Q).== S(Q) ,
h a IJ

with

and similarly for SIJ(Q). The subsets indexed by f3 correspond to intersections
between the subsets indexed by a, intersections of intersections, and so on. The
parameters clJ are called Moebius or overcounting numbers. In the above descrip­
tion, the a-clusters correspond to the potential subsets, i.e., the clusters in the
moralized graph. However, we can also choose them to be larger, e.g., combin­
ing several potentials into a single cluster. The Kikuchi/Bethe approximation is
exact if the a-clusters form a singly-connected structure. That is, exact inference
is obtained when the a-clusters correspond to cliques in a junction tree. The f3
subsets then play the role of the separators and have overcounting numbers 1 - nlJ
with n{J the number of neighboring cliq~es. The larger the clusters, the higher the
computational complexity.

There are different kinds of approximations (Bethe, CVM, junction graphs), each
corresponding to a somewhat different choice of a-clusters, f3-subsets and overcount­
ing numbers (see [4] for an overview). In the following we will refer to all of them



as Kikuchi approximations. The important point is that the approximate entropy
is, like the energy, a sum of local terms. Furthermore, the Kikuchi free energy as
a function of the probability distribution Q only depends on the marginals Q(xa:)
and Q(xf3). The minimization of the exact free energy with respect to a probability
distribution Q has been turned into the minimization of the Kikuchi free energy
F(Q, ()) == E (Q, ()) -8(Q) with respect to a set of pseudo-marginals Q == {Q a: , Qf3 }.
For the approximation to make any sense, these pseudo-marginals have to be prop­
erly normalized as well as consistent, which boils down to a set of linear constraints
of the form

(4)

The approximate EM algorithm based on the Kikuchi free energy now reads

approximate E-step: fix () and solve Q == argminF(Q',8)
Q/EP

M-step: fix Q and solve () == argrninF(Q,()') == argrninE(Q,()')
(jl 0'

(5)
where P refers to all sets of consistent and properly normalized pseudo-marginals
{Qa:, Qf3}. Because the entropy does not depend on the parameters (), the M-step of
the approximate EM algorithm is completely equivalent to the M-step of the exact
EM algorithm. The only difference is that the statistics required for this M-step is
computed approximately rather than exactly. In other words, the seemingly naive
procedure of using generalized or loopy belief propagation to compute the statistics
in the E-step and use it in the M-step, can be interpreted as alternate minimization
of the Kikuchi approximation of the exact free energy. That is, algorithm (5) can
be interpreted as a bound optimization algorithm for minimizing

L(8) == miI! F(Q, 8) ,
QEP

which we hope to be a good approximation (not necessarily a bound) of the original
L(8).

4 Constrained optimization

There are two kinds of approaches for finding the minimum of the Kikuchi free
energy. The first one is to run loopy or generalized belief propagation, e.g., using
Algorithm 1 in the hope that it converges to such a minimum. However, convergence
guarantees can only be given in special cases and in practice one does observe
convergence problems. In the following we will refer to the use of standard belief
propagation in the E-step as the "naive algorithm".

Recently, there have been derived double-loop algorithms that explicitly minimize
the Kikuchi free energy [8, 9, 11]. Technically, finding the minimum of the Kikuchi
free energy with respect to consistent marginals corresponds to a non-convex con­
strained optimization problem. The consistency and normalization constraints on
the marginals are linear in Q and so is the energy term E (Q, 8). The non-convexity
stems from the entropy terms and specifically those with negative overcounting
numbers. Most currently described techniques, such as CCCP [8], UPS [9] and
variants thereof, can be understood as general bound optimization algorithms. In
CCCP concave terms are bounded with a linear term, yielding a convex bound and
thus, in combination with the linear constraints, a convex optimization problem to
be solved in the inner loop. In particular we can write

F(Q,()) == miI!G(Q,R,8) with G(Q,R,8) ==F(Q,(}) +'K(Q,R) , (6)
REP



Algorithm 1 Generalized belief propagation.

1: while -,converged do

2: for all f3 do

3: for all a :J f3 do

4: Qa(XIJ) == L.Qa(Xa);
xO:\{3

5: end for

6:

7:

8:

1

QIJ (XIJ) ex: J-la-+IJ (XIJ) n{3+c{3

a-.:JIJ
for all a :J f3 do

()
QIJ(xlJ)

J-l1J-+a xlJ == () ;
J.La-+1J xlJ

Qa(Xa) ex: Wa(Xa) II J.LIJ-+a(xlJ)
IJCa

9: end for

10: end for

11: end while

where

K(Q, R) == L ICIJI L QIJ(hlJ) log [~~~~~~] ,
IJ;C{3 <0 h{3 IJ IJ

is a weighted sum of local Kullback-Leibler divergences. By construction G(Q, R, 0)
is convex in Q - the concave QIJ log QIJ terms in F(Q, 0) cancel with those in K (Q,R)
- as well as an upper bound on F(Q, B) since K(Q, R) ~ O. The now convex opti­
mization problem in the inner loop can be solved with a message passing algorithm
very similar to standard loopy or generalized belief propagation. In fact, we can
use Algorithm 1, with clJ == 0 and after a slight redefinition of the potentials Wa
such that they incorporate the linear bound of the concave entropy terms (see [11]
for details). The messages in this algorithm are in one-to-one correspondence with
the Lagrange multipliers of the concave dual. Most importantly, with the particu­
lar scheduling in Algorithm 1, each update is guaranteed to increase the dual and
therefore the inner-loop algorithm must converge to its unique solution. The outer
loop simply sets R == Q and corresponds to a reset of the bound.

Incorporating this double-loop algorithm into our approximate EM algorithm (5),
we obtain

inner-loop E-step: fix {B, R} solve Q == argmin G (QI ,R, fJ)
QiE'P

outer-loop E-step: fix {Q, 8} solve R == argminG(Q,R',fJ) == argminK(Q,R)
WE'P WE'P

M-step: fix {Q, R} solve B == argrninG(Q,R,fJl) == argrninE(Q, 81
)

()I ()I

(7)
To distinguish it from the naive algorithm, we will refer to (7) as the "convergent
algorithm". The crucial observation is that we can combine the outer-loop E-step
with the usual M-step: there is no need to run the double-loop algorithm in the
E-step until convergence. This gives us then an overall double-loop rather than
triple-loop algorithm. In principle (see however the next section) the algorithmic
complexity of the convergent algorithm is- the same as that of the naive algorithm.
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(a) Coupled hidden Markov model.
(b) Simulation results.

Figure 1: Learning a coupled hidden Markov model. (a) Architecture for 3 time slice
Qa'1d 4 hidden nodes per time slice. (b) 11inus the loglikelihood in the Kikuchi/Bethe
approximation as a function of the number of M-steps. Naive algorithm (solid
line), convergent algorithm (dashed), convergent algorithm with tighter bound and
overrelaxation (dash-dotted), same for a Kikuchi approximation (dotted). See text
for details.

5 'Simulations

For illustration, we compare the naive and convergent approximate EM algorithms
for learning in a coupled hidden Markov model. The architecture of coupled hidden
Markov models is sketched in Figure l(a) for T == 3 time slices and M == 4 hidden­
variable nodes per time slice. In our simulations we used M == 5 and T == 20;
all nodes are binary. The parameters to be learned are the observation matrix
p(em,t == ilhm,t == j) and two transition matrices: p(h1,t+l == ilh1,t == j, h2 ,t == k) ==
p(hM,t+l == ilhM,t == j, hM-l,t == k) for the outer nodes and p(hm,t+l == ilhm-1,t ==
j, hm,t == k, hm+1 ,t == l) for the middle nodes. The prior for the first time slice
is fixed and uniform. We randomly generated properly normalized transition and
observation matrices and evidence given those matrices. fuitial parameters were set
to another randomly generated instance. In the inner loop of both the naive and
the convergent algorithm, Algorithm 1 was run for 10 iterations.

Loopy belief propagation, which for dynamic Bayesian networks can be interpreted
as an iterative version of the Boyen-Koller algorithm [12], converged just fine for the
many instances that we have seen. The naive algorithm nicely minimizes the Bethe
approximation of minus the loglikelihood L(O), as can be seen from the solid line in
Figure 1(b). The Bethe approximation is fairly accurate in this model and plots of
the exact loglikelihood, both those learned with exact and with approximate EM,
are very similar (not shown). The convergent algorithm also works fine, but takes
more time to converge (dashed line). This is to. be expected: the additional bound
implied by the outer-loop E-step makes G(Q,R,(}) a looser bound of L((}) than
F(Q, (}) and the tighter the bound in a bound optimization algorithm, the faster
the convergence. Therefore, it makes sense to use tighter convex bounds on F(Q, (}),
for example those derived in [Ill. On top of that, we can use overrelaxation, i.e., set
log Q == 'TJ log R + (1 - 'TJ) log QO d .(up to normalization) with QOld the previous set
of pseudo-marginals. See e.g. [10] for the general idea; here we took 'TJ == 1.4 fixed.
Application of these two "tricks" yields the dash-dotted line. It gives an indication
of how close one can bring the convergent to the naive algorithm (overrelaxation



applied to the M-step affects both algorithms in the same way and is therefore not
considered here). Another option is to repeat the inner and outer E-steps N times,
before updating the parameters in the M-step. Plots for N ~ 3 are indistinguishable
from the solid line for the naive algorithm.

The above shows that the price to be paid for an algorithm that is guaranteed to
converge is relatively low. Obviously, the true value of the convergent algorithm
becomes clear when the naive algorithm fails. Many instances of non-convergence of
loopy and especially generalized belief propagation have been reported (see e.g. [3,
11] and [12] specifically on coupled hidden Markov models). Some but not all of
these problems disappear when the updates are damped, which further has the
drawback of slowing down convergence as well as requiring additional tuning. In
the context of the coupled hidden Markov models we observed serious problems with
generalized belief propagation. For example, with a-clusters of size 12, consisting of
3 neighboring hidden and evidence nodes in two subsequent time slices, we did not
manage to get the naive algorithm to converge properly. The convergent algorithm
alvlays converged vlithout any problem, yielding the dotted line in Figure l(b) for
the particular problem instance considered for the Bethe approximation as welL
Note that, where the inner loops for the Bethe approximations take about the same
amount of time (which makes the number of outer loops roughly proportional to
cpu time), an inner loop for the Kikuchi approximation is in this case about two
times slower.

6 Discussion

The main idea of this article, that there is no need to run a converging double­
loop algorithm in an approximate E-step until convergence, only applies to directed
probabilistic graphical models like Bayesian networks. In undirected graphical mod­
els like Boltzmann machines there is a global normalization constant that typically
depends on all parameters .f) and is intractable to compute analytically. For this
so-called partition function, the bound used in converging double-loop algorithms
works in the opposite direction as the bound implicit in the EM algorithm. The
convex bound of [13] does work in the right direction, but cannot (yet) handle miss­
ing values. In [14] standard loopy belief propagation is used in the inner loop of
iterative proportional fitting (IPF). Also here it is not yet clear how to integrate IPF
with convergent belief propagation without ending up with a triple-loop algorithm.

Following the same line of reasoning, expectation maximization can be combined
with expectation propagation (EP) [5]. EP can be understood as a generaliza­
tion of loopy belief propagation. Besides neglecting possible loops in the gI;'aphical
structure, expectation propagation can also handle projections onto an exponential
family of distributions. The approximate free energy for EP is the same Bethe
free energy, only the constraints are different. That is, the "strong" marginaliza­
tion constraints (4) are replaced by the "weak" marginalization constraints that all
subsets marginals agree upon their moments. These constraints are still linear
in Qa and Q{3 and we can make the same decomposition (6) of the Bethe free en­
ergy into a convex and a concave term to derive a double-loop algorithm with a
convex optimization problem in the inner loop. However, EP can have reasons for
non-convergence that are not necessarily resolved with a double-loop version. For
example, it can happen that while projecting onto Gaussians negative covariance
matrices appear. This problem has, to the best of our knowledge, not yet been
solved and is subject to ongoing research.

It has been emphasized before [13] that it makes no sense to learn with approxi-



mate inference and then apply exact inference given the learned parameters. The
intuition is that we tune the parameters to the evidence, incorporating the errors
that are made while doing approximate inference. In that context it is important
that the results of approximate inference are reproducable and the use of convergent
algorithms is a relevant step in that direction.
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