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1 Introduction

Inspired by events ranging from 9/11 to the collapse of the accounting firm Arthur Ander-
sen, economists Kunreuther and Heal [5] recently introduced an interesting game-theoretic
model for problems oiterdependent security (IDSh which a large number of players
must make individual investment decisions related to security — whether physical, finan-
cial, medical, or some other type — but in which the ultimate safety of each participant
may depend in a complex way on the actions of the entire population. A simple example is
the choice of whether to install a fire sprinkler system in an individual condominium in a
large building. While such a system might greatly reduce the chances of the owner’s prop-
erty being destroyed by a fire originatimgthin their own unit, it might do little or nothing

to reduce the chances of damage caused by fires originatotgénunits (since sprinklers

can usually only douse small fires early). If “enough” other unit owners have not made the
investment in sprinklers, it may be not cost-effective for any individual to do so.

Kunreuther and Heal [5] observe that a great variety of natural problems share this basic in-
terdependent structure, including investment decisions in airline baggage security (in which
investments in new screening procedures may reduce the risk of directly checking suspi-
cious cargo, but nearly all airlines accept transferred bags with no additional scrégning
risk management in corporations (in which individual business units have an incentive to
avoid high-risk or illegal activities only if enough other units are similarly well-behaved);
vaccination against infectious disease (where the fraction of the population choosing vac-
cination determines the need for or effectiveness of vaccination); certain problems in com-
puter network security; and many others. All these problems share the following important
properties:

e Thereis a “bad event” (condominiumfire, airline explosion, corporate bankruptcy,
infection, etc.) to be avoided, and the opportunity to reduce the risk of it via some
kind of investment.

e The cost-effectiveness of the security investment for the individual is a function
of the investment decisions made by the others in the population.

The original work by Kunreuther and Heal [5] proposed a parametric game-theoretic model
for such problems, but left the interesting questiorcomputingthe equilibria of model
largely untouched. In this paper we examine such computational issues.

LEl Al airlines is the exception to this.



2 Definitions

InanIDS gameeach playei must decide whether or not to invest in some abstract security
mechanism or procedure that can reduce their risk of experiencing some abstract bad event.
The cost of the investment tois C;, while the cost of experiencing the bad evenLis

the interesting case is whdry >> ;. Thus, playeti has two choices for his actian:

a; = 1 means the player makes the investment, wijle- 0 means he does not. It turns

out that the important parameter is ttagio of the two costs, so we defi®;, = C;/L;.

For each playef, there is a parametet, which is the probability that playerwill expe-
rience the bad event due iaternal contamination ifa; = 0 — for example, this is the
probability of the condominium owner’s unit burning dodue to a fire originating in his
own unit We can also think of; as a measure of thdirect risk to playeri — as we shall
see, it is that portion of his risk under his direct control.

To model sources ahdirectrisk, for eachpair of playersi, 7,7 # j, letg;; be the proba-
bility that playeri experiences the bad event as a result taasferfrom player; — for
example, this is the probability that the condominium of playleurns down due to a fire
originating in the unit of playef. Note the implicit constraint that; + Z#i qji < 1.

An IDS game is thus given by the parametgysg;;, L;, C; for each playet, and the
expected cost to playémunder the model is defined to be

M;(@) = a;Ci+ (1 —ai)p;Li+ (1= (L—ai)p:) (1= J[ Q- @ -a;)gi)| Li (1)
J=1,j#1

Let us take a moment to parse and motivate this definition, which is the sum of three terms.
The first term represents the amount invested in security by playerd is either O (if

a; = 0) or C; (if a; = 1). The second term is the expected costdoe to internal or direct

risk of the bad event, and is eithgrL; (which is the expected cost of internally generated
bad events in the casg = 0), or is O (in the case of investment, = 1). Thus, there is a
natural tension between the first two terms: players can either invest in security, which costs
money but reduces risk, or gamble by not investing. Note that here we have assumed that
security investmenperfectlyeradicates direct risk (but not indirect risk); generalizations
are obviously possible, but have no qualitative effect on the model.

It is the third term of Equation (1) that expressesititerdependemature of the problem.

This term encodes the assumption that therenaseurces of risk to player— his own
internal risk, and a specific transfer risk from each of the other1 players — and that

all these sources are statistically independent. The prefdctef1 — a;)p;) is simply the
probability that playei doesnotexperience the bad event due to direct risk. The bracketed
expression is the probability that playeexperiences a bad event due to transferred risk:
each factor1 — (1 — a;)g;;) in the product is the probability that a bad event dnes

befall playeri due to playerj (and the product expresses the assumption that all of these
possible transfer events are independent). Thus 1 minus this product is the probability of
transferred contamination, and of course the product of the various risk probabilities is also
multiplied by the cost; of the bad event.

The model parameters and Equation (1) define a compact representation for a multiplayer
game in which each player’s goal is to minimize their cost. Our interest is in the efficient
computation of Nash equilibria (NE) of such ganies

2See (for example) [4] for definitions of Nash and approximate Nash equilibria.



3 Algorithms

We begin with the observation that it is in fact computationally straightforward to find a
singlepure NE of any IDS game. To see this, it is easily verified that if thereaawgecon-

ditions under which playerprefers investingd; = 1) to not investing ¢; = 0) according

to the expected costs given by Equation (1), then it is certainly the casievtiibprefer to

invest when all the othet — 1 players are doing so. Similarly, the most favorable condi-
tions for not investing occur when no other players are investing. Thus, to find a pure NE,
we can first check whether either all players investing, or no players investing, forms a NE.
If so, we are finished. If neither of these extremes are a NE, then there are some players for
whom investing or not investing is a dominant strategy (a best response independent of the
behavior of others). If we then “clamp” such players to their dominant strategies, we obtain
a new IDS game with fewer players (only those without dominant strategies in the original
game), and can again see if this modified game has any players with dominant strategies.
At each stage of this iterative process we maintain the invariant that clamped players are
playing a best response amypossible setting of the unclamped players.

Theorem 1 A pure NE for any:-player IDS game can be computed in timé:?).

In a sense, the argument above demonstrates the fact that in most “interesting” IDS games
(those in which each player is a true participant, and can have their behavior swayed by
that of the overall population), there are two trivial pure NE (all invest and none invest).
However, we are also interested in finding NE in which some players are choosing to invest
and others not to (even though no player has a dominant strategy). A primary motivation
for finding such NE is the appearance of such behavior in “real world” IDS settings, where
individual parties do truly seem to make differing security investment choices (such as with
sprinkler systems in large apartment buildings). Conceptually, the most straightforward
way to discover such NE would be to compuaté NE of the IDS game. As we shall
eventually see, for computational efficiency such a demand requires restrictions on the
parameters of the game, one natural example of which we now investigate.

3.1 Uniform Transfer IDS Games

A uniform transferIDS game is one in which the transfer risksanating froma given
player are independent of the transfer destination. Thus, for any pjayez have that

for all i # 4, q;; = 0; for some valuej;. Note that the risk leveb; presented to the
population by different playergmay still vary withj — but each player spreads their risk
indiscriminately across the rest of the population. An example would be the assumption
that each airline transferred bags with equal probability to all other airlines.

In this section, we describe two different approaches for computing NE in uniform trans-
fer IDS games. The first approach views a uniform transfer IDS game as a special type
of summarization game class recently investigated by Kearns and Mansour [4]. In an
n-player summarization game, the payoff of each playisra function of the actiong_;

of all the other players, but onlhroughthe value of a global and common real-valued
summarization functio(@). The main result of [4] gives an algorithm for computing
approximate NE of summarization games, in which the quality of the approximation de-
pends on thénfluenceof the summarization functiof. A well-known notion in discrete
functional analysis, the influence &fis the maximum change i that any input (player)

can unilaterally cause. (See [4] for detailed definitions.)

It can be shown (details omitted) that any uniform transfer IDS game is in fact a summa-



rization game under the choice
n
a:H1—1—a, )8;) 2)

and that the influence of this function is bounded by the lar§estVe note that in many
natural uniform transfer IDS settings, we expect this influence to diminishl|ikewith

the number of players. (This would be the case if the risk transfer comes about through
physical objects like airline baggage, where each transfer event can have only a single
destination.) Combined with the results of [4], the above discussion can be shown to yield
the following result.

Theorem 2 There is an algorithm that takes as input any uniform transfer IDS game, and
anye > 0, and computes af(e + 7p)-NE, wherep = max;{(1 — p;)/(1 — J;)} and
T = max;{J;}. The running time of the algorithm is polynomiahin1/e, andp.

We note that in typical IDS settings we expect bothgghandd; to be small (the bad event

is relatively rare, regardless of its source), in which caseay be viewed as a constant.
Furthermore, it can be verified that this algorithm will in fact be able to compute approxi-
mate NE in which some players choose to invest and others not to, even in the absence of
any dominant strategies.

While viewing uniform transfer IDS games as bounded influence summarization games
relates them to a standard class and yields a natural approximation algorithm, an improved
approach s possible. We now present an algorithm (AlgorithniformTransferIDSNash

in Figure 3.1) that efficiently computedl NE for uniform transfer IDS games. The algo-
rithm (indeed, even the representation of certain NE) requires the ability to complute
roots.

We may assume without loss of generality that for all playet& > 0, andp; > 0.
For a joint mixed strategy vectar € [0, 1], denote the set dfully) investing playerss
I = {i : z; = 1}, the set of(fully) non-investing playerasN = {i : z; = 0}, and the set
of partially investing playerasP = {i: 0 < x; < 1}.

The correctness of algorithtdniformTransferIDSNash follows immediately from two
lemmas that we now state without proof due to space considerations. The first lemmais a
generalization of Proposition 2 of [2], and essentially establishes that the vglgsand
(1-9;)R;/p; determine a two-level ordering of the players’ willingness to invest. This dou-
ble ordering generates the outer and inner loops of algotithiformTransferIDSNash.

Note that a player with smalR; /p; has a combination of relatively low cost of investing
compared to the loss of a bad event (reégll= C;/L;), and relatively high direct risk;,

and thus intuitively should be more willing to invest than players with laRggép;. The
lemma makes this intuition precise.

Lemma 3 (Ordering Lemma) Letf be a NE for a uniform transfer IDS gang =
(n,R,p,0). Then for anyi € I (an investing player), any € N (a partially investing
player), and any: € P (a non-investing player), the following conditions hold:

Ri/pi < R;j/p;
Ri/pi < (1—0r) Ri/prx < Ri/pr
(L=96;) Rj/pj < (1—0k) Ri/ps
The second lemma establishes that if a NE contains some partially investing players, the

values for their mixed strategies is in fact uniquely determined. The equations for these
mixed strategies is exploited in the subroufifestNash.



Algorithm UniformTransferIDSNash
Input:  An n-player uniform transfer IDS gam@ with direct risk parameterg, transfer risk
parameters, and cost parametef3, whereR; = C;/L;.
Output: A setS of all exact connected sets of N& G.
1. Initialize a partition of the players into three sétsV, P (the investing, not investing,
and partially investing players, respectively) and test if everybody investing is a NE:
I+« {1,...,n}; N« 0; P + 0; S + TestNasHG,I,N, P, S)
2. Let (i1, 42, ...,i,) be an ordering of thex players satisfyingR;, /pi;;, > ... >
R;,, /ps,, . Call this theouter ordering
3. fork=1,...,n
(@) Move the next player in the outer ordering from the investing to the partially-
investing setsP «— P |J {ix}; I < I — {in}
(b) Let(j1, ..., jr) be an ordering of the players i satisfying(1—9d;, ) R;, /pj, >
... > (1—=46;,) Rj, /pj, - Call this theinner ordering
(c) Consider a strategy with no not-investing playersN <+ 0;S <«
TestNasHG, I, N, P, S)
(d) form=1,...,k
i. Move the next player in the inner ordering from the partially-investing {
non-investing sets, and test if there is a NE consistent with the partition:
N+ NU{jm}; P P—{jm}; S+ TestNasHG,I,N, P, S)

()

SubroutineTestNash

Inputs: An n-player uniform transfer IDS gani a partition of the player$, N, P (as above);
S, the current discovered set of connected sets of NE for

Output: S with possibly one additional connected set of NEjofonsistent withl, N, and P
(assuming unit-time computation e-roots of rational numbers)

1. Set pure strategies for not-investing and investing players, respectivély:e
N,z < 0,Vi € I,z; + 1.

2. if |P| =1 (Lemma 4, part (a) applies)
(a) LetP = {j}, U asinEquation 3ant’ = U () (0,1)
(b) if Rj =p;[Ipen(1—0r) (i.e., playerj is indifferent) andJ’ # 0, then return
SU{y: vy el j-; =251}
3. else (Lemma 4, part (b) applies)
(a) Compute mixed strategi®¥g € P, z; as in Equation 4
(b) if 3j € Pyx; <0orx; > 1, returnS
(c) if #isaNE forg then returnS |J {{Z}}
4. returnS

Figure 1: AlgorithmUniformTransferIDSNash

If I = [I,u] is an interval ofR with endpoints/ andu, anda,b € R then we define
al + b = [al + b,au + b].

Lemma 4 (Partial Investment Lemma) Let € [0, 1]™ be a mixed strategy for a uniform
transfer IDS gamg = (n, ﬁ,ﬁ, 5), and letP be the set of partially investing players:n

Then (a) iffP| = 1, thenlettingP = {j},V = [max;ecs R;/pi, mingen(1 — k) Ri/pk],
and
U= ((pj/Rj) V —(1-6;))/ d; (3)

it holds thatz is a NE if and only if; = p; [T, n 1 — 6k (i.e., playery is indifferent) and
player j mixed strategy satisfies; € U; else, (b) if|P| > 1, andZ is a NE, then for all



JjEP,
zj = ((pj/Rj)E — (1-10;5)) [ 6; (4)

whereE = (HjeP(Rj/pj) / Mpen (1 - ék))l/(\Plfl) .

The next theorem summarizes our second algorithmic result on uniform transfer IDS
games. The omitted proof follows from Lemmas 3 and 4.

Theorem 5 AlgorithmUniformTransferIDSNash computes all exact (connected sets of)
NE for uniform transfer IDS games in time polynomial in the size of the model.

We note that it follows immediately from the description and correctness of the algorithm
that anyn-player uniform transfer IDS game has at magt + 3)/2 + 1 connected sets

of NE. In addition, each connected set of NE in a uniform transfer IDS game is either
a singleton or a simple interval where— 1 of the players play pure strategies and the
remaining player has a simple interval[ii 1] of probability values from which to choose

its strategy. At mosh of the connected sets of NE in a uniform transfer IDS game are
simple intervals.

3.2 Hardness of General IDS Games

In light of the results of the preceding section, it is of course natural to consider the com-
putational difficulty of unrestricted IDS. We now show that even a slight generalization of
uniform transfer IDS games, in which we allow theto assume two fixed values instead

of one, leads to the intractabilty of computing at least some of the NE.

A graphical uniform transfer IDS gameo named because it can be viewed as a marriage
between uniform transfer IDS games and the graphical games introduced in [3], is an IDS
game with the restriction that for all playejs ¢;; € {0,d,}, for somed; > 0. Let

N(j) = {i : ¢z > 0} be the set of players that can digectly affectecby player;’s
behavior. In other words, the transfer risk paramejeof player; with respect to player

is either zero, in which case the playehnas nadirect effect on playet’s behavior; or it is
constant, in which case, the public safefy = (1 — (1 — z;)d;) of playerj with respect

to playeri € N(j) is the same as for any other playerf{(y).

The pure Nash extension probleior ann-player game with binary actions takes as input
a description of the game and a partial assignment{0, 1, x}". The output may be any
complete assignment (joint actioiﬁ)z {0, 1}" that agrees witi@ on all its 0 and 1 settings,
and is a (pure) NE for the game; or “none” if no such NE exists. Clearly the problem of
computingall the NE is at least as difficult as the pure Nash extension problem.

Theorem 6 The pure Nash extension problem for graphical uniform transfer IDS games is
NP-complete, even iV (j)| < 3 for all j, andé; is some fixed valuéfor all 5.

The reduction (omitted) is from Monotone One-in-Three SAT [1].

4 Experimental Study: Airline Baggage Security

As an empirical demonstration of IDS games, we constructed and conducted experiments
on an IDS game for airline security that is based on real industry data. We have access
to a data set consisting of 35,362 records of actual civilian commercial flight reservations,
both domestic and international, made on August 26, 2002. Since these records contain
complete flight itineraries, they include passenger transfers between the 122 represented
commercial air carriers. As described below, we used this data set to construct an IDS



game in which the players are the 122 carriers, the “bad event” corresponds to a bomb
exploding in a bag being transported in a carrier’s airplane, and the transfer event is the
physical transfer of a bag from one carrier to another.

For each carrier paii, j), the transfer parameter; was set to be proportional to the
count of transfers from carrigrto carrieri in the data set. We are thus using the rate of
passengetransfers as a proxy for the rate leiggageransfers. The resulting parameters
(details omitted) are, as expected, quite asymmetric, as there are highly structured pat-
terns of transfers resulting from differing geographic coverages, alliances between carriers,
etc. The model is thus far from being a uniform transfer IDS game, and thus algorithm
UniformTransferIDSNash cannot be applied; we instead used a simple gradient learning
approach.

The data set provides no guidance on reasonable values f&; thedp;, which quantify
relative costs of a hypothetical new screening procedure and the direct risks of checking
contaminated luggage, respectively; presumahlylepends on the specific economics of

the carrier, angh; on some notion of the risk presented by the carrier’s clientele, which
might depend on the geographic area served. Thus, for illustrative purposes, an arbitrary
value ofp; = 0.01 was chosen for all 3, and a common value faR; of 0.009 (so an
explosion is roughly 110 times more costly to a carrier than full investment in security).

Since the asymmetries of thg preclude the use of algorithniformTransferIDSNash,

we instead used a learning approach in which each player begins with a random initial
investment strategy; € [0, 1], and adjusts its degree of investment up or down based on
the gradientdynamics; <+ xz; —nA;, whereA, is determined by computing the derivative

of Equation (1) andy = 0.05 was used in the experiments to be discussed.
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Figure 2:(a) Simulation of the evolution of security investment strategies for the 49 busiest carrier
using gradient dynamics under the IDS model. Above each plot is an index indicating the rank of the
carrier in terms of overall volume in the data set. Each plot shows the investment Jdir@tialized
randomly in[0, 1]) for carrieri over 500 simulation steps. (b) Tipping phenomena. Simulation of
the evolution of security investment strategies for the 49 busiest carriers, but with the three largest
carriers (indices 1, 2 and 3) in the data set clamped (subsidized) at full investment. The plots are
ordered as in (a), and again show 500 simulation steps under gradient dynamics.

Figure 2(a) shows the evolution, over 500 steps of simulation time, of the investment level
x; for the 49 busiest carriefs We have ordered the 49 plots with the least busy carrier

3This is (hopefully) an unrealistically large value for the real world; however, it is the relationship
between the parameters and not their absolute magnitudes that is important in the model.
“4According to the total volume of flights per carrier in the data set.



(index 49) plotted in the upper left corner, and the busiest (index 1) in the lower right
corner. The horizontal axes measure the 500 time steps, while the vertical axes go from 0
to 1. The axes are unlabeled for legibility.

The most striking feature of the figure is the change in the evolution of the investment
strategy as we move from less busy to more busy carriers. Broadly speaking, there is a large
population of lower-volume carriers (indices 49 down to 34) that quickly converge to full
investmentg; = 1) regardless of initial conditions. The smallest carriers, not shown (ranks
122 down to 50), also all rapidly converge to full investment. There is then a set of medium-
volume carriers whose limiting strategy is approached more slowly, and may eventually
converge to either full or no investment (roughly indices 33 down to 14). Finally, the largest
carriers (indices 13 and lower) again converge quickly, but to no investment (0),
because they have a high probability of having bags transferred from other carriers (even if
they protect themselves against dangerous bags being loaded directly on their planes).

Note also that the dynamics can yield complex, nonlinear behavior that includes reversals of
strategy. The simulation eventually converges (within 2000 steps) to a (Nash) equilibrium

in which some carriers are at full investment, and the rest at no investment. This property
is extremely robust across initial conditions and model parameters,

The above simulation model enables one to examine how subsidizing several airlines to en-
courage it to invest in security can encourage others to do the same. This type of “tipping”
behavior [6] can be the basis for developing strategies for inducing adoption of security
measures short of formal regulations or requirements. Figure2(b) shows the result of an
identical simulation to the one discussed above, except the three largest carriers (indices 1,
2 and 3) are now “clamped” or forced to be at full investment during the entire simulation.
Independent of initial conditions, the remaining population now invariably converges to full
investment. Thus the model suggests that these three carriers form (one of perhaps many
different) tipping sets — carriers whose decision to invest (due to subsidization or other
exogenous forces) will create the economic incentive for a large population of otherwise
skeptical carriers to follow. The dynamics also reveal a cascading effect — for example,
carrier 5 moves towards full investment (after having settled comfortably at no investment)
only after a number of larger and smaller carriers have done so.
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