


shorter argument and much tighter than previous margin bounds.

There are two mathematical flavors of margin bound dependent upon the weights
Wi of the vote and the features Xi that the vote is taken over.

1. Those ([12], [1]) with a bound on Li w~ and Li x~ ("bib" bounds).

2. Those ([11], [6]) with a bound on Li Wi and maxi Xi ("it/loo" bounds).

The results here are of the "bll2" form. We improve on Shawe-Taylor et al. [12]
and Bartlett [1] by a log(m)2 sample complexity factor and much tighter constants
(1000 or unstated versus 9 or 18 as suggested by Section 2.2). In addition, the
bound here covers margin errors without weakening the error-free case.

Herbrich and Graepel [3] moved significantly towards the approach adopted in our
paper, but the methodology adopted meant that their result does not scale well to
high dimensional feature spaces as the bound here (and earlier results) do.

The layout of our paper is simple - we first show how to construct a stochastic
classifier with a good true error bound given a margin, and then construct a margin
bound.

2 Margin Implies PAC-Bayes Bound

2.1 Notation and theoreIll

Consider a feature space X which may be used to make predictions about the value
in an output space Y = {-I, +1}. We use the notation x = (Xl, ... , XN) to denote
an N dimensional vector. Let the vote of a voting classifier be given by:

vw(x) = wx = L WiXi·

i

The classifier is given by c(x) = sign (vw(x)). The number of "margin violations"
or "margin errors" at 7 is given by:

e1'(c) = Pr (yvw(x) < 7),
(X,1I)~U(S)

where U(S) is the uniform distribution over the sample set S.

For convenience, we assume vx(x) :::; 1 and vw(w) :::; 1. Without this assumption,
our results scale as ../vx(x)../vw(w)h rather than 117.
Any margin bound applies to a vector W in N dimensional space. For every example,
we can decompose the example into a portion which is parallel to W and a portion
which is perpendicular to w.

vw(x)
XT = X - IIwl12 w XII = x - XT

The argument is simple: we exhibit a "prior" over the weight space and a "posterior"
over the weight space with an analytical form for the KL-divergence. The stochastic
classifier defined by the posterior has a slightly larger empirical error and a small
true error bound.

For the next theorem, let F(x) =1- f~oo ke-z2/2dx be the tail probability of a
Gaussian with mean 0 and variance 1. Also let

eQ(W,1',f) = Pr (h(x) =I y)
(X,1I)~D,h~Q(w,1',f)



be the true error rate of a stochastic classifier with distribution Q(f, w, 7) dependent
on a free parameter f, the weights w of an averaging classifier, and a margin 7.

Theorem 2.1 There exists a function Q mapping a weight vector w, margin 7,
and value f > 0 to a distribution Q(w,7, f) such that

(

A Inp(Fl:(Ol)+lnmtl)
Pr Vw, 7, f: KL(e1'(c) + flleQ(w,1',f») :::; m ~ 1 - 8

S~D"'

where KL(qllp) = qIn: + (1 - q) In ~::::: = the Kullback-Leibler divergence between
two coins of bias q < p.

2.2 Discussion

Theorem 2.1 shows that when a margin exists it is always possible to find a "pos­
terior" distribution (in the style of [5]) which introduces only a small amount of
additional training error rate. The true error bound for this stochastization of the
large-margin classifier is not dependent on the dimensionality except via the margin.

Since the Gaussian tail decreases exponentially, the value of P-l(f) is not very large
for any reasonable value of f. In particular, at P(3), we have f :::; 0.01. Thus, for
the purpose of understanding, we can replace P-l(f) with 3 and consider f ~ O.
One useful approximation for P(x) with large x is:

_ e-",2/2
F(x) ~ . tn= (1/x)

y27f

If there are no margin errors e1'(c) = 0, then these approximations, yield the ap­
proximate bound:

(

_9_ + In 3v'2iT + In m±1 )
P 21'2 l' {j 1~

S D
r eQ(w,1',O) :::; ~ - u

~"' m

In particular, for large m the true error is approximately bounded by 21'~m'

As an example, if 7 = 0.25, the bound is less than 1 around m = 100 examples and
less than 0.5 around m = 200 examples.

Later we show (see Lemmas 4.1 and 4.2 or Theorem 4.3) that the generalisation
error of the original averaging classifier is only a factor 2 or 4 larger than that of the
stochastic classifiers considered here. Hence, the bounds of Theorems 2.1 and 3.1
also give bounds on the averaging classifiers w.

This theorem is robust in the presence of noise and margin errors. Since the PAC­
Bayes bound works for any "posterior" Q, we are free to choose Q dependent upon
the data in any way. In practice, it may be desirable to follow an approach similar
to [5] and allow the data to determine the "right" posterior Q. Using the data
rather than the margin 7 allows the bound to take into account a fortuitous data
distribution and robust behavior in the presence of a "soft margin" (a margin with
errors). This is developed (along with a full proof) in the next section.

3 Main Full Result

We now present the main result. Here we state a bound which can take into ac­
count the distribution of the training set. Theorem 2.1 is a simple consequence



(1)

of this result. This theorem demonstrates the flexibility of the technique since it
incorporates significantly more data-dependent information into the bound calcu­
lation. When applying the bound one would choose p, to make the inequality (1)
an equality. Hence, any choice of p, determines E and hence the overall bound. We
then have the freedom to choose p, to optimise the bound.

As noted earlier, given a weight vector w, any particular feature vector x decom­
poses into a portion xII which is parallel to w and a portion XT which is perpen­
dicular to w. Hence, we can write x = xllell + XTeT, where ell is a unit vector in
the direction of w and eT is a unit vector in the direction of XT. Note that we may
have YXII < 0, if x is misclassified by w.

Theorem 3.1 For all averaging classifiers c with normalized weights wand for all
E > 0 stochastic error rates, If we choose p, > 0 such that

- (YXII )Ex,y~sF XT P, = E

then there exists a posterior distribution Q(w, p" E) such that

(
In ~l + In !!!±! )F(p,) /j

s~!J", VE, w, p,: KL(ElleQ(w,p"f)) ~ m ~ 1 - 6

where KL(qllp) = q In ~ + (1 - q) In ~=: = the Kullback-Leibler divergence between
two coins of bias q < p.

Proof. The proof uses the PAC-Bayes bound, which states that for all prior distri­
butions P,

Pr (VQ: KL(eQlleQ) ~ KL(QIIP) + In ¥) ~ 1- 6
S~D"' m

We choose P = N(O,I), an isotropic Gaussian1
.

A choice of the "posterior" Q completes the proof. The Q we choose depends upon
the direction w, the margin 'Y, and the stochastic error E. In particular, Q equals
P in every direction perpendicular to w, and a rectified Gaussian tail in the w
direction2 • The distribution of a rectified Gaussian tail is given by R(p,) = 0 for
x < p, and R(p,) = F(p,~.;21re-",2 /2 for x ~ p,o

The chain rule for relative entropy (Theorem 2.5.3 of [2]) and the independence of
draws in each dimension implies that:

KL(QIIP) KL(QIIIIPjI) + KL(QTIIPT)

KL(R(p,)IIN(O, 1)) + KL(PTIIPr)
KL(R(p,)IIN(O, 1)) + 0
roo 1

1p, Inp(p,)R(X)dx

1
= In P(p,)

1Later, the fact that an isotropic Gaussian has the same representation in all rotations
of the coordinate sytem will be useful.

2Note that we use the invariance under rotation of N(O, I) here to line up one dimension
with w.



Thus, our choice of posterior implies the theorem if the empirical error rate is

eq(w,x,.) :s Ex,._sF (*1') :s •which we show next.

Given a point x, our choice of posterior implies that we can decompose the stochastic
weight vector, W = wllell +wTeT +w, where ell is parallel to w, eT is parallel to XT
and W is a residual vector perpendicular to both. By our definition of the stochastic
generation wli ~ R(p) and WT ~ N(O, 1). To avoid an error, we must have:

y = sign(v;;,(x))

= sign(wlixli +WTXT).

Then, since tOil ~ JJ, no error occurs if:

y(pxlI + WTXT) > 0

Since WT is drawn from N(O, 1) the probability of this event is:

Pr (Y(I""II +WTXT) > 0) ~ 1- F (~~Ip)

And so, the empirical error rate of the stochastic classifier is bounded by:

eq:S Ex,._sF (~~Ip) =.
as required. _

3.1 Proof of Theorem 2.1

Proof. (sketch) The theorem follows from a relaxation of Theorem 3.1. In par­
ticular, we treat every example with a margin less than / as an error and use the
bounds IlxT11 :s 1 and IlxlIll ~ /. -

3.2 Further results

Several aspects of the Theorem 3.1 appear arbitrary, but they are not. In particular,
the choice of "prior" is not that arbitrary as the following lemma indicates.

Lemma 3.2 The set of P satisfying 311111 : P(x) = 11II1(lIxI12) (rotational invari­
ance) and P(x) = n~, p;(x;) (independence of each dimension) is N(O, >J) for
>'>0.

Proof. Rotational invariance together with the dimension independence imply that
for all i,j,x: p;(x) =p;(x) which implies that:

N

P(x) = IIp(x;)
;=1

for some ftmction p(.). Applying rotational invariance, we have that:

N

P(x) = 11II1(llxIl2) = IIp(x;)
;=1

This implies:

10g11111 (~,q) = ~IOgP(X;)'



Taking the derivative of this equation with respect to Xi gives

1I111 (1IxI1
2

) 2xi P'(Xi)
PjIIl(llxI1 2 ) - p(Xi) .

Since this holds for all values of x we must have

Pjlll (t) = AlIllI (t)

for some constant A, or Pjlll (t) = C exp(At) , for some constant C. Hence, P(x) =
C exp(AllxI1 2 ), as required. _

The constant A in the previous lemma is a free parameter. However, the results do
not depend upon the precise value of Aso we choose 1 for simplicity. Some freedom
in the choice of the "posterior" Q does exist and the results are dependent on this
choice. A rectified gaussian appears simplest.

4 Margin Implies Margin Bound

There are two methods for constructing a margin bound for the original averaging
classifier. The first method is simplest while the second is sometimes significantly
tighter.

4.1 Simple Margin Bound

First we note a trivial bound arising from a folk theorem and the relationship to
our result.

Lemma 4.1 (Simple Averaging bound) For any stochastic classifier with distribu­
tion Q and true error rate eQ, the averaging classifier,

CQ(X) = sign ([ h(X)dQ(h))

has true error rate:

Proof. For every example (x,y), every time the averaging classifier errs, the prob­
ability of the stochastic classifier erring must be at least 1/2. _

This result is interesting and of practical use when the empirical error rate of the
original averaging classifier is low. Furthermore, we can prove that cQ(x) is the
original averaging classifier.

Lemma 4.2 For Q = Q(w,'Y,e) derived according to Theorems 2.1 and 3.1 and
cQ(x) as in lemma 4.1:

CQ(X) = sign (vw(x))

Proof. For every x this equation holds because of two simple facts:

1. For any oW that classifies an input x differently from the averaging classifier,
there is a unique equiprobable paired weight vector that agrees with the
averaging classifier.

2. If vw(x) ¥- 0, then there exists a nonzero measure of classifier pairs which
always agrees with the averaging classifier.



Condition (1) is met by reversing the sign of WT and noting that either the orig­
inal random vector or the reversed random vector must agree with the averaging
classifier.

Condition (2) is met by the randomly drawn classifier W = AW and nearby classifiers
for any A> O. Since the example is not on the hyperplane, there exists some small
sphere of paired classifiers (in the sense of condition (1)). This sphere has a positive
measure. _

The simple averaging bound is elegant, but it breaks down when the empirical error
is large because:

e(c) ::; 2eQ = 2(€Q + 6om ) ~ 2€-y(c) + 260m

where €Q is the empirical error rate of a stochastic classifier and 60m goes to zero
as m -t 00. Next, we construct a bound of the form e(cQ) ::; €-y(c) + 6o~ where
6o~ > 60m but €-y(c) ::; 2€-y(c).

4.2 A (Sometimes) Tighter Bound

By altering our choice of J.L and our notion of "error" we can construct a bound
which holds without randomization. In particular, we have the following theorem:

Theorem 4.3 For all averaging classifiers C with normalized weights W for all E > 0
"extra" error rates and"( > 0 margins:

(

In -c/ 1(0») + 21n mtl)
Pr VE, w,"(: KL(€-y(c) + Elle(c) - E) ::; F -"/-m ~ 1- 0

S~D"'

where KL(qllp) = qln ~ + (1 - q) In ~::::: = the Kullback-Leibler divergence between
two coins of bias q < p.

The proof of this statement is strongly related to the proof given in [11] but notice­
ably simpler. It is also very related to the proof of theorem 2.1.

Proof. (sketch) Instead of choosing wli so that the empirical error rate is increased
by E, we instead choose wli so that the number of margin violations at margin ~ is
increased by at most E. This can be done by drawing from a distribution such as

A R (2F-1
(E))

WII'"
"(

Applying the PAC-Bayes bound to this we reach a bound on the number of margin
violations at ~ for the true distribution. In particular, we have:

s!:!'- (KL (",(e) +<IleQ,;) oS InF(~ + In "'t') '" 1_;

The application is tricky because the bound does not hold uniformly for all "(.3

Instead we can discretize "( at scale 1/ m and apply a union bound to get 0 -t 0/m+1.

For any fixed example, (x,y) with probability 1- 0, we know that with probability
at least 1 - eQ,~' the example has a margin of at least ~. Since the example has

3Thanks to David McAllester for pointing this out.



a margin of at least ~ and our randomization doesn't change the margin by more
than ~ with probability 1- f, the averaging classifier almost always predicts in the
same way as the stochastic classifier implying the theorem. _

4.3 Discussion &< Open Problems

The bound we have obtained here is considerably tighter than previous bounds for
averaging classifiers-in fact it is tight enough to consider applying to real learning
problems and using the results in decision making.

Can this argument be improved? The simple averaging bound (lemma 4.1) and
the margin bound (theorem 4.3) each have a regime in which they dominate. We
expect that there exists some natural theorem which does well in both regimes
simultaneously.

hI order to verify that the margin bound is as tight as possible, it would also be
instructive to study lower bounds.
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