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Abstract 
In this paper we analyze the relationships between the eigenvalues 
of the m x m Gram matrix K for a kernel k(·, .) corresponding to a 
sample Xl, ... ,Xm drawn from a density p(x) and the eigenvalues 
of the corresponding continuous eigenproblem. We bound the dif­
ferences between the two spectra and provide a performance bound 
on kernel peA. 

1 Introduction 

Over recent years there has been a considerable amount of interest in kernel methods 
for supervised learning (e.g. Support Vector Machines and Gaussian Process predic­
t ion) and for unsupervised learning (e.g. kernel peA, Sch61kopf et al. (1998)). In 
this paper we study the stability of the subspace of feature space extracted by kernel 
peA with respect to the sample of size m, and relate this to the feature space that 
would be extracted in the infinite sample-size limit. This analysis essentially "lifts" 
into (a potentially infinite dimensional) feature space an analysis which can also 
be carried out for peA, comparing the k-dimensional eigenspace extracted from 
a sample covariance matrix and the k-dimensional eigenspace extracted from the 
population covariance matrix, and comparing the residuals from the k-dimensional 
compression for the m-sample and the population. 
Earlier work by Shawe-Taylor et al. (2002) discussed the concentration of spectral 
properties of Gram matrices and of the residuals of fixed projections. However, 
these results gave deviation bounds on the sampling variability the eigenvalues of 
the Gram matrix, but did not address the relationship of sample and population 
eigenvalues, or the estimation problem of the residual of peA on new data. 

The structure the remainder of the paper is as follows. In section 2 we provide 
background on the continuous kernel eigenproblem, and the relationship between 
the eigenvalues of certain matrices and the expected residuals when projecting into 
spaces of dimension k. Section 3 provides inequality relationships between the 
process eigenvalues and the expectation of the Gram matrix eigenvalues. Section 4 
presents some concentration results and uses these to develop an approximate chain 
of inequalities. In section 5 we obtain a performance bound on kernel peA, relating 
the performance on the training sample to the expected performance wrt p(x). 



2 Background 

2.1 The kernel eigenproblern 

For a given kernel function k(·,·) the m x m Gram matrix K has entries k(Xi,Xj), 
i, j = 1, ... ,m, where {Xi: i = 1, ... ,m} is a given dataset . For Mercer kernels K 
is symmetric positive semi-definite. We denote the eigenvalues of the Gram matrix 
as Al 2: A2 .. . 2: Am 2: 0 and write its eigendecomposition as K = zAz' where A 
is a diagonal matrix of the eigenvalues and Z' denotes the transpose of matrix Z. 
The eigenvalues are also referred to as the spectrum of the Gram matrix. 

We now describe the relationship between the eigenvalues of the Gram matrix and 
those of the underlying process. For a given kernel function and density p(x) on a 
space X, we can also write down the eigenfunction problem 

Ix k(x,Y)P(X)¢i(X) dx = AiC/Ji(Y)· (1) 

Note that the eigenfunctions are orthonormal with respect to p(x), i.e. 
J x (Pi(x)p(x)¢j (x)dx = 6ij. Let the eigenvalues be ordered so that Al 2: A2 2: .... 
This continuous eigenproblem can be approximated in the following way. Let 
{Xi: i = 1, . .. , m} be a sample drawn according to p(x). Then as pointed out in 
Williams and Seeger (2000), we can approximate the integral with weight function 
p(x) by an average over the sample points, and then plug in Y = Xj for j = 1, ... ,m 
to obtain the matrix eigenproblem. 

Thus we see that J.1i d;j ~ Ai is an obvious estimator for the ith eigenvalue of the 
continuous problem. The theory of the numerical solution of eigenvalue problems 
(Baker 1977, Theorem 3.4) shows that for a fixed k, J.1k will converge to Ak in the 
limit as m -+ 00. 

For the case that X is one dimensional, p(x) is Gaussian and k(x, y) = exp -b(x­
y)2, there are analytic results for the eigenvalues and eigenfunctions of equation (1) 
as given in section 4 of Zhu et al. (1998). A plot in Williams and Seeger (2000) for 
m = 500 with b = 3 and p(x) '" N(O, 1/4) shows good agreement between J.1i and Ai 
for small i, but that for larger i the matrix eigenvalues underestimate the process 
eigenvalues. One of the by-products of this paper will be bounds on the degree of 
underestimation for this estimation problem in a fully general setting. 
Koltchinskii and Gine (2000) discuss a number of results including rates of conver­
gence of the J.1-spectrum to the A-spectrum. The measure they use compares the 
whole spectrum rather than individual eigenvalues or subsets of eigenvalues. They 
also do not deal with the estimation problem for PCA residuals. 

2.2 Projections, residuals and eigenvalues 

The approach adopted in the proofs of the next section is to relate the eigenvalues 
to the sums of squares of residuals. Let X be a random variable in d dimensions, 
and let X be a d x m matrix containing m sample vectors Xl, ... , X m . Consider 
the m x m matrix M = XIX with eigendecomposition M = zAz'. Then taking 

X = Z VA we obtain a finite dimensional version of Mercer's theorem. To set the 
scene, we now present a short description of the residuals viewpoint. 

The starting point is the singular value decomposition of X = UY',Z' , where U 
and Z are orthonormal matrices and Y', is a diagonal matrix containing the singular 



values (in descending order). We can now reconstruct the eigenvalue decomposition 
of M = X'X = Z~U'U~Z' = zAz', where A = ~2. But equally we can construct 
a d x d matrix N = X X' = U~Z' Z~U' = u Au', with the same eigenvalues as M. 
We have made a slight abuse of notation by using A to represent two matrices of 
potentially different dimensions, but the larger is simply an extension of the smaller 
with O's. Note that N = mCx , where Cx is the sample correlation matrix. 

Let V be a linear space spanned by k linearly independent vectors. Let Pv(x) 
(PV(x)) be the projection of x onto V (space perpendicular to V), so that IlxW = 
IIPv(x)112 + IIPv(x)112. Using the Courant-Fisher minimax theorem it can be proved 
(Shawe-Taylor et al., 2002, equation 4) that 

m m m 

m m k m 

L )...i(M) L IIxjl12 - L )...i(M) = min L IlPv(xj)112. (2) 
dim(V)=k i=k+1 j=l i=l j=l 

Hence the subspace spanned by the first k eigenvectors is characterised as that for 
which the sum of the squares of the residuals is minimal. We can also obtain similar 
results for the population case, e.g. L7=1 Ai = maXdim(V)=k lE[IIPv (x) 11 2]. 

2.3 Residuals in feature space 

Frequently, we consider all of the above as occurring in a kernel defined feature 
space, so that wherever we have written a vector x we should have put 'l/J(x), 
where 'l/J is the corresponding feature map 'l/J : x E X f---t 'l/J(x) E F to a feature 
space F. Hence, the matrix M has entries Mij = ('l/J(Xi),'l/J(Xj)). The kernel 
function computes the composition of the inner product with the feature maps, 
k(x, z) = ('l/J(x) , 'l/J(z)) = 'l/J(x)''l/J(z) , which can in many cases be computed without 
explicitly evaluating the mapping 'l/J. We would also like to evaluate the projections 
into eigenspaces without explicitly computing the feature mapping 'l/J . This can be 
done as follows. Let Ui be the i-th singular vector in the feature space, that is 
the i-th eigenvector of the matrix N, with the corresponding singular value being 

O"i = ~ and the corresponding eigenvector of M being Zi. The projection of an 
input x onto Ui is given by 

'l/J(X)'Ui = ('l/J(X)'U)i = ('l/J(x)' X Z)W;l = k'ZW;l, 
where we have used the fact that X = U~Z' and k j = 'l/J(x)''l/J(Xj) = k(x,xj). 
Our final background observation concerns the kernel operator and its eigenspaces. 
The operator in question is 

K(f)(x) = Ix k(x, z)J(z)p(z)dz. 

Provided the operator is positive semi-definite, by Mercer's theorem we can de­
compose k(x,z) as a sum of eigenfunctions, k(x,z) = L :1 AiC!Ji(X) ¢i(Z) = 
('l/J(x), 'l/J(z)), where the functions (¢i(X))~l form a complete orthonormal basis 
with respect to the inner product (j, g)p = Ix J(x)g(x)p(x)dx and 'l/J(x) is the 
feature space mapping 

'l/J : x --+ (1Pi(X)):l = ( A¢i(X)):l E F. 

Note that ¢i(X) has norm 1 and satisfies Ai¢i(x) = Ix k(x, z)¢i(z)p(z)dz (equation 
1) , so that 

Ai = r k(y, Z)¢i(Y)¢i (Z)p(Z)p(y)dydz. iX2 (3) 



If we let cf>(x) = (cPi(X)):l E F, we can define the unit vector U i E F corresponding 
to Ai by Ui = Ix cPi(x)cf>(x)p(x)dx. For a general function J(x) we can similarly 
define the vector f = Ix J(x)cf>(x)p(x)dx. Now the expected square of the norm of 
the projection Pr(1jJ(x)) onto the vector f (assumed to be of norm 1) of an input 
1jJ(x) drawn according to p(x) is given by 

lE [llPr(1jJ(x)) 112] = L IlPr(1jJ(x))Wp(x)dx = L (f'1jJ(X))2 p(x)dx 

= L L L J(y) cf>(y)'1jJ (x)p(y)dyJ(z)cf> (z)'1jJ (x)p(z)dzp(x)dx 

= L3 J(y)J(z) t, A cPj(Y)cPj(x)p(y)dy ~ v>:ecPe(z)cPe(x)p(z)dzp(x)dx 

= L2 J(y)J(z) j~l AcPj(y)p(y)dyv'):ecPe(z)p(z)dz Ix cPj(x)cPe(x)p(x)dx 

= L2 J(y)J(z) ~ AjcPj (Y)cPj (z)p(y)dyp(z)dz 

= r J(y)J(z)k(y ,z)p(y)p(z)dydz. iX2 
Since all vectors f in the subspace spanned by the image of the input space in F 
can be expressed in this fashion, it follows using (3) that the sum of the finite case 
characterisation of eigenvalues and eigenvectors is replaced by an expectation 

Ak = max min lE[llPv (1jJ(x)) 112], 
dim(V)=k O#vEV 

where V is a linear subspace of the feature space F. Similarly, 

k 

(4) 

L:Ai max lE [llPv(1jJ(x)) 112] = lE [111jJ(x)112] - min lE [IIPv(1jJ(x))112] , 
dim(V)=k dim(V)=k 

i=l 

00 

(5) 

where Pv(1jJ(x)) (PV(1jJ(x))) is the projection of 1jJ(x) into the subspace V (the 
projection of 1jJ(x) into the space orthogonal to V). 

2.4 Plan of campaign 

We are now in a position to motivate the main results ofthe paper. We consider the 
general case of a kernel defined feature space with input space X and probability 
density p(x). We fix a sample size m and a draw of m examples S = (Xl, X2 , ... , xm ) 

according to p. Further we fix a feature dimension k. Let Vk be the space spanned by 
the first k eigenvectors of the sample kernel matrix K with corresponding eigenvalues 
'\1, '\2 ,"" '\k, while Vk is the space spanned by the first k process eigenvectors with 
corresponding eigenvalues A1 , A2 , ... , Ak ' Similarly, let E[J(x)] denote expectation 
with respect to the sample, E[J(x)] = ~ 2:::1 J(Xi), while as before lE[·] denotes 
expectation with respect to p. 

We are interested in the relationships between the following quantities: (i) 

E [IIPVk (x)11 2] = ~ 2:7=1 ~i = 2:7=1 ILi , (ii) lE [IIPVk(X)112] = 2:7=1 Ai (iii) 



lE [IIPVk (x)11 2] and (iv) IE [IIPVk (x)11 2] . Bounding the difference between the first 
and second will relate the process eigenvalues to the sample eigenvalues, while the 
difference between the first and third will bound the expected performance of the 
space identified by kernel PCA when used on new data. 
Our first two observations follow simply from equation (5), 

k 

IE [IIPYk (x) 112] 1 l: A A [ 2] (6) - Ai ~ lE IIPVk (x) II , 
m i=l 

k 

and lE [IIPVk (x) 11 2] l: Ai ~ lE [IIPYk (x)11 2] . (7) 
i=l 

Our strategy will be to show that the right hand side of inequality (6) and the left 
hand side of inequality (7) are close in value making the two inequalit ies approxi­
mately a chain of inequalities. We then bound the difference between the first and 
last entries in the chain. 

3 A veraging over Samples and Population Eigenvalues 

The sample correlation matrix is ex = ~XXI with eigenvalues ILl ~ IL2··· ~ ILd. 

In the notation of the section 2 ILi = (l/m),\ i ' The corresponding population 
correlation matrix has eigenvalues Al ~ A2 ... ~ Ad and eigenvectors ul , . .. , U d. 

Again by the observations above these are the process eigenvalues. Let lE.n [.] denote 
averages over random samples of size m . 

The following proposition describes how lE.n [ILl ] is related to Al and lE.n [ILd] is related 
to Ad. It requires no assumption of Gaussianity. 

Proposition 1 (Anderson, 1963, pp 145-146) lE.n [ILd ~ Al and lE.n[ILd] :s: Ad' 

Proof: By the results of the previous section we have 

We now apply the expectation operator lE.n to both sides. On the RHS we get 

lE.nIE [llFul (x ) 11 2] = lE [llFul (x)112] = Al 

by equation (5), which completes the proof. Correspondingly ILd is characterized by 
ILd = mino#c IE [llFc(Xi) 11 2] (minor components analysis). D 

Interpreting this result, we see that lE.n [ILl] overestimates AI, while lE.n [ILd] under­
estimates Ad. 

Proposition 1 can be generalized to give the following result where we have also 
allowed for a kernel defined feature space of dimension N F :s: 00. 

Proposition 2 Using the above notation, for any k, 1 :s: k :s: m , lE.n [L:~= l ILi] ~ 
L:~=l Ai and lE.n [L::k+l ILi] :s: L:~k+l Ai· 

Proof: Let Vk be the space spanned by the first k process eigenvectors. Then from 
the derivations above we have 

k 

l:ILi = v: ::~=k IE [11Fv('I/J(x))W] ~ IE [llFvk('I/J(x ))1 12]. 
i=l 



Again, applying the expectation operator Em to both sides of this equation and 
taking equation (5) into account, the first inequality follows. To prove the second we 
turn max into min, Pinto pl. and reverse the inequality. Again taking expectations 
of both sides proves the second part. 0 

Applying the results obtained in this section, it follows that Em [ILl] will overestimate 

A1, and the cumulative sum 2::=1 Em [ILi ] will overestimate 2::=1 Ai. At the other 
end, clearly for N F ::::: k > m, ILk == 0 is an underestimate of Ak. 

4 Concentration of eigenvalues 

We now make use of results from Shawe-Taylor et al. (2002) concerning the concen­
tration of the eigenvalue spectrum of the Gram matrix. We have 

Theorem 3 Let K(x, z) be a positive semi-definite kernel function on a space X, 
and let p be a probability density function on X. Fix natural numbers m and 1 :::; 
k < m and let S = (Xl, ... ,Xm) E xm be a sample of m points drawn according to 
p. Then for all t > 0, 

p{ I ~~~k(S)_Em [~~9(S)] 1 :::::t} :::; 2exp(-~:m), 
where ~~k (S) is the sum of the largest k eigenvalues of the matrix K(S) with entries 
K(S)ij = K(Xi,Xj) and R2 = maxxEX K(x, x). 

This follows by a similar derivation to Theorem 5 in Shawe-Taylor et al. (2002). 
Our next result concerns the concentration of the residuals with respect to a fixed 
subspace. For a subspace V and training set S, we introduce the notation 

Fv(S) = t [llPv('IjJ(x)) 112] . 
Theorem 4 Let p be a probability density function on X. Fix natural numbers m 
and a subspace V and let S = (Xl' ... ' Xm) E xm be a sample of m points drawn 
according to a probability density function p. Then for all t > 0, 

P{Fv(S) - Em [Fv(S)] 1 ::::: t} :::; 2exp (~~~) . 
This is theorem 6 in Shawe-Taylor et al. (2002). 

The concentration results of this section are very tight. In the notation of the earlier 
sections they show that with high probability 

and 
k 

L Ai ~ t [IIPVk ('IjJ(x))W] , (9) 
i = l 

where we have used Theorem 3 to obtain the first approximate equality and Theo­
rem 4 with V = Vk to obtain the second approximate equality. 

This gives the sought relationship to create an approximate chain of inequalities 

k 

~ IE [IIPVk('IjJ(x))112] = L Ai::::: IE [IIPVk ('IjJ(X)) 112] . (10) 
i = l 



This approximate chain of inequalities could also have been obtained using Propo­
sition 2. It remains to bound the difference between the first and last entries in this 
chain. This together with the concentration results of this section will deliver the 
required bounds on the differences between empirical and process eigenvalues, as 
well as providing a performance bound on kernel peA. 

5 Learning a projection matrix 

The key observation that enables the analysis bounding the difference between 

t [IIPvJ!p(X)) 11 2] and IE [IIPvJ'I/J(x)) 11 2] is that we can view the projection norm 

IIPvJ'I/J(x))1 12 as a linear function of pairs offeatures from the feature space F. 

Proposition 5 The projection norm IIPVk ('I/J(X)) 11 2 is a linear function j in a fea­

ture space F for which the kernel function is given by k(x, z) = k(x , Z)2. Further­
more the 2-norm of the function j is Vk. 

Proof: Let X = Uy:.Z' be the singular value decomposition of the sample matrix X 
in the feature space. The projection norm is then given by j(x) = IIPVk ('I/J(X)) 11 2 = 
'I/J(x)'UkUk'I/J(x), where Uk is the matrix containing the first k columns of U. Hence 
we can write 

NF NF 

IIPvJ'I/J(x))11 2 = l: (Xij'I/J( X) i'I/J(X)j = l: (Xij1p(X)ij, 
ij=l ij=l 

where 1p is the projection mapping into the feature space F consisting of all pairs 
of F features and (Xij = (UkUk)ij. The standard polynomial construction gives 

k(x, z) 

NF NF 

l: 'I/J(X)i'I/J(Z)i'I/J(X)j'I/J(z)j = l: ('I/J(X)i'I/J(X)j)('I/J(Z)i'I/J(Z)j) 
i,j=l i,j=l 

It remains to show that the norm of the linear function is k. The norm satisfies 
(note that II . IIF denotes the Frobenius norm and U i the columns of U) 

Ilill' i~' a1j ~ IIU,U;II} ~ (~",U; , t, Ujuj) F ~ it, (U;Uj)' ~ k 

as required. D 

We are now in a position to apply a learning theory bound where we consider a 
regression problem for which the target output is the square of the norm of the 
sample point 11'I/J(x)11 2. We restrict the linear function in the space F to have norm 
Vk. The loss function is then the shortfall between the output of j and the squared 
norm. 
Using Rademacher complexity theory we can obtain the following theorems: 

Theorem 6 If we perform peA in the feature space defined by a kernel k(x , z) 
then with probability greater than 1 - 6, for all 1 :::; k :::; m, if we project new data 



onto the space 11k , the expected squared residual is bounded by 

,\,>. :<: IE [ IIPt; ("'(x)) II' 1 < '~'~k [ ~ \>l(S) + 7# 
,----------------, 

+R2 ~ln C:) 
where the support of the distribution is in a ball of radius R in the feature space and 
Ai and .xi are the process and empirical eigenvalues respectively. 

Theorem 7 If we perform peA in the feature space defined by a kernel k(x , z) 
then with probability greater than 1 - 5, for all 1 :s: k :s: m, if we project new data 
onto the space 11k , the sum of the largest k process eigenvalues is bounded by 

A<!,k ;::: lE [IIPVk ("IjJ(x))W] > max [~.x<!'f(S) - 1 + v'£ ! f k(Xi' Xi)2 
l <!, f <!, k m Vm m i=l 

_R2 ~ln C(mt 1)) 

where the support of the distribution is in a ball of radius R in the feature space and 
Ai and .xi are the process and empirical eigenvalues respectively. 

The proofs of these results are given in Shawe-Taylor et al. (2003). Theorem 6 

implies that if k « m the expected residuallE [11Pt;, ("IjJ(x)) 112 ] closely matches the 

average sample residual of IE [11Pt;,("IjJ(x))112] = (1/m)E:k+1 .xi , thus providing 
a bound for kernel peA on new data. Theorem 7 implies a good fit between the 
partial sums of the largest k empirical and process eigenvalues when Jk/m is small. 
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